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Unsupervised Coupled Metric Similarity for
Non-IID Categorical Data

Songlei Jian, Longbing Cao, Senior Member, IEEE, Kai Lu, and Hang Gao

Abstract—Appropriate similarity measures always play a critical role in data analytics, learning and processing. Measuring the intrinsic
similarity of categorical data for unsupervised learning has not been substantially addressed, and even less effort has been made for
the similarity analysis of categorical data that is not independent and identically distributed (non-IID). In this work, a Coupled Metric
Similarity (CMS) is defined for unsupervised learning which captures the value-to-attribute-to-object heterogeneous interactions. In
particular, both intra- and inter-attribute similarities as well as attribute-to-object similarities are learned by considering the intrinsic
heterogeneous coupling relationships in categorical data. We prove the validity of CMS w.r.t. metric properties and conditions, and
show that it is suitable for both independent and coupled data. CMS is incorporated into spectral clustering and k-modes and
compared with other state-of-the-art similarity measures that are not necessarily metrics. The experimental results and theoretical
analysis show the effectiveness of CMS, which significantly outperforms other similarity measures on most data sets.

Index Terms—Unsupervised similarity measure, distance metric, non-IID data, categorical data, clustering.
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1 INTRODUCTION

M Easuring similarity or distance between objects is fun-
damental for effective data analytics, including tasks

in data mining [1], machine learning [2], [3], image process-
ing [4], computer vision [5], and information retrieval tasks
[6], and in particular for complex data. A critical issue in
data analytics and learning is determining whether learned
outcomes are reliable and the underlying models genuinely
capture intrinsic data characteristics.

Similarity measures for nominal (categorical) and nu-
merical data are usually distinct. Most existing work on
similarity learning focuses on numerical data, such as the
commonly used Euclidean and Manhattan distances. For ex-
ample, the similarity measures built on geometric analogies
capture certain relations between numerical data values. As
an example, the distance between age 12 and age 15 is
smaller than that between age 12 and age 30, thus people
aged 12 and 15 are more similar in terms of age.

The similarity (or distance) of categorical data is not as
straightforward as it is for numerical data, however,since
the different values of a categorical attribute may not be
inherently ordered or comparable. Although there may be
no inherent order in categorical data, other factors like
matching statistics and frequency distribution exist and
thus indicate similarity. Among existing work, the most
straightforward and widely used distance metric is Ham-
ming distance [7]. The corresponding similarity measure is
Matching measure, which uses 0 and 1 to distinguish the
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similarity between distinct and identical categorical values.
Other similarity measures take the frequency distribution
of different attribute values into account, such as Inverse
Occurrence Frequency (IOF) and Occurrence Frequency (OF)
[8]. These similarity measures only capture the characteris-
tics within an attribute but ignore the relationships between
attributes.

1.1 Motivating toy example

We illustrate the problem with the existing work and the
inherent challenges in analyzing the similarity of categorical
data by taking the staff data of a lab in Table 1 as an example.
The staff data consists of four categorical attributes: Sex,
Education, Occupation and Marriage. From the matching per-
spective, the similarity between Staff 1 and Staff 2 is the same
as that between Staff 1 and Staff 3, because they are both 0.5.
However, from both education and occupation perspectives,
professors and assistant professors should be more similar
than professors and students in the lab.

A further analysis of relationships in categorical data
shows the need to consider the frequency distribution of an
attribute value and the co-occurrences between attributes.
From the OF perspective, two values of an attribute are
similar if they present analogous frequency distributions [8].
For example, the similarity between Professor and Assis-
tance Professor is greater than that between Professor and
Student, because the occurrence frequency in the staff data
of Professor and Assistant Professor is the same. Although
the attribute values can disclose more information than
simple matching, value frequency-based similarity is not
sufficient. For example, the similarity between the education
levels Doctor and Master is the same as that between Doctor
and Bachelor. This is because the frequency distribution only
captures the count statistics of attribute values, ignoring the
coupling relationships within and between attributes. The
co-occurrence of attribute values induced on other attributes
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TABLE 1
An Example: The Staff Data

Staff Sex Education Occupation Marriage
Staff 1 F Doctor Professor Married
Staff 2 M Doctor Assistant Professor Married
Staff 3 F Master Student Married
Staff 4 M Master Student Single
Staff 5 F Bachelor Student Single
Staff 6 M Bachelor Student Single

is more comparable [9], [10], and complements the accuracy
of frequency-based value similarity. By incorporating co-
occurrence based attribute similarity, the pair Doctor and
Master is more similar than Doctor and Bachelor, because
the former pair co-occurs with the same occupation and
marriage, while the latter does not.

1.2 Major issues and contributions

The above example shows that it is often much more compli-
cated to define the similarity of categorical data, especially
when data is embedded with complex relationships [11],
[12]. Big data applications become increasingly important
and popular, heterogeneous and hierarchical coupling re-
lationships [11] are embedded into categorical attributes,
values and objects, which make it even more difficult to
measure similarity or dissimilarity. For instance, the market
dynamics in a stock market may have many related reasons
and factors, such as psychological, economic, social, organi-
zational, political, cultural or even military. Data presenting
explicit and/or implicit couplings and heterogeneity is not
independent and identically distributed (i.e., non-IID) [13],
[14], [15]. Such data does not follow the classic IID assump-
tion, which has formed the basis of forming most existing
similarity measures.

Non-IID data learning has attracted increasing attention
and is usually built on non-IID samples in the relevant
communities [14], [15]. Several model-based approaches
have been proposed to address non-IID samples, such as
analyzing non-IID textual data by higher order Naive Bayes
[16], classification with non-IID samples [17], developing
chromatic PAC-Bayes bounds for non-IID data [18], and
learning from dependent observations [19].

Real-life data non-IIDness [13] is embodied in terms of
various coupling relationships and heterogeneities between
values, between attributes and between objects, forming
the value-to-object hierarchical non-IID data [13], [20]. A
fundamental learning task is to enhance the robustness and
generalization [21] of learning metrics and models in such
non-IID data. As an example, the matching and OF-based
measures cannot fully capture the genuine similarity of non-
IID categorical data as they only capture particular aspects.

In recent years, learning for hierarchical non-IID data
has been recognized as a foundational issue in complex
data analytics, with such typical work as Coupled Object
Similarity (COS) [10], [22], which involves the couplings
within and between attributes before object similarity is
defined. Other related work to address non-IID character-
istics [20] that incorporates couplings into various types

of learning tasks includes coupled clustering [10], coupled
KNN for classification [23], term coupling-based document
analysis [24], coupled keyword queries [25], coupled matrix
factorization by item and user couplings into recommender
systems [26], understanding relationships between patterns
for pattern relation analysis [27], [28], and analyzing image
couplings [29], [30].

Many of the existing similarity measures in the above
work are not metric-based and do not provide a solid
theoretical foundation that can satisfy the metric system and
support such properties as positivity, reflexivity, commuta-
tivity and triangle inequality, as will be discussed in Section
3. A distance or similarity metric reflects the results in the
metric space which is a topological space. Accordingly, all
definitions and theorems about general topological spaces
can be applied to metric spaces to support metric properties
and operations. For example, the classical k-means cluster-
ing algorithm is based on common metric space Euclidean
distance. With a similarity metric, we can define the distance
between data objects and the distance between data objects
and data sets (such as clusters) in metric space in a similar
way as in Euclidean space. Therefore, it is critical to develop
appropriate metric-based similarity measures.

In this paper, we build on the idea of incorporating
heterogeneous and hierarchical value-to-object coupling re-
lationships [20] into learning systems and we propose
a coupled metric similarity (CMS) metric for non-IID cat-
egorical data. CMS integrates the frequency-based intra-
attribute similarity with the co-occurrence based inter-
attribute similarity before object similarity is measured. The
intra-attribute similarity captures the frequency distribu-
tion and the coupling relationships between values in an
attribute. The inter-attribute similarity aggregates the at-
tribute dependency between values of different attributes by
considering intersection of their co-occurrence conditional
probability. The coupled metric similarity integrates intra-
attribute similarity with inter-attribute similarity by balanc-
ing their contributions. Importantly, we prove that CMS is
a valid similarity metric in terms of satisfying properties of
positivity, reflexivity, commutativity, and triangle inequality.

Our main contributions are detailed below:

• We propose a coupled metric similarity measure for
unsupervised learning of non-IID categorical data
which captures both the intra-attribute similarity of
attribute values and the inter-attribute similarity cou-
pling relationships between attributes. The intra- and
inter-attribute similarities are further synergized to
form a coupled metric similarity(CMS) which mea-
sures the similarity between non-IID objects.

• Five theorems are proposed and proved to ensure the
validity of CMS as a metric.

• By introducing a control parameter, a flexible com-
bination function is defined so that CMS can be
used for both IID and non-IID data. This shows the
flexibility of CMS.

• The proposed CMS metric is compared with the
state-of-the-art similarity measures when they are
incorporated into both distance-based clustering and
similarity-based clustering algorithms on nineteen
UCI benchmark data sets. Evaluation and empiri-
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cal analysis of the resultant statistically significant
outcomes are provided to understand why CMS
works well from the perspective of both similarity
constituents and data characteristic.

