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Abstract— Unsupervised domain adaptation (UDA) aims to 

recognize newly emerged patterns in target domains, which may 

be unlabeled, by leveraging knowledge from patterns learnt from 

source domains. However, existing UDA models and algorithms 

still suffer from heterogeneous domains, known as the 

heterogeneous unsupervised domain adaptation (HeUDA) issue. 

To address this issue, this paper presents a novel HeUDA model 

via n-dimensional fuzzy geometry and fuzzy equivalence relations, 

called F-HeUDA. The n-dimensional fuzzy geometry is used to 

propose a metric to measure the similarity between features on one 

domain. Then, based on this metric, shared fuzzy equivalence 

relations (SFER) is proposed. The SFER can allow two domains to 

use the same 𝜶 to get the same number of clustering categories. 

Through these clustering categories, knowledge from the 

heterogeneous source domain can be transferred to the unlabeled 

target domain. Different to existing HeUDA models, the proposed 

F-HeUDA model does not need that two domains must have the 

same number of instances. As a result, the proposed model has a 

better ability to handle the issue of small datasets. Experiments 

distributed across four real datasets were conducted to validate 

the proposed model. This testing regime demonstrates that the 

proposed model outperforms the state-of-the-art models, 

especially when the target domain has very few instances. 

 
Index Terms— Transfer learning, domain adaptation, fuzzy 

relations, machine learning  

 

I. INTRODUCTION 

HAT makes the human learning process advanced is our 

ability to transfer knowledge from experienced situations 

to a newly emerged one. This is the ability which is needed by 

an artificial intelligent model in order to, for example: 1) predict 

the demand for a new product using the knowledge of existing 

products; 2) diagnose a newly discovered cancer using 

knowledge of existing cancers; and 3) to assess the credit of a 

foreigner using existing national assessment systems. Artificial 

intelligence researchers first developed models which were 

trained by a training set and were then applied to predict the 

labels of instances of the testing set. This type of model, called 

the traditional machine learning model, has the ability to 

transfer knowledge from the training set to the testing set when 
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these two sets have the same features. However, traditional 

machine learning models have unsatisfactory results when there 

is divergence between two sets (such as the divergence of the 

distributions of two sets). So, transfer learning models have 

been proposed to address this problem by minimizing the 

divergence between two sets [1], [2] and the training set and the 

testing set were extended to more general concepts: source 

domains and target domains [3]–[5].  

 Subsequently, researchers began to consider how to leverage 

the knowledge obtained from a source domain to help predict 

the labels in a target domain where the two domains have 

different feature spaces. Until now, transfer learning models 

have attracted a large amount attention and made fast progress 

in both theory and practice. Examples include using classified 

French documents to help classify English documents [6]; 

building recognition models capable of recognising novel 

visual categories without labelled training samples [7]; 

detecting a user’s current location based on previously collected 

WiFi data [3] and leveraging the large number of labeled simple 

actions to recognize complex human actions [8]. As the main 

type of transfer learning models, domain adaptation models 

have demonstrated great success in recent years [9], [10]. 

Domain adaptation models aim to transfer knowledge between 

two domains which perform similar tasks, such as classifying 

news documents [6], recognizing similar objects [4] and 

predicting the value of owner-occupied homes [11]. There are 

two major categories of domain adaptation models: 

homogeneous and heterogeneous.  

Homogeneous domain adaptation models were proposed to 

minimize the divergence between distributions of feature 

spaces of two domains. At first, researchers focused on the issue 

that two domains have the same feature space but different 

distributions. Then, researchers realized that homogeneous 

domain adaptation models can address more general issues such 

as when two domains have different features (the number of 

features of two domains is the same). When there are labeled 

instances in the target domain, the representative models 

include adaptive support vector machines [12], projective 

model transfer SVM [13], Bayesian co-training [14] and max-

e-Service Intelligence Lab, Centre for Artificial Intelligence, Faculty of 

Engineering and Information Technology, University of Technology Sydney, 

Australia (e-mail: Feng.Liu-2@student.uts.edu.au/Feng.Liu.1990@ieee.org; 
Guangquan.Zhang@uts.edu.au; Jie.Lu@uts.edu.au). 