The remainder of the paper is organized as follows.
In Section 2, we discuss the related work. The problem
formulation and statement are specified in Section 3. Section
4 introduces the CMS measure. The proof of CMS validity
and theoretical analyses of properties are given in Section
5. We demonstrate the efficiency and effectiveness of our
similarity measure with experiments and analysis in Section
6, and discuss the underlying mechanisms of CMS in Section
7. Lastly, conclusions and future work are discussed in
Section 8.

2 RELATED WORK

The similarity learning of categorical data has attracted
increasing attention in recent years [8], [31], [32]. Compared
to numeric data similarity learning, learning categorical
data similarity is more complicated, and limited research
outcomes have been reported. The matching-based mea-
sures are typical for categorical data. A matching-based
measure simply assigns the similarity as 1 if the values
of an attribute for two objects are identical; otherwise it
assigns 0. However, such simple matching-based measures
often result in misleading learning outcomes as discussed
in the Introduction, and they disregard the hidden simi-
larity between categorical values [33]. Further, the inverse
occurrence frequency (IOF) and occurrence frequency (OF)
based measures take occurrence frequency distribution into
account. IOF is related to the concept of inverse document
frequency, which was designed for text mining [34] and
assigns lower similarity to mismatches on more frequent
values, and vice versa. An OF measure gives the opposite
weight of the IOF measure for mismatches.

Intensive studies have been conducted on learning the
similarity between two categorical values in supervised
learning [35], [36], [37]. A classic similarity measure in
supervised learning is the Value Distance Matrix (VDM) and
the Modified Value Distance Matrix (MVDM) [38] based
on class labels. Both methods measure the distance be-
tween two numeric attribute values in a multi-dimensional
attribute space for supervised learning and modify the
distance with a weighting scheme. Wilson and Martineza
designed a Heterogeneous Value Difference Metric (HVDM)
[39] to cater for categorical attributes.

An increasing number of researchers have also paid
attention to similarity analysis for unsupervised learning
[40], [41]. A key point is that the attribute value similarity is
also dependent on other attributes [8], [11]. Typical efforts
in this area applied the Pearson and Jaccard coefficients
between values [22], [31]. The Pearson correlation coefficient
only reflects the strength of linear dependence [42] within
numeric data. The Jaccard similarity coefficient statistically
compares the similarity and diversity of sample sets and is
widely used in data mining tasks [43].

A variety of techniques for categorical data similarity
learning have been explored. Believing that the attribute
and object similarities are interdependent, Das and Man-
nila [44] presented the Iterated Contextual Distances (ICD)

algorithm. ICD considers and iterates attribute similarity,
sub-relation similarity, and row similarity; however, it faces
a number of issues including the selection of starting points,
database scan times, iterations, and convergence. Ahmad
and Dey [9] proposed a distance-based measure in terms
of value co-occurrences. Their work considers the overall
distribution of two attribute values in a data set along
with their co-occurrences with the values of other attributes.
While their similarity measure seems to achieve high accu-
racy, it only considers value co-occurrence, and does not
cater for value-to-object hierarchical similarity; in addition,
computation is costly. No theoretical foundation and anal-
ysis were provided to prove whether metric properties are
satisfied.

Building on the concepts of intra- and inter-behavior
coupling relationships [20] and coupled behavior similarity
for coupled behavior analysis (CBA) [11], we proposed
coupled object similarity (COS) [10], [22] for learning cate-
gorical data similarity. COS is based on the belief that object
similarity, attribute similarity and value similarity form an
interactive and inter-dependent hierarchical system which
cannot be ignored in the similarity definition for complex
data. Accordingly, COS captures the Intra-coupled Attribute
Value Similarity (IaAVS), the Inter-coupled Attribute Value
Similarity (IeAVS) and their integration to learn object
similarity. Experiments show that COS achieves significant
improvement over existing similarity measures in clustering
categorical data. The CBA and COS methods have been
applied in classification [23], recommender systems [26],
text mining [24], keyword query [25], and video processing
[30]. However, COS is not a metric-based similarity, and
no theoretical foundation and analysis have been provided
to verify its metric properties and detemine why it works
better. In addition, the execution of the algorithm is very
costly.

To address the above relevant issues, this work takes
a step forward by proposing the concept and similarity
learning system Coupled Metric Similarity (CMS). CMS
learns object similarity by proposing hierarchical similarity
measures that capture both horizontal and vertical coupling
relationships between the values of an attribute, between
attributes, and between objects. CMS ensures that these
value-to-attribute-to-object similarity measures satisfy met-
ric properties with sound theoretical design and proof and
this foundation makes CMS applicable to distance-based
algorithms.

3 PROBLEM FORMULATION

In this section, we first discuss the necessary conditions
for a valid distance-based function and a metric similarity
measure. Further preliminaries are provided to establish the
foundation for proposing new similarity metrics. These will
form the theoretical foundation for the concept of CMS,
which will be discussed in Section 5.

3.1 Metric properties
A metric space is an ordered pair (M, δ) where M is a set
and δ is a metric on M , i.e., a function: d : M ×M → R so
that, for any ux, uy, uz ∈ M , the following properties hold
[45]:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1) non-negativity: δ(ux, uy) ≥ 0
2) reflexivity: δ(ux, uy) = 0⇔ ux = uy
3) commutativity: δ(ux, uy) = δ(uy, ux)
4) triangle inequality: δ(ux, uz) ≤ δ(ux, uy)+δ(uy, uz)

The function δ() is called a distance function (here simply
called distance).

A valid similarity metric needs to satisfy the above prop-
erties. Given the above function δ(), the following mapping
function [8] is applied to convert it to a distance-based
similarity (or dissimilarity-based similarity):

s(ux, uy) =
1

1 + δ(ux, uy)
, (1)

where s(ux, uy) is the similarity between two data points ux
and uy , and δ(ux, uy) is the distance ux and uy .

With the above mapping function, we can deduce the
following conditions that a metric-based similarity measure
should hold:

1) positivity: 0 < s(ux, uy) ≤ 1
2) reflexivity: s(ux, uy) = 1 ⇔ then ux is exactly the

same as uy
3) commutativity: s(ux, uy) = s(uy, ux)
4) triangle inequality: 1

s(ux,uy)
+ 1

s(uy,uz)
≥ 1+ 1

s(ux,uz)

3.2 Problem statement

Assume a data set DB consists of a number of data objects
U that are described by a set of attributes A. DB can be
organized as an information table S =< U,A, V >, where
U = {u1, ..., un} is composed of a non-empty finite set of
data objects; A = {a1, ..., am} is a finite set of attributes;
V = ∪mj=1Vj consists of sets of values of all attributes, in
which Vj is the set of values of attribute aj (where 1 ≤ j ≤
m).

For better readability and easy illustrations of CMS-
based similarity calculations in the following sections, the
information table shown in Table 2 is used as an exam-
ple. Symbols A1 and A2 represent two distinct values of
attribute a1; B1 and B2 represent two distinct values of
attribute a2; and C1 and C2 represent two distinct values of
attribute a3. Table 2 thus consists of six objects {u1, ..., u6}
and four attributes {a1, a2, a3, a4}, and the value set of
attribute a2 is V2 = {B1, B2}.

We assume that the similarity between two objects ux
and uy (ux, uy ∈ U ) is the summation of the similarities
between attribute values vxj , vyj (vxj , vyj ∈ Vj) for any
attribute aj , where j ∈ [1,m]), and vxj and vyj indicate
the respective attribute values of objects ux and uy on the
attribute aj . For instance, v21 = A2 and v12 = B1. We propose
some basic concepts below which will form the foundation
to facilitating the introduction of the CMS measure, a new
object similarity metric for categorical data in Section 4.
Definition 1 (Conditional Probability of Attribute Values).

Given the value vk of attribute ak (ak ∈ A), and the
value vxj (vxj ∈ Vj) of object ux on attribute aj , then
the conditional probability of vk with respect to vxj is
p(vk|vxj ), defined as:

p(vk|vxj ) =
|I(vxj , vk)|
|I(vxj )|

, (2)

TABLE 2
Toy Example: A Car Data Set

U
A

a1 a2 a3

u1 A1 B1 C1

u2 A2 B1 C2

u3 A1 B2 C1

u4 A1 B2 C2

u5 A2 B2 C1

u6 A1 B1 C2

TABLE 3
List of Main Notations

Notation Explanation

{u1, ..., un} The set of n objects
{a1, ..., am} The set of m attributes
vxj , v

y
j Specific values of attribute aj for objects

ux, uy

vk Any value of attribute ak
I(vxj ) The set of the objects whose value of attribute

aj is vxj
I(vxj , vk) The set of the objects whose value of attribute

aj is vxj and value of attribute ak is vk
V I
j The set of values of attribute aj for all objects

in the object set I
|I| The size of set I , i.e., the number of objects in

I
δ(ui, uj) The similarity between objects ui and uj

p(vk|vxj ) The conditional probability of vk w.r.t. vxj

where I(vxj , vk) denotes the set of the objects ux whose
attribute value of aj is vxj and attribute value of ak is
vk, I(vxj ) denotes the set of the objects whose attribute
value of aj is vxj , ||̇ denotes the number of elements in
the contained set.

For example, the values for two objects u1 and u2 on
attribute a1 are v11 = A1 and v21 = A2, hence I(v11) =
I(A1) = {u1, u3, u6}, for the value B1 of attribute a2,
I(A1, B1) = {u1,u6}, p(B1|A1) = |I(A1, B1)|/|I(A1)| =
2/3.

The above notations and definitions form the foundation
of the CMS which will be presented in the following section.

The main notations in this paper are listed in Table 3.

4 COUPLED METRIC SIMILARITY MEASURES

In this section, we discuss the learning framework, working
mechanism, and key components that form the Coupled
Metric Similarity (CMS) measures.

4.1 The learning framework

Coupled metric similarity aims to capture the object simi-
larity by considering and integrating both intra- and inter-
attribute similarities as well as object similarities. Fig. 1 illus-
trates its learning framework, working mechanism, and cor-
responding key similarity measures. Coupled metric simi-
larity is built on an information table for categorical data
as discussed in Session 3.2. It first captures the value cou-
plings in terms of intra-attribute similarities (sjIa(v

x
j , v

y
j )),
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followed by the feature couplings in terms of inter-attribute
similarities (sk|jIe (v

x
j , v

y
j )). The intra- and inter-attribute sim-

ilarities are then integrated into coupled metric attribute
value similarity sj(vxj , v

y
j ), which are further aggregated to

measure object similarities, i.e., the coupled metric similarity
(s(ux, uy)).

The intra-attribute similarity captures the value co-
occurrence distribution within an attribute. For example,
in Table 2, the intra-attribute similarity between attribute
values A1 and A2 is related to the frequency of the values
A1 and A2, which are both 3. The inter-attribute similarity
between values A1 and A2 of attribute a1 depends on the
attribute values of other two attributes (a2 and a3). Coupled
metric similarity combines the intra-attribute similarity and
the inter-attribute similarity in a flexible way to form the
object similarity. We ensure the metric validity of the pro-
posed intra-attribute similarity, the inter-attribute similarity,
and the CMS.

4.2 Intra-attribute similarity

According to [31], the discrepancy in attribute value oc-
currence times reflects the value similarity in terms of fre-
quency distribution. The similarity between two objects is
related to their commonality. Accordingly, the intra-attribute
similarity considers the relationship between the frequency
of the attribute values of an attribute, defined as follows.

Definition 2 (Intra-attribute Similarity). The intra-attribute
similarity between two attribute values vxj , v

y
j of objects

ux and uy on attribute aj is sjIa(v
x
j , v

y
j ), defined as

follows:

sjIa(v
x
j , v

y
j )

=


1 if vxj = vyj

log p · log q
log(p · q) + log p · log q

otherwise

, (3)

where log represents the natural logarithm, p denotes
|I(vxj )| + 1, and q denotes |I(vyj )| + 1. I(vxj ) is the set
of objects whose values of attribute aj are vxj . Similarly,
I(vyj ) is the set of objects whose values of attribute aj is
vyj .

According to metric similarity conditions defined in
Section 3, if the attribute values are identical, the similar-
ity between them should be 1. When the attribute values
are not identical, their occurrence frequency indicates their
similarity. Equation (3) is designed to satisfy the following
three principles.

• The maximum similarity between two attribute val-
ues is reached when the values are identical.

• The greater similarity is assigned to the attribute
value pair which shares approximately equal fre-
quencies.

• The higher the frequency of two values, the closer
two values are.

Equation (3) reflects that different occurrence frequencies
indicate distinct levels of attribute value significance. When
the size of the data increases sharply, the log function

can control the growth of similarity. To prevent the de-
nominator from being zero, we add 1 to each term. Since
1 ≤ |I(vxj )|, |I(v

y
j )| ≤ m, then sjIa(v

x
j , v

y
j ) ∈ (0, 1]. If

vxj 6= vyj , sjIa(v
x
j , v

y
j ) achieves the maximum value when

|I(vxj )| = |I(v
y
j )| = m/2. For example, in Table 2, |I(A1)| =

3 and |I(A2)| = 3, s1Ia(A1, A2)= 0.41.

4.3 Inter-attribute similarity
The above intra-attribute similarity reflects the coupling
relationships between the attribute values of one attribute
aj , however, it does not involve the couplings between
other attributes ak (k 6= j) and attribute aj . Accordingly,
we discuss the inter-attribute similarity, which involves the
couplings between attributes and is much more complicated
than intra-attribute couplings.

We note that the Modified Value Distance Matrix
(MVDM) [38] measures the dissimilarity between categori-
cal values w.r.t. class labels. It shows that attribute values
are similar if they occur with similar relative frequency
for all classifiers. Based on MVDM, Wang et. al. [10], [22]
replaced the class labels with other attributes to enable un-
supervised learning and proposed the Inter-coupled Relative
Similarity based on Power Set (IRSP). They also proposed the
Inter-coupled Relative Similarity based on Join Set (IRSJ), and
the Inter-coupled Relative Similarity based on Intersection Set
(IRSI), and proved that these measures are equivalent to
each other in achieving the same accuracy in calculating
value similarity [10], [22]. They prove that IRSI is the most
efficient of the above measures; however, IRSI cannot retain
the conditions of a metric similarity which are discussed in
Section 3. Below, we propose a new inter-attribute similarity
measure to satisfy metric properties.

Before calculating the inter-attribute similarity, we define
the intersection set of co-occurrence conditional probability
Wk.
Definition 3 (Intersection Set of Co-occurrence Conditional

Probability of Attribute Values). The intersection set of
co-occurrence conditional probability of values vxj , vyj
of attribute aj with co-occurrence values of attribute ak
(j 6= k) is:

Wk = V
I(vx

j )

k ∩ V I(vy
j )

k , (4)

V
I(vx

j )

k is the set of values of attribute ak for all objects in
I(vxj ). Wk consists of those attribute values of attribute
ak which co-occur with both vxj and vyj .

The Jaccard similarity coefficient is widely used in clus-
tering and classification. The Jaccard similarity coefficient is
defined as:

J(f ,g) =

∑
i min(fi, gj)∑
i max(fi, gj)

, (5)

where f = (f1, f2, ..., fn) and g = (g1, g2, ..., gn) are two
vectors with all real numbers.

The Jaccard distance is a distance metric [46] as follows:

δJ(ux, uy) = 1− J(x, y). (6)

According to the Jaccard distance and Equation (1) dis-
cussed in the previous section, we define the inter-attribute
similarity with the Jaccard similarity based on IRSI [10] and
Wk as follows.
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Fig. 1. The Framework of Coupling Metric Similarity Learning

Definition 4 (Inter-attribute Similarity of Attribute Values
w.r.t. Another Attribute). The inter-attribute similarity
between two attribute values vxj and vyj of attribute aj
with another attribute ak is:

s
k|j
Ie (v

x
j , v

y
j ) =

1,

if vxj = vyj ∑|Wk|
i=1 max(pix, p

i
y)

2 ·
∑|Wk|

i=1 max(pix, p
i
y)−

∑|Wk|
i=1 min(pix, p

i
y)

˙|Wk|
|I|

,

otherwise

,

(7)

where pix = p(wi
k|vxj ), piy = p(wi

k|v
y
j ), they are condi-

tional probabilities of wi
k with respect to vxj and vyj , pix

and piy are calculated according to Equation (2). wi
k is the

ith element in Wk which is calculated according to Equa-
tion (4). In particular, if Wk is empty, sjIe(v

x
j , v

y
j ) = 0.

In Table 2 for example, according to Equation (4), the
similarity s

2|1
Ie (A1, A2) depends on the values of attribute

a2. I(A1) = {u1, u3, u6} and I(A2) = {u2, u4, u5, },
hence V

I(A1)
2 = {B1, B2}, V

I(A2)
2 = {B1, B2} and

W2 = {B1, B2}. According to Equation (7), we calculate
max(p(B1|A1), p(B1|A2)), max(p(B2|A1), p(B2|A2)),
min(p(B1|A1), p(B1|A2)), and min(p(B2|A1), p(B2|A2)),
and obtain s2|1Ie (A1, A2) = 0.57.

Following the above discussion, we further define the
similarity between the value pair (vxj , v

y
j ) of attribute aj on

top of the Jaccard similarity of other attributes ak (j 6= k).
Definition 5 (Inter-attribute Similarity). The inter-attribute

similarity between two attribute values vxj and vyj of
attribute aj is:

sjIe(v
x
j , v

y
j ) =

m∑
k=1,k 6=j

γk|js
k|j
Ie (v

x
j , v

y
j ), (8)

where γk|j represents the weight of each attribute ak
(j 6= k) to attribute aj ,

∑m
k=1,k 6=j γk|j = 1, γk|j ∈ [0, 1],

and s
k|j
Ie (v

x
j , v

y
j ) is one of the inter-attribute similarity

candidates with attribute ak. γk|j reflects the relation
between attributes aj and ak.

Consequently, we have sk|jIe (v
x
j , v

y
j ) ∈ [0, 1]. Particularly,

if Wk is not empty, sk|jIe (v
x
j , v

y
j ) ∈ [0.5, 1]. Since sk|jIe (v

x
j , v

y
j )

is in [0, 1], then sjIe(v
x
j , v

y
j ) ∈ [0, 1].