 

Unsupervised Heterogeneous Domain 

Adaptation via Shared Fuzzy Equivalence 

Relations 

Feng Liu, Student Member, IEEE, Jie Lu, Fellow, IEEE, and Guangquan Zhang  

W 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, TFS-2017-0634 2 

margin domain transforms [15]. These models need labeled 

instances in the target domain and are called homogeneous 

(semi) supervised domain adaptation models. When there is no 

labeled instance in the target domain, domain adaptation 

models are called homogeneous unsupervised domain 

adaptation (HoUDA) models. The representative HoUDA 

models include transfer component analysis [3], geodesic flow 

kernel (GFK)  [4], [16], information-theoretical learning [17] 

and transfer deep network [18]. Most HoUDA models aim to 

minimize the divergence between distributions of two feature 

spaces. Frequently used mathematical tools are reproducing 

kernel Hilbert space [3], [9], [19], Grassmann manifold [4], [20] 

and graph matching [10]. Compared to homogeneous domain 

adaptation models, heterogeneous domain adaptation models 

have more general application scenarios because they can 

transfer knowledge from heterogeneous domains to the target 

domain. When the target domain has labeled instances, 

representative heterogeneous domain adaptation models 

include heterogeneous feature augmentation [21], asymmetric 

regularized cross-domain transformation [22], heterogeneous 

spectral mapping [23], manifold alignment-based models [24], 

semi-supervised kernel matching for domain adaptation  [6], 

and the DASH-N model [25]. These models can also be 

regarded as heterogeneous (semi) supervised domain 

adaptation models. In a situation where there is no labeled 

instance in the target domain (the most challenging task in the 

field of domain adaptation), there are rare models which exist 

because current models have two bottlenecks: 1) measuring the 

distance between two heterogeneous feature spaces and 2) 

theoretically avoiding negative transfer. Although kernel 

canonical correlation analysis (KCCA) [26] was proposed as a 

heterogeneous unsupervised domain adaptation (HeUDA) 

model, it needs two domains which have paired instances.  

To propose an effective HeUDA model, we successfully 

designed Grassmann linear monotonic maps geodesic flow 

kernel (GLG) in our previous work [27], which solves the two 

aforementioned bottlenecks and has satisfactory classification 

results on three real applications. However, no matter which 

HeUDA model (KCCA or GLG) is used, it does not work well 

when the target domain is a small dataset due to the limitations 

of CCA and the Grassmann manifold (both of which need two 

domains with the same number of instances). This will limit the 

amount of knowledge from the source domain which is 

transferred to the target domain. For example, if we have a 

source domain containing 10,000 instances, we need to label 

instances of the target domain which only have 50 instances. If 

we use the KCCA or GLG model, we can only select 50 

instances in the source domain and transfer the knowledge from 

these 50 selected instances to the target domain. This means we 

waste 99.5% of the information of the source domain, which is 

not acceptable. Thus, to address this problem, this paper applies 

the n-dimensional fuzzy geometry and the fuzzy equivalence 

relations to transfer all of the knowledge from a heterogeneous 

domain to the target domain, where two domains have a 

different number of instances.  