In Table 2, for example s1Ie(A1, A2) = 0.5 ·s1|2Ie (A1, A2)+

0.5 · s1|3Ie (A1, A2) = 0.57 if γ2 = γ3 = 0.5 by taking the
equal weight. Furthermore, the coupled metric similarity
(see Equation (10) in the following section) is obtained as
s1(vxj , v

y
j ) = 0.4904 if α = 1.

4.4 Coupled metric similarity

With the above defined intra-attribute similarity mea-
sure sjIa(v

x
j , v

y
j ) and inter-attribute similarity measure

sjIe(v
x
j , v

y
j ), we now define the coupled metric similarity

measure for attribute aj .
An ideal similarity measure should be suitable for both

IID and non-IID [13] data, hence we introduce a parameter α
to satisfy this requirement. The parameter α can be adjusted
to change the proportion of sjIa(v

x
j , v

y
j ) against sjIe(v

x
j , v

y
j ).

We define the coupled similarity measure of vxj and vyj as
follows.

Definition 6 (Coupled Metric Attribute Value Similarity).
The coupled metric attribute value similarity (CMAVS) be-
tween attribute values vxj and vyj of attribute aj is:

sj(vxj , v
y
j ) = αsjIe + (1− α)sjIa, (9)

where sjIa and sjle are respectively the intra-attribute sim-
ilarity and inter-attribute similarity of attribute values vxj
and vyj . α is the control factor and α ∈ [0, 1) guarantees
the positivity of CMAVS.

From the above definition, we can determine that α
reflects the ratio of inter-attribute similarity in the overall
similarity. A larger α indicates that more important cou-
plings between attributes are captured in the similarity
space and that the attribute aj is more coupled with other
attributes.

If all attributes are independent, α = 0, correspondingly
sj(vxj , v

y
j ) = sjIa, indicating that only the couplings within

an attribute are considered in measuring similarity. When
α increases, sj(vxj , v

y
j ) becomes closer to sjIe. Therefore,

by adjusting the parameter α, we can control sj(vxj , v
y
j )

flexibly. Later in Section 6, we will show the effect of tuning
parameter α on learning performance and demonstrate that
it may be possible to find an empirically optimal α value for
a given data set, while different data sets may share distinct
α values.

We calculate the similarity between two objects ux and
uy on top of CMAVS defined in Equation (9).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Definition 7 (Coupled Metric Similarity). The coupled met-
ric similarity (CMS) between two objects ux and uy is
s(ux, uy):

s(ux, uy) =
m∑
j=1

βjs
j(vxj , v

y
j ), (10)

where βj represents the weight of the coupled metric
attribute value similarity of an attribute aj ,

∑m
j=1 βj = 1,

βj ∈ [0, 1].

5 THEORETICAL ANALYSIS

This section proves that CMS is a valid similarity metric
and analyses the theoretical properties and computational
complexity of CMS.

5.1 CMS metric validity
Before we prove the validity of CMS, we first prove several
theorems to lay the foundation.
Theorem 1. sj(vxj , v

y
j ) = 1, if and only if sjIe(v

x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1 for every attribute aj and when α 6= 0.

Theorem 2. sj(vxj , v
y
j ) = 1, if and only if sjIa(v

x
j , v

y
j ) = 1 for

every attribute aj and when α = 0.

Theorem 3. The coupled metric attribute value similarity
sj satisfies the triangle inequality if both intra-attribute
similarity sjIa and inter-attribute similarity sjIe satisfy the
triangle inequality for every attribute aj .

Theorem 4. The intra-attribute similarity sjIa satisfies the
triangle inequality for any attribute aj .

Theorem 5. The inter-attribute similarity sjIe satisfies the
triangle inequality for any attribute aj .

These theorems are proved in the Appendix. Conse-
quently, we prove that the validity of the proposed CMS,
namely s(ux, uy), satisfies the following metric properties.

1) Positivity: 0 < s(ux, uy) ≤ 1.
sj(vxj , v

y
j ) consists of sjIa(v

x
j , v

y
j ) and sjIe(v

x
j , v

y
j ).

According to Equation (3), sjIa(v
x
j , v

y
j ) is in (0,1].

sjIe(v
x
j , v

y
j ) is based on the linear product of

s
k|j
Ie (v

x
j , v

y
j ), and s

k|j
Ie (v

x
j , v

y
j ) is the Jaccard simi-

larity of vectors, accordingly sjIe(v
x
j , v

y
j ) ∈ [0, 1].

According to Equation (9), s(ux, uy) is the weighted
sum of all similarity measures for each attribute’s
sjIa(v

x
j , v

y
j ) and sjIe(v

x
j , v

y
j ). The similarity measure

s(ux, uy) therefore satisfies the positivity constraint.
2) Reflexivity: s(ux, uy) = 1⇔ ux = uy

We prove the necessity first.
If ux = uy then it means vxj = vyj for all attributes
{aj}. According to Equations (3) and (8), if vxj = vyj ,
then sjIe(v

x
j , v

y
j ) = sjIa(v

x
j , v

y
j ) = 1, so sj(vxj , v

y
j ) =

1 and sj(ux, uy) = 1. Hence, the similarity measure
satisfies the necessity condition.
We further prove the sufficiency.
If s(ux, uy) = 1, we can conclude that sj(vxj , v

y
j ) =

1 for every attribute aj according to Equation

(10), because sj(vxj , v
y
j ) is also in (0,1]. Accord-

ing to Theorem 1, sj(vxj , v
y
j ) = 1, if and only if

sjIe(v
x
j , v

y
j ) = sjIa(v

x
j , v

y
j ) = 1 and when α 6= 0.

According to Theorem 2, when α = 0, sjIe(v
x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1. From Equation (3), we can conclude

that sjIa(v
x
j , v

y
j ) = 1 if and only if vxj = vyj . For all

attributes aj , vxj = vyj means ux = uy . The similarity
measure satisfies the sufficiency condition, therefore
the proposed similarity measure s(ux, uy) = 1, if
and only if ux = uy .

3) Commutativity: s(ux, uy) = s(uy, ux).
All operations on our proposed similarity measure
are addition, multiplication, maximum selection,
and minimum selection. These operations are com-
mutative. Hence the inequality holds implicitly.

4) Triangle inequality: 1
s(ux,uy)

+ 1
s(uy,uz)

≥ 1 +
1

s(ux,uz)

The resultant similarity s(ux, uy) is the mean of
all similarities sj(vxj , v

x
j ) computed for every at-

tribute. If sj(vxj , v
x
j ) holds the triangle inequality, so

does s(ux, uy) (Its proof is similar to the proof of
Theorem 3). If we can prove that each component
of sj(vxj , v

x
j ) (including sjIa(v

x
j , v

x
j ) and sjIe(v

x
j , v

x
j ))

holds the triangle inequality, then sj(vxj , v
x
j ) satisfies

the triangle inequality according to Theorem 3.
The triangle inequality of sjIa(v

x
j , v

x
j ) and

sjIe(v
x
j , v

x
j ) are easy to prove. According to Theorem

5, sjIa(v
x
j , v

x
j ) satisfies the triangle inequality.

sjIe(v
x
j , v

x
j ) can be converted to the Jaccard distance

according to Equation (1) since the Jaccard distance
is a metric distance which holds the triangle
inequality [47]. Hence, the triangle inequality is
satisfied as well.

5.2 CMS theoretical property and computational com-
plexity
The CMS measure s(ux, uy) is an increasing function of
sjIa and sjIe according to Equation (9). According to Def-
inition 2, sjIa(v

x
j , v

x
j ) reflects the intra-attribute similarity

between two attribute values vxj and vyj . The higher the
value sjIa(v

x
j , v

x
j ) is, the closer the two attribute values

are. Equation (7) shows that the inter-attribute similarity
s
k|j
Ie (v

x
j , v

y
j ) is increasing with the size of co-occurrence set

|Wk|. Hence, the larger sjIe is, the more similar the two
attribute values vxj and vyj are. In conclusion, we can obtain
the increasing property of CMS, which means that the larger
s(ux, uy) is, the more similar two objects ux and uy are.

The CMS between two objects captures all intra-attribute
and inter-attribute similarities of each attribute value pair
in the corresponding information table. Accordingly, the
computational complexity linearly depends on the number
of attribute values. The most time-consuming element is the
calculation of inter-attribute similarity which is quantified
by the calculation of sk|jIe (v

x
j , v

y
j ). Hash table is used as the

data structure to store p(vk|vxj ) of each pair. Suppose the
maximal number of distinct values for each attribute is R
and m is the number of attributes, the time complexity
of calculating the hash table of p(vk|vxj ) for all attributes
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is mR(R − 1). The maximal value of |Wk| is the number
of objects n. According to Equation (7), the computational
complexity of inter-attribute similarity is nmR(R−1). Con-
sequently, the upper bound of the time complexity of CMS
for two objects is O(nm2R2), and the upper bound of the
total CMS complexity for n objects is O(n2m2R2).

6 EXPERIMENTS AND EVALUATION

In this section, we evaluate the CMS performance in cluster-
ing categorical data. CMS is evaluated by comparison with
other similarity measures for categorical data and clustering
performance by incorporating CMS into popular clustering
methods on 19 data sets.

6.1 Baseline clustering methods and measures

To evaluate the performance of CMS, the following five
state-of-the-art similarity/distance measures are compared
with CMS: ALGO DISTANCE (ALGO for short) [9], Cou-
pled Object Similarity (COS for short) [10], [22], Distance
Metric of Hong (DM for short) [48], Matching similarity [7]
(or Hamming Distance), and Occurrence Frequency (OF for
short) [8].

We apply CMS to a typical similarity-based categorical
clustering algorithm spectral clustering [49] and a distance-
based algorithm k-modes [50] on categorical data. Similarly,
we also incorporate ALGO, COS, DM, OF and Matching
similarity measures into spectral clustering and the k-modes
clustering algorithm. We compare their clustering perfor-
mance to evaluate which similarity measure achieves better
outcomes.

According to the distance-similarity or dissimilarity-
similarity mapping function, i.e., Equation (1) in Section 3,
we can derive the metric distance or dissimilarity measure
from the coupled metric similarity as follows:

δ(ux, uy) =
1

s(ux, uy)
− 1, (11)

where δ(ux, uy) denotes the distance or dissimilarity be-
tween objects ux and uy , and s(ux, uy) is the coupled metric
similarity between ux and uy defined in Equation (10).

In Equation (10), we assign the weight vector (βk)1×m
with values βk = 1/m, and assign γk|j = 1/(m− 1) for
every attribute in Equation (7) for simplicity. This simple
setting is not optimal, but it can test whether the proposed
CMS design is effective even in a non-optimal situation.

6.2 Data sets

Ninteen UCI data sets are used for the experiments1. The
detailed characteristics of these 19 different data sets are
described in terms of four data factors in Table 4. They are
O - the number of objects, A - the number of attributes, V
- the number of distinct values for all attributes, and C -
the number of classes (we include the class information for
evaluation only). Abbr. refers to the short form of a data set
name. All numerical attributes in the data sets are removed
to test the similarity for categorical data only.

1. https://archive.ics.uci.edu/ml/datasets.html

TABLE 4
The Data Characteristics of 19 UCI Data Sets

Data set O A V C Abbr.

Soybeansmall 47 35 97 4 So
Zoo 101 16 36 7 Zo
DNAPromoter 106 57 228 2 Dp
Hayesroth 132 4 15 3 Ha
Lymphography 148 18 59 4 Ly
Hepatitis 155 13 36 2 He
Housevotes 232 16 32 2 Ho
Spect 267 22 44 2 Sp
Mofn3710 300 10 20 2 Mo
Soybeanlarge 307 35 132 19 Sol
Primarytumor 339 17 42 21 Pr
Dermatology 366 33 129 6 De
ThreeOf9 512 9 18 2 Tr
Wisconsin 683 9 89 2 Wi
Crx 690 9 45 2 Cr
Breastcancer 699 9 90 2 Br
Mammographic 830 4 20 2 Ma
Flare 1066 11 41 6 Fl
Titanic 2201 3 6 4 Ti

The UCI data is used here because it is public, relatively
simple and easy to understand compared to more complex
real-life data. The assumption made is as follows. If a non-
IID-oriented measure can beat its baselines on UCI data,
such a result should hold consistently on real-life data,
which is usually non-IID, since UCI data is not likely to
contain many sophisticated non-IID characteristics. Another
reason for using the UCI data is the challenge of finding
non-IID real-life data sets, since there is currently no tool
that can verify whether or to what extent a data set is non-
IID.

6.3 Evaluation methods

The performance of CMS and other similarity measures-
based clustering is evaluated in terms of the internal criteria
and external criteria. The internal criteria focus on the com-
pactness and separability of clusters which are dependent
on distance or similarity, which reflect the quality of resul-
tant clusters to a certain extent. Although there are various
internal clustering validation measures, most are related to
the centers chosen by clusters [51]. Because it is difficult to
decide the cluster centers for categorical data, we choose
a center-independent internal criteria: Dunn’s index [52],
defined below.

D = min
i

{
minj

(
minux∈Ci,uy∈Cj

δ (ux, uy)

maxk
{
maxux,uy∈Ck

δ(ux, uy)
})} ,

(12)
where Ci is the ith cluster and δ(ux, uy) denotes the distance
between ux and uy .

For CMS, we use the internal criteria to choose the
α value in Equation (9). By greedy search of the Dunn’s
index results of CMS-enabled clustering, we can obtain the
optimal α value. This is aligned with the purpose of CMS,
that is, to maximize the similarity of similar objects and
minimize the similarity of dissimilar objects. It is also worth
noting that the α value chosen by the Dunn’s index is not the
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optimal value since it only reflects one aspect of similarity
measurement.

For external criteria, we choose some commonly used
criteria to compare the clustering results for different sim-
ilarity measures. The external criteria estimate the differ-
ence between the cluster label of each object assigned by
each clustering algorithm and the ground truth indicated
by the data labels given in the source data. The criteria
include normalized mutual information (NMI) and F1-score.
The larger these criteria are, the better performance the
clustering achieves; the corresponding similarity measure
is accordingly more effective. The definitions of these three
measures are given below.

• Normalized Mutual Information

NMI =

k∑
i=1

c∑
j=1

ni,j log
(
n·ni,j

ni·nj

)
)√√√√( k∑

i=1
ni log

ni

n

)(
c∑

j=1
nj log

nj

n

) , (13)

where c stands for the true number of classes, k is the
number of clusters obtained by the algorithm, ni,j
denotes the number of agreements between cluster
i and class j, and n is the number of objects in the
whole data set.

• F1-score
F1 =

2 ∗ TP
2 ∗ TP + FP + FN

, (14)

where TP, TN, FP, and FN stand for true positive,
true negative, false positive, and false negative, re-
spectively.

6.4 CMS α value w.r.t. capturing coupling relationships
in data

The α value in Equation (9) reflects the extent of the cou-
pling relationships embedded in a data set. We conduct
experiments with different α values not only to choose a
better α value but also to measure the coupling difference
across data sets. The larger the value of α, the greater the
proportion of inter-attribute similarity, hence the coupling
relationships in a data set are stronger.

Tables 5 and 6 report the Dunn’s index values of cluster-
ing results for different α values taken in spectral clustering
and k-modes clustering. The results show that more than
half of the data sets have coupling relationships between
attributes.

6.5 Comparison of CMS and other similarity measures-
enabled spectral clustering

Tables 7 and 8 report the results of spectral clustering by
taking the similarity measures CMS, ALGO, COS, DM, OF
and matching similarity in terms of performance measures
NMI and F1-score. The overall performance is given in the
bottom row w.r.t. the mean value. For each data set, the
average performance is obtained by 100 tests of spectral
clustering with distinct start points. In the clustering evalu-
ation, the highest Dunn’s index value, as shown in Table 5
is assigned to the α parameter in Equation (9). This reflects

TABLE 5
The Dunn’s Index Value of CMS-enabled Spectral Clustering with

Different α Values

Data sets α value
0 0.2 0.4 0.6 0.8 1

So 0.461 0.469 0.432 0.387 0.447 0.442
Zo 0.106 0.113 0.111 0.092 0.088 0.088
Dp 0.537 0.535 0.535 0.535 0.535 0.536
Ha 0.212 0.230 0.237 0.241 0.243 0.244
Ly 0.149 0.188 0.191 0.191 0.191 0.192
He 0.077 0.082 0.081 0.081 0.081 0.081
Ho 0.167 0.161 0.160 0.151 0.151 0.151
Sp 0.049 0.045 0.044 0.044 0.045 0.045
Mo 0.099 0.098 0.098 0.098 0.098 0.098
Sol 0.047 0.049 0.045 0.046 0.049 0.063
Pr 0.072 0.068 0.071 0.073 0.072 0.071
De 0.096 0.089 0.088 0.088 0.093 0.095
Tr 0.121 0.121 0.122 0.121 0.121 0.121
Wi 0.136 0.203 0.108 0.109 0.111 0.111
Cr 0.091 0.105 0.104 0.103 0.103 0.103
Br 0.136 0.203 0.108 0.110 0.110 0.111
Ma 0.217 0.242 0.245 0.246 0.246 0.247
Fl 0.103 0.096 0.097 0.097 0.097 0.097
Ti 0.322 0.337 0.312 0.260 0.250 0.279

TABLE 6
The Dunn’s Index Values of CMS-enabled K-modes Clustering with

Different α Values

Data sets α value
0 0.2 0.4 0.6 0.8 1

So 0.264 1.000 0.830 0.765 0.823 0.670
Zo 0.121 1.000 0.960 0.978 0.989 0.906
Dp 0.541 0.528 0.538 0.526 0.532 0.540
Ha 0.213 0.187 0.176 0.171 0.167 0.167
Ly 0.110 0.090 0.099 0.102 0.098 0.099
He 0.081 0.083 0.082 0.082 0.082 0.082
Ho 0.044 0.044 0.042 0.043 0.044 0.044
Sp 0.062 0.063 0.064 0.061 0.062 0.065
Mo 0.110 0.110 0.109 0.109 0.109 0.109
Sol 0.044 0.044 0.042 0.043 0.044 0.044
Pr 0.090 0.085 0.082 0.081 0.079 0.080
De 0.083 0.081 0.082 0.079 0.080 0.078
Tr 0.118 0.118 0.118 0.118 0.118 0.118
Wi 0.178 0.261 0.255 0.260 0.265 0.269
Cr 0.101 0.110 0.110 0.111 0.113 0.109
Br 0.173 0.237 0.264 0.258 0.261 0.287
Ma 0.224 0.240 0.241 0.239 0.238 0.237
Fl 0.108 0.108 0.107 0.108 0.106 0.108
Ti 0.893 0.620 0.591 0.538 0.491 0.491

an acceptable balance between intra-attribute couplings and
inter-attribute couplings in the respective data set.