Fuzzy technology plays an important role in the field of 

artificial intelligence because it can deal with the uncertainty of 

the dataset and give a reasonable explanation of the dataset 

itself. In the field of domain adaptation, fuzzy rules and Takagi 

– Sugeno models are also frequently used to transfer knowledge 

across domains [5], [11], [28]–[30] because they can extract 

general fuzzy representations of two domains and illustrate how 

knowledge is transferred across domains. Deng et al. proposed 

a series of novel models to effectively transfer knowledge 

across domains using Mamdani-Larsen-type fuzzy system, 

Takagi-Sugeno-Kang-type fuzzy system, including knowledge-

leverage-based Mamdani-Larsen-type fuzzy system (KL-ML-

FS) [31], knowledge-leverage-based Takagi-Sugeno-Kang-

type fuzzy system (KL-TSK-FS) [32] and enhanced KL-TSK-

FS (EKL-TSK-FS) [33]. They also proposed a novel clustering 

model, transfer prototype - based fuzzy clustering (TPFC) [34] 

and a novel regression model, transfer generalized hidden-

mapping ridge regression (TGHRR) [35].  Sun et al. proposed 

a granular transfer learning with type-2 fuzzy hidden Markov 

model (GT2HMM) [36] and introduced the granular computing 

into the processing of contextual uncertainty for transfer 

learning. These fuzzy transfer models demonstrate that fuzzy 

technologies make knowledge transfer more effectively. Based 

on these advantages of fuzzy technology, we first propose a new 

metric 𝒟 on an n-dimensional fuzzy space ℱ(ℝ𝑛) where each 

feature of a domain is regarded as a fuzzy vector. This new 

metric contains fuzzy degrees of fuzzy vectors and it is proved 

that (𝒟, ℱ(ℝ𝑛)) is a metric space. Then, we use this metric to 

measure the similarity of two fuzzy vectors and build the fuzzy 

equivalence relations matrix of each domain. In a traditional 

fuzzy equivalence relations matrix, we can use an 𝛼 to cluster 

these fuzzy vectors (representing features) into several 

categories and these categories are regarded as more general 

fuzzy representations. Motivated by this, we propose the shared 

fuzzy equivalence relations (SFER), which allows two fuzzy 

equivalence matrixes of two domains to share the same 𝛼. 

Compared to the traditional fuzzy equivalence relations, the 

SFER can guarantee that fuzzy equivalence relations matrixes 

of two domains can have the same number of clustering 

categories with the same 𝛼 (traditional fuzzy equivalence 

relations cannot guarantee this). Eventually, with the help of the 

SFER, we can transfer knowledge from the source domain to 

the target domain via these clustering categories.  

The main contributions of this paper can be summarized as 

follows.  

1) This paper proposes a novel F-HeUDA model, adopting 

n-dimensional fuzzy geometry and fuzzy equivalence relations 

to address heterogeneous domain adaptation issues. Both fuzzy 

technologies successfully overcome the drawbacks of CCA and 

the Granssmann manifold (two domains must have the same 

number of instances). As a result, the proposed model can 

transfer more knowledge from a source domain to a target 

domain than KCCA and GLG models when there are very few 

instances in the target domain.  

2) Two important properties of fuzzy equivalence relations 

are discovered and proved in this paper, which are the 

theoretical guarantees of the SFER model and key parts of the 

proposed model. Based on both properties, it can be guaranteed 

that fuzzy equivalence relations matrixes of two domains can 
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have the same number of clustering categories with the same 

and proper 𝛼. 

3) This is the first time that n-dimensional fuzzy geometry 

and fuzzy equivalence relations have been applied to address 

the issue of domain adaptation and the proposed model 

performs well in real applications. 

4) The F-HeUDA model provides an “𝛼-cut” decision 

making pattern for decision makers. In the proposed model, we 

propose a default method by which to automatically select 𝛼 for 

different tasks which works well in four real applications. 

Furthermore, decision makers can still easily select the value of 

𝛼 based on their own experience and requirements. This 

extends the application scenario of the proposed model. 

The remainder of this paper is organized as follows. Section 

II briefly introduces the n-dimensional fuzzy geometry and the 

fuzzy equivalence relations. Section III proposes a way to 

measure the similarity of two fuzzy vectors. In Section IV, we 

prove two important properties of the fuzzy equivalence 

relations and propose the F-HeUDA model. Section V describes 

the use of four real datasets to test the performance of the 

proposed models and benchmarks, and demonstrates the 

convergence of the proposed learning algorithm for the SFER, 

and shows the “𝛼-cut” decision making pattern of the proposed 

model. Finally, Section VI concludes the paper and outlines 

future studies. 