The clustering results show that CMS-enabled spectral
clustering outperforms the spectral clustering methods em-
powered by ALGO, COS, DM, OF and matching measures
on seven out of 19 data sets in terms of both NMI in Table
7 and F1-score in Table 8. By contrast, COS, which also
captures both intra-attribute and inter-attribute couplings,
is superior only four times in terms of NMI and three times
in terms of F1-score. CMS performs better than two best and
most recent similarity baselines for categorical data: ALGO
and COS by 3.4% and 6.8% respectively, and the worst
performing measure DM by 10.4% in terms of the mean
NMI value. In addition, CMS outperforms ALGO and COS
by 2.4% and 4.7% respectively in terms of F1-score.
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It is also interesting to note every other similarity mea-
sures performs better than at least one other in one or two
data sets. This reflects the significant challenge of designing
appropriate and generalized similarity measures for cate-
gorical data due to the difficulty of effectively capturing the
intrinsic data characteristics in categorical data.

TABLE 7
NMI of CMS vs. ALGO, COS, DM, OF and Matching-enabled Spectral

Clustering

Data set CMS(α) ALGO COS DM OF Matching

So 0.958(0.2) 0.953 0.946 0.957 0.941 0.952
Zo 0.675(0.2) 0.731 0.705 0.748 0.672 0.69
Dp 0.281(0) 0.209 0.154 0.227 0.103 0.25
Ha 0.02(1) 0.001 0.011 0.001 0.001 0.001
Ly 0.209(1) 0.159 0.164 0.138 0.119 0.152
He 0.182(0.2) 0.183 0.179 0.185 0.129 0.209
Ho 0.493(0) 0.522 0.524 0.522 0.493 0.493
Sp 0.107(0) 0.106 0.102 0.105 0.094 0.106
Mo 0.036(0) 0.054 0.054 0.017 0.017 0.017
Sol 0.734(1) 0.736 0.768 0.666 0.632 0.673
Pr 0.345(0.6) 0.348 0.337 0.366 0.351 0.344
De 0.798(0) 0.814 0.807 0.792 0.491 0.748
Tr 0.035(0.4) 0.002 0.002 0.034 0.03 0.026
Wi 0.775(0.2) 0.829 0.831 0.685 0.811 0.76
Cr 0.239(0.2) 0.035 0.043 0.024 0.294 0.201
Br 0.796(0.2) 0.818 0.82 0.664 0.801 0.749
Ma 0.369(1) 0.329 0.361 0.332 0.326 0.331
Fl 0.302(0) 0.318 0.269 0.192 0.374 0.28
Ti 0.129(0.2) 0.101 0.1 0.122 0.128 0.105

Mean 0.394 0.381 0.369 0.357 0.358 0.373

TABLE 8
F1-score of CMS vs. ALGO, COS, DM, OF and Matching-enabled

Spectral Clustering

Data sets CMS(α) ALGO COS DM OF Matching

So 0.926(0.2) 0.911 0.893 0.915 0.898 0.925
Zo 0.507(0.2) 0.547 0.538 0.588 0.494 0.518
Dp 0.783(0) 0.753 0.726 0.753 0.675 0.771
Ha 0.387(1) 0.335 0.338 0.329 0.336 0.343
Ly 0.359(1) 0.366 0.395 0.286 0.319 0.34
He 0.661(0.2) 0.662 0.463 0.695 0.633 0.704
Ho 0.884(0) 0.888 0.893 0.888 0.884 0.884
Sp 0.589(0) 0.572 0.582 0.563 0.565 0.559
Mo 0.506(0) 0.567 0.567 0.509 0.509 0.511
Sol 0.563(0) 0.553 0.609 0.476 0.48 0.504
Pr 0.206(1) 0.209 0.196 0.23 0.213 0.205
De 0.745(0) 0.71 0.73 0.735 0.615 0.66
Tr 0.584(0.4) 0.522 0.519 0.59 0.582 0.578
Wi 0.935(0.2) 0.971 0.973 0.942 0.968 0.96
Cr 0.794(0.2) 0.551 0.493 0.527 0.791 0.753
Br 0.961(0.2) 0.969 0.97 0.937 0.966 0.957
Ma 0.826(1) 0.818 0.822 0.82 0.817 0.823
Fl 0.367(0) 0.392 0.352 0.32 0.444 0.359
Ti 0.366(0.2) 0.375 0.358 0.35 0.306 0.323

Mean 0.629 0.614 0.601 0.603 0.605 0.615

6.6 Comparison of CMS and other similarity measures-
enabled k-modes clustering

Tables 9 and 10 report the NMI and F1-score results of k-
modes clustering enabled by the distance measures CMS,
ALGO, COS, DM, OF and Hamming distance. These sim-
ilarity measures are transformed into distance measures

according to Equation (11). The overall performance is given
in the bottom row by the mean value. For each data set,
the average performance is obtained via 100 tests of k-
modes clustering with distinct start points. For CMS, the α
parameter in Equation (9) is given the value with the highest
Dunn’s index as shown in Table 6.

In Table 9, the NMI results of CMS-enabled k-modes are
superior to other measure-enabled k-modes on nine data
sets, compared to five by ALGO, three by COS, and one by
DM and OF respectively, but none by Hamming distance.
Overall, CMS outperforms DM by 65%, OF by 45%, and
COS by 4.7%, while it achieves the same mean performance
as ALGO. The F1-score results of CMS-enabled k-modes
outperform five other measures in seven out of 19 data sets
as shown in Table 10, compared to seven by ALGO, two by
COS, but none by OF and Hamming distance. With regard
to the mean F1-score, CMS is superior to DM by 25%, and
generally outperforms other measures.

TABLE 9
NMI of CMS vs. ALGO, COS, DM, OF and Matching-enabled K-modes

Clustering

Data sets CMS(α) ALGO COS DM OF Hamming

So 0.865(0.2) 0.887 0.86 0.699 0.745 0.828
Zo 0.766(0.2) 0.788 0.803 0.757 0.736 0.759
Dp 0.089(0) 0.08 0.071 0.018 0.048 0.06
Ha 0.021(0) 0.014 0.056 0.012 0.037 0.015
Ly 0.159(0.6) 0.159 0.164 0.138 0.119 0.152
He 0.135(1) 0.15 0.102 0.128 0.099 0.131
Ho 0.539(0.8) 0.511 0.511 0.531 0.44 0.461
Sp 0.097(1) 0.092 0.087 0.092 0.089 0.088
Mo 0.032(0) 0.017 0.025 0.023 0.029 0.02
Sol 0.688(0.8) 0.683 0.674 0.286 0.602 0.631
Pr 0.359(0) 0.374 0.359 0.348 0.335 0.362
De 0.748(0) 0.734 0.743 0.152 0.272 0.578
Tr 0.031(1) 0.004 0.004 0.026 0.02 0.025
Wi 0.616(1) 0.668 0.606 0.028 0.102 0.482
Cr 0.182(0.6) 0.176 0.054 0.229 0.132 0.168
Br 0.681(0.4) 0.673 0.609 0.108 0.115 0.437
Ma 0.319(0.4) 0.326 0.277 0.271 0.269 0.305
Fl 0.373(0) 0.364 0.375 0.182 0.409 0.31
Ti 0.118(0) 0.112 0.117 0.113 0.106 0.109

Mean 0.359 0.358 0.342 0.218 0.248 0.312

6.7 Experimental summary
In summary, the above experiments show that CMS in
most cases outperforms other state-of-the-art similarity and
distance measures when they are incorporated into spectral
clustering and k-modes clustering for clustering categorical
data. The experimental results also show that, for most data
sets, similarity/distance measures that involve coupling re-
lationships, i.e., CMS, ALGO, DM and COS, almost always
obtain better performance. This shows the importance of
capturing the various coupling relationships embedded in
complex categorical data [20]. By contrast, CMS significantly
outperforms the five state-of-the-art categorical similarity
measures in the overall results, indicating that CMS is better
at capturing coupling relationships than other similarity
measures.

The results also show that none of the similarity and
distance measures can always win on all 19 data sets for
unsupervised learning. This indicates the complexity and
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TABLE 10
F1-score of CMS vs. ALGO, COS, DM, OF and Hamming-enabled

K-modes Clustering

Data sets CMS(α) ALGO COS DM OF Hamming

So 0.807(0.2) 0.854 0.78 0.604 0.745 0.799
Zo 0.522(0.2) 0.554 0.571 0.52 0.514 0.534
Dp 0.62(0) 0.611 0.564 0.358 0.578 0.606
Ha 0.387(0) 0.374 0.421 0.375 0.398 0.359
Ly 0.399(0.6) 0.366 0.395 0.286 0.319 0.34
He 0.645(1) 0.641 0.62 0.516 0.615 0.636
Ho 0.865(0.8) 0.884 0.884 0.896 0.865 0.87
Sp 0.444(1) 0.445 0.403 0.468 0.463 0.42
Mo 0.514(0) 0.505 0.507 0.508 0.514 0.493
Sol 0.461(0.8) 0.489 0.504 0.081 0.449 0.452
Pr 0.227(0) 0.226 0.215 0.213 0.205 0.228
De 0.590(0) 0.6 0.577 0.196 0.317 0.517
Tr 0.567(1) 0.353 0.353 0.534 0.552 0.564
Wi 0.882(1) 0.907 0.887 0.434 0.536 0.815
Cr 0.653(0.6) 0.668 0.492 0.751 0.64 0.678
Br 0.834(0.4) 0.928 0.901 0.517 0.542 0.783
Ma 0.798(0.4) 0.817 0.769 0.759 0.759 0.793
Fl 0.455(0) 0.377 0.39 0.302 0.445 0.375
Ti 0.326(0) 0.314 0.32 0.313 0.324 0.318

Mean 0.578 0.574 0.556 0.454 0.515 0.557

significance of deeply understanding the intrinsic data char-
acteristics of complex categorical data (which cannot be
simply measured by matching/Hamming measure or the
frequency of co-occurrence). In the following section, we
discuss the underlying driving forces for CMS in capturing
various hierarchical coupling relationships in categorical
data.

7 DISCUSSION ON USING CMS TO CAPTURE COU-
PLING RELATIONSHIPS

In this section, we empirically analyze why CMS achieves
good performance. We explore the intrinsic working mech-
anisms of CMS, namely, by observing the impact of in-
volving three levels of coupling relationships on clustering
performance: intra-attribute similarity for capturing value
couplings, inter-attribute similarity for capturing attribute
couplings, and coupled similarity between objects which
integrates both intra-attribute similarity and inter-attribute
similarity. We particularly discuss how the intra-attribute
similarity and inter-attribute similarity capture the intrinsic
couplings within data.

7.1 Balance of intra-attribute and inter-attribute similar-
ities
Coupled metric similarity integrates both intra-attribute
similarity and inter-attribute similarity, as shown in Equa-
tion (9), in terms of their different contributions adjustable
by parameter α. α = 0 means we only consider the cou-
plings within an attribute (i.e., intra-attribute similarity).
α = 1 indicates that we only consider the couplings between
attributes (i.e., inter-attribute similarity). The effect of tuning
parameter α on Dunn’s index is shown in Table 5 and Table
6, although the outcomes only capture partial aspects of the
data characteristics and may be sub-optimal. The α value
corresponding to the highest Dunn’s index value on a data
set strikes a balance between the contributions made by
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Fig. 2. Clustering results on Tr and Sp data sets w.r.t. different α values

intra-attribute similarity and inter-attribute similarity, which
explains why the CMS incorporated by the corresponding α
value obtains desirable clustering performance.

In our experiments, we also find that CMS with only
intra-attribute similarity can obtain better clustering perfor-
mance than some methods that consider both intra-attribute
and inter-attribute similarities on data sets. As shown in
Tables 7 and 8 for spectral clustering and Tables 9 and 10
for k-modes clustering, CMS performs consistently well on
data sets Sp and Tr. Accordingly, we show the clustering
performance of CMS-enabled spectral clustering and k-
modes clustering for all the α values shown in Tables 5 and
6 to demonstrate the challenge of balancing intra-attribute
and inter-attribute similarities in unsupervised learning.

Fig. 2 reflects the clustering performance on Tr and
Sp data sets. It shows that different α values can lead to
different clustering performance, hence, it is necessary to
choose the optimal α value. The optimal α value on the
Tr data set is 0.2 for both k-modes clustering and spectral
clustering. In terms of spectral clustering, the optimal α
value of data set Sp is 1. Meanwhile k-modes clustering
is not sensitive to the change of α value for Sp when α
value is larger than 0. The optimal α value of one data
set is decided by not only data characteristics but also the
clustering algorithm. We will study this issue in our future
work.

7.2 Scrutinizing data characteristics
A effective similarity metric needs to capture the intrinsic
data characteristics, which may be quantified in terms of
data factors and indicators [53]. This section explores CMS
in terms of capturing categorical data factors and hierarchi-
cal similarities. We illustrate this exploration by scrutinizing
the characteristics of the Soybean-small data in Table 4.

The Soybean-small data set contains 47 objects, 35 at-
tributes and 100 distinct attribute values. It is clearly a small
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data set but it is relatively interesting due to its ‘large’
numbers of attributes and values compared to very ‘small’
object number in the UCI data. To illustrate its value and
attribute coupling relationships, we select three attributes:
plant-stand, precip and temp, and use a1-a2, b1-b3, and c1-c3 to
label the distinct values of these respective attributes.

At the attribute value level, we calculate the occurrence
frequency of each value and the co-occurrence frequency of
each value pair. Table 11 shows these statistics. The bold-
faced values in the diagonal correspond to the occurrence
frequencies of attribute values, and the other non-empty
cells capture the co-occurrences of value pairs from different
attributes.

Table 12 shows the intra-attribute similarity and inter-
attribute similarity of attribute value pairs, as labelled as sjIa
for the intra-attribute similarity, sjIe for the inter-attribute
similarity, and sj for the coupled object similarity, as defined
in Equations (3), (8) and (9). The statistical information
shown in Table 11 and the diverse similarities collected in
Table 12 enable us disclose the intrinsic data characteristics
in Soybean-small, and the power of CMS in terms of captur-
ing such characteristics.

The intra-attribute similarity sjIa of pair b1-b2, for exam-
ple is 0.5880, which is larger than that of b1-b3. It consists
of the relationship between frequencies of b1, b2 and b3
in Table 11, hence the intra-attribute similarity captures the
frequency distributions and reflects the couplings between
values within an attribute. The inter-attribute similarities sjIe
of most pairs (except pairs b1-b3 and c1-c2) in Table 12 are
larger than their intra-attribute similarities. For pair c1-c2,
its inter-attribute similarity is 0.2656, which is smaller than
that of other pairs. In Table 11, the co-occurrence frequency
of pairs c1-a2, c1-b2 and c1-b3 are 15, 15 and 2 respectively,
while the co-occurrence frequencies of pairs c2-a2, c2-b2 and
c2-b3 are all 0. This indicates that the co-occurring values of
c1 are quite different from those of c2. The inter-attribute
similarity sjIe consists of the co-occurrence frequencies of at-
tribute value pairs; it captures the latent couplings between
different attributes. In this way, the similarity between at-
tributes is transformed to the attribute-value similarity and
then reflected in the similarity on the object level. The results
in Table 12 also show the sensitivity of the integration of
the intra- and inter-attribute similarities in calculating the
value-to-attribute-to-object similarity.

Lastly, as shown in Section 7.1, CMS combines the intra-
attribute similarity and inter-attribute similarity. The param-
eter α adjusts the contributions of intra-attribute similarities
versus inter-attribute similarities. Since different data sets
probably own diverse combinations of intra- and inter-
attribute couplings, and different optimal α values accord-
ingly exist. An optimal α value reflects the most appropriate
distribution of intra- and inter-attribute similarities in a data
set.

8 CONCLUSIONS AND FUTURE WORK

Learning for non-IID data significantly challenges existing
analytical and learning theories and metrics in effectively
capturing the intrinsic heterogeneity and coupling relation-
ships in non-IID data. Categorical data embedded with

TABLE 11
The Frequencies and Co-occurrences of Attribute Values

Attribute Values a1 a2 b1 b2 b3 c1 c2 c3

a1 22 10 13 0 2 6 14
a2 25 0 21 4 15 0 10
b1 10 0 10 0 6 4
b2 13 21 33 15 0 18
b3 0 4 4 2 0 2
c1 2 15 0 15 2 17
c2 6 0 6 0 0 6
c3 14 10 4 18 2 24

TABLE 12
The Value-to-Attribute-to-Object Similarities

a1-a2 b1-b2 b1-b3 b2-b3 c1-c2 c1-c3 c2-c3

sjIa 0.615 0.588 0.491 0.525 0.538 0.604 0.549
sjIe 0.682 0.703 0.417 0.827 0.266 0.734 0.626
sj 0.648 0.644 0.454 0.676 0.402 0.669 0.586

value-to-attribute-to-object hierarchical coupling relation-
ships is particularly complex. Learning such data requires
the appropriate representation and similarity metrics for
capturing such hierarchical coupling relationships from at-
tribute values to attributes and objects.

In this paper, we have proposed and evaluated a novel
coupled metric similarity measure CMS for clustering hierar-
chical couplings in categorical data. Taking a data-driven
approach that integrates intrinsic coupling relationships
from low-level attributes and their values to objects, CMS
grasps both attribute value frequency distribution and at-
tribute dependency similarity in measuring attribute value
similarity, attribute similarity and then object similarity.

Compared with the state-of-the-art similarity measures,
including ALGO-distance, coupled object similarity, dis-
tance matrix, occurrence frequency-based measure, and
matching-based measure, the incorporation of CMS and the
above measures into two representative clustering methods,
spectral clustering and k-modes, shows the great advan-
tage of CMS against the baseline similarity measures in
representing the above hierarchical couplings. CMS also
incorporates a tuning mechanism for both distance-based
and similarity-based analysis of either IID or non-IID data.