II. PRELIMINARY 

This section introduces the two basic concepts used in this 

paper, which are n-dimensional fuzzy geometry (n-D FG) and 

fuzzy equivalence relations.   

A. N-dimensional fuzzy geometry  

The geometry properties of fuzzy sets have been extensively 

researched in various aspects such as fuzzy point, fuzzy line and 

fuzzy circle [37]–[41].  The n-D FG theory is developed to 

provide an effective way to analyze and compute fuzzy 

information in a geometry form [42]. In this subsection, several 

definitions are introduced to explain the n-D fuzzy vector, the 

core element in an n-D FG. Without loss of generality, this 

paper uses capital or small letters with a bar to represent the 

fuzzy points or fuzzy subsets of ℝ𝑛. The membership function 

of a fuzzy set A̅ is denoted by 𝜇(𝑥|A̅), 𝑥 ∈ ℝ𝑛, with 𝜇(𝑥|A̅) ⊆
[0, 1]. First, the fuzzy number is defined as follows. 

Definition 1 [43]: A fuzzy set S̅ of ℝ is called a fuzzy real 

number (fuzzy number in the rest of this paper) if its 

membership function 𝜇 satisfies the following properties. 

1. 𝜇(𝑥|S̅) = 1 is upper semi-continuous in x. 

   2. 𝜇(𝑥|S̅) = 1 for x outside some interval [𝑐, 𝑑]. 

   3. For some real numbers with 𝑐 ≤ 𝑎 ≤ 𝑏 ≤ 𝑑, 𝜇(𝑥|S̅) is 

monotonically increasing in [𝑐, 𝑎], monotonically decreasing in 

[𝑏, 𝑑], and 𝜇(𝑥|S̅) = 1 for 𝑥 ∈ [𝑎, 𝑏]. 
Then, we can give the definition of the fuzzy vector at an n-

D vector as follows. 

Definition 2 [43]: A fuzzy set A̅(𝑎1, 𝑎2, … , 𝑎𝑛) of ℝ𝑛 is called 

a fuzzy vector at A = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℝ
𝑛 if its membership 

function 𝜇 satisfies the following properties. 

1. 𝜇((𝑥1, 𝑥2, … , 𝑥𝑛)|A̅(𝑎1, 𝑎2, … , 𝑎𝑛)) = 1 is upper semi-

continuous in x = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛. 

   2. 𝜇((𝑥1, 𝑥2, … , 𝑥𝑛)|A̅(𝑎1, 𝑎2, … , 𝑎𝑛))  = 1 if and only if 

(𝑥1, 𝑥2, … , 𝑥𝑛) =  (𝑎1, 𝑎2, … , 𝑎𝑛). 

   3. A̅(𝛼) = {𝒙|𝜇(𝒙|A̅(𝑎1, 𝑎2, … , 𝑎𝑛)) = 𝛼, 𝒙 ∈ ℝ
𝑛} is a 

compact convex subset of ℝ𝑛 for all 𝛼 in [0, 1]. 

The fuzzy vector is the basic element for researching 

properties of the n-D FG space and the set of all n-D fuzzy 

vectors is denoted by 𝐹(ℝ𝑛). The third property of n-D fuzzy 

vectors implies that 𝐹(ℝ𝑛) can be connected with ℝ𝑛 using the 

membership 𝛼.  

This paper uses the triangular membership function to 

construct the membership function of each n-D fuzzy vector in 

𝐹(ℝ𝑛). The detailed form is introduced in section III.  