In addition to the experimental evaluation, we have
investigated the driving factors of CMS-enabled perfor-
mance improvement, as proved by the metric properties
and explained by discussion on the underlying working
mechanisms of CMS from statistical and data characteristic
perspectives. None of the existing categorical similarity and
dissimilarity measures provide such a theoretical founda-
tion as CMS.

We are working on designing effective data structures
and strategies for efficient enhancement and scalable clus-
tering of large-scale non-IID categorical data using CMS.
Another aspect we are working on is how to handle hetero-
geneous data with value-to-object couplings. The extension
of CMS to numeric data clustering and classification is also
on our future agenda.
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APPENDIX
PROOF OF THE THEOREMS

Theorem 1. sj(vxj , v
y
j ) = 1, if and only if sjIe(v

x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1 for every attribute aj and when α 6= 0.

Proof 1. We prove its necessity first. According to Equation
(10), if sjIe(v

x
j , v

y
j ) = sjIa(v

x
j , v

y
j ) = 1, then sj(vxj , v

y
j ) =

1.
We then prove its sufficiency by contradiction. Suppose
sj(vxj , v

y
j ) = 1, then sjIe(v

x
j , v

y
j ) = sjIa(v

x
j , v

y
j ) = 1 is

false. Accordingly, the true cases may be one of following
cases.

1) sjIe(v
x
j , v

y
j ) = 1, sjIa(v

x
j , v

y
j ) 6= 1:

so, sj(vxj , v
y
j ) = 1

⇔ α+ (1− α)sjIa = 1
⇔ sjIa = 1 (α ∈ [0, 1))
This result contradicts the assumption that
sjIa(v

x
j , v

y
j ) 6= 1.

2) sjIe(v
x
j , v

y
j ) 6= 1, sjIa(v

x
j , v

y
j ) = 1:

so, sj(vxj , v
y
j ) = 1

⇔ αsjIe + (1− α) = 1
⇔ sjIe = 1 (α ∈ [0, 1))
⇔ α = 0
This result contradicts the assumption that
sjIe(v

x
j , v

y
j ) 6= 1.

3) sjIe(v
x
j , v

y
j ) 6= 1, sjIa(v

x
j , v

y
j ) 6= 1:

so, sj(vxj , v
y
j ) = 1

⇔ αsjIe + (1− α)sjIa = 1
⇔ sjIa = 1 (if α = 0)
This result contradicts the assumption that
sjIa(v

x
j , v

y
j ) 6= 1.

or α 6= 0 and α ∈ (0, 1)

⇔ α =
1−sjIa

sjIe−s
j
Ia

Since sjIe(v
x
j , v

y
j ) ∈ (0, 1] , 1−sjIa

sjIe−s
j
Ia

≥ 1 contradicts
α < 1.
Hence, we conclude that sjIe(v

x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1 if sj(vxj , v

y
j ) = 1.

Theorem 2. sj(vxj , v
y
j ) = 1, if and only if sjIa(v

x
j , v

y
j ) = 1

for every attribute aj and when α = 0.

Proof 2. According to Equation (9), sj(vxj , v
y
j ) = (1 −

α)sjIa = sjIa = 1.

Theorem 3. The coupled metric attribute value similarity
sj satisfies the triangle inequality if both intra-attribute
similarity sjIa and inter-attribute similarity sjIe satisfy the
triangle inequality for every attribute aj .
Proof 3. According to the conditions defined in Section 3,

sjIa satisfying the triangle inequality means that

1

sjIa(v
x
j , v

y
j )

+
1

sjIa(v
y
j , v

z
j )
≥ 1 +

1

sjIa(v
x
j , v

z
j )
,

sjIe satisfying the triangle inequality means that

1

sjIe(v
x
j , v

y
j )

+
1

sjIe(v
y
j , v

z
j )
≥ 1 +

1

sjIe(v
x
j , v

z
j )
.

Hence, according to Equation (9)

1

sj(vxj , v
y
j )

+
1

sj(vyj , v
z
j )

=
1

αsjIe(v
x
j , v

y
j ) + (1− α)sjIa(vxj , v

y
j )

+

1

αsjIe(v
y
j , v

z
j ) + (1− α)sjIa(v

y
j , v

z
j )

=
α( 1

sjIa(v
x
j ,v

y
j )

+ 1
sjIa(v

y
j ,v

z
j )
− 1)

α( 1
sjIa(v

x
j ,v

y
j )

+ 1
sjIa(v

y
j ,v

z
j )

+ 1
sjIe(v

x
j ,v

y
j )

+ 1
sjIe(v

y
j ,v

z
j )
)− 1

+

(1− α)( 1
ssjIe(v

x
j ,v

y
j )

+ 1
sjIe(v

y
j ,v

z
j )
− 1)

α( 1
sjIa(v

x
j ,v

y
j )

+ 1
sjIa(v

y
j ,v

z
j )

+ 1
sjIe(v

x
j ,v

y
j )

+ 1
sjIe(v

y
j ,v

z
j )
)− 1

+

( 1
sjIa(v

x
j ,v

y
j )

+ 1
sjIa(v

y
j ,v

z
j )
− 1)( 1

sjIe(v
x
j ,v

y
j )

+ 1
sjIe(v

y
j ,v

z
j )
− 1)

α( 1
sjIa(v

x
j ,v

y
j )

+ 1
sjIa(v

y
j ,v

z
j )

+ 1
sjIe(v

x
j ,v

y
j )

+ 1
sjIe(v

y
j ,v

z
j )
)− 1

≥
α 1

sjIa(v
x
j ,v

z
j )

+ (1− α) 1
sjIe(v

x
j ,v

z
j )

+ 1
sjIe(v

x
j ,v

z
j )

1
sjIe(v

x
j ,v

z
j )

α 1
sjIa(v

x
j ,v

z
j )

+ (1− α) 1
sjIe(v

x
j ,v

z
j )

=
αsjIe(v

x
j , v

z
j ) + (1− α)sjIa(vxj , vzj ) + 1

αsjIe(v
x
j , v

z
j ) + (1− α)sjIa(vxj , vzj )p

=1 +
1

αsjIe(v
x
j , v

z
j ) + (1− α)sjIa(vxj , vzj )

=1 +
1

sj(vxj , v
z
j )

Consequently, we conclude that the coupled metric at-
tribute value similarity sj satisfies the triangle inequality.

Theorem 4. The intra-attribute similarity sjIa satisfies the
triangle inequality for any attribute aj .
Proof 4. We here prove that

1

sjIa(v
x
j , v

y
j )

+
1

sjIa(v
y
j , v

z
j )
≥ 1 +

1

sjIa(v
x
j , v

z
j )

Considering the following cases:

1) vxj = vyj or vyj = vzj , or vxj = vyj = vzj :
According to Equation (3) and sjIa ∈ (0, 1], the
following holds:

1

sjIa(v
x
j , v

y
j )

+
1

sjIa(v
y
j , v

z
j )
≥ 1 +

1

sjIa(v
x
j , v

z
j )

Hence, sjIa satisfies the triangle inequality for this
case.

2) vxj 6= vyj and vyj 6= vzj :

1

sjIa(v
x
j , v

y
j )

+
1

sjIa(v
y
j , v

z
j )
− 1

sjIa(v
x
j , v

z
j )
− 1

=
log(xy) + log x · log y

log x · log y
+

log(yz) + log y · log z
log y · log z

−

(
log(xz) + log x · log z

log x · log z
+ 1)

=
2

log y

Since |I(vyj )| ≥ 1, y = |I(vyj )| + 1 ≥ 2, accordingly
2

log y ≥ 0
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Therefore, we have
1

sjIa(v
x
j , v

y
j )

+
1

sjIa(v
y
j , v

z
j )
≥ 1 +

1

sjIa(v
x
j , v

z
j )

Consequently, we conclude that the intra-attribute simi-
larity sjIa satisfies the triangle inequality for any attribute
aj .

Theorem 5. The inter-attribute similarity sjIe satisfies the
triangle inequality for any attribute aj .

Proof 5. According to Equation(8), if sk|jIe satisfies the trian-
gle inequality, then sjIe satisfies it as well.
Considering the following cases:

1) vxj = vyj or vyj = vzj , or vxj = vyj = vzj :
According to Equation (7) and sjIe ∈ (0, 1], the
following holds:

1

sjIe(v
x
j , v

y
j )

+
1

sjIe(v
y
j , v

z
j )
≥ 1 +

1

sjIe(v
x
j , v

z
j )

2) vxj 6= vyj and vyj 6= vzj :

s
k|j
Ie (v

x
j , v

y
j ) =∑|Wk|

1 max(p1x, p
1
y)

2 ·
∑|Wk|

1 max(p1x, p
1
y)−

∑|Wk|
1 min(p1x, p

1
y)

According to the distance-similarity mapping func-
tion (see Equation (6)), the distance is:

dist = 1−
∑|Wk|

1 min(p1x, p
1
y)∑|Wk|

1 max(p1x, p
1
y)

Note that the above is the Jaccard distance. The
Jaccard distance is a metric distance and satisfies the
triangle inequality. Accordingly, we conclude that
s
k|j
Ie satisfies the triangle inequality.

Hence, sjIe satisfies the triangle inequality.
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