B. Fuzzy equivalence relations 

Fuzzy equivalence relations are first mentioned in [44] 

(Zadeh referred to fuzzy equivalence relations as similarity 

relations in [44]) and were studied as a way to measure the 

similarity among fuzzy sets. Based on the fuzzy equivalence 

relations, fuzzy equivalence classes can be obtained, which 

provides a powerful way to analyze the fuzzy partitions. Then, 

to construct the fuzzy equivalence relations for general fuzzy 

sets, the max–min operator is proposed to construct max–min 

transitive closure which is a fuzzy equivalence relations [45]. 

This section briefly reviews how to generate a fuzzy 

equivalence relations for fuzzy sets and how to use the fuzzy 

equivalence relations to partition fuzzy sets.  

First, the definition of a fuzzy relation is given as follows. 

Definition 3: Given N fuzzy sets, A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ , an operator 

𝑅: (A̅𝑖 , A̅𝑗) ↦ [0,1] is a fuzzy relation on A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅  if the 

following properties are satisfied. 

1) 𝑅(A̅𝑖 , A̅𝑗) = 1 ∀A̅𝑖 (reflexivity), 

2) 𝑅(A̅𝑖 , A̅𝑗) =  𝑅(A̅𝑗 , A̅𝑖), ∀A̅𝑖, A̅𝑗 (symmetry). 

It is obvious that the fuzzy relation 𝑅 on A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅  can be 

expressed by a N-by-N matrix 𝑅𝑀 = (𝑟𝑖𝑗), 𝑟𝑖𝑗 = 𝑅(A̅𝑖 , A̅𝑗). 

Then the max–min operator ∘ is defined for two fuzzy relations 

matrixes 𝑅𝑎
𝑀 and 𝑅𝑏

𝑀. 

(𝑅𝑎
𝑀 ∘ 𝑅𝑏

𝑀)𝑖𝑗 =⋁(𝑟𝑖𝑘
(𝑎)
∧ 𝑟𝑘𝑗

(𝑏)
)

𝑁

𝑘=1

,                       (1) 

where 𝑟𝑖𝑘
(𝑎)

  is the element of 𝑅𝑎
𝑀 and 𝑟𝑘𝑗

(𝑏)
 is the element of 𝑅𝑏

𝑀 

, “∧” represents the minimize, “∨” represents the maximize. It 

is clear that 𝑅𝑎
𝑀 ∘ 𝑅𝑏

𝑀 is also a fuzzy relations matrix and 𝑟𝑖𝑗
(𝑎)
≤

(𝑅𝑎
𝑀 ∘ 𝑅𝑏

𝑀)𝑖𝑗 and 𝑟𝑖𝑗
(𝑏)
≤ (𝑅𝑎

𝑀 ∘ 𝑅𝑏
𝑀)𝑖𝑗 . 

Next, the fuzzy equivalence relation is defined as follows. 

Definition 4: Given N fuzzy sets, A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ , an operator 

𝑅: (A̅𝑖 , A̅𝑗) ↦ [0,1] is a fuzzy equivalence relation on 

A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅  if the following properties are satisfied. 

1) 𝑅(A̅𝑖 , A̅𝑗) = 1, ∀A̅𝑖 (reflexivity), 

2) 𝑅(A̅𝑖 , A̅𝑗) =  𝑅(A̅𝑗 , A̅𝑖), ∀A̅𝑖, A̅𝑗 (symmetry), 

3) 𝑅(2)
𝑀 = 𝑅(1)

𝑀 ∘ 𝑅(1)
𝑀  (transitivity). 

where 𝑅𝑀 is the fuzzy relation matrix on 𝑅 and ∘ is the max-

min operator mentioned above. 
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Compared to fuzzy equivalence relations, fuzzy relations 

are much easier to obtain because fuzzy relations do not require 

transitivity. This leads researchers to find a way to construct the 

fuzzy equivalence relations based on the fuzzy relations and the 

max-min operator. The following theorem is provided to show 

that the max–min transitive closure 𝑅𝑇 of a fuzzy relation 𝑅 is 

a fuzzy equivalence relation.  

Theorem 1: Given a fuzzy relation 𝑅 on A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ , there 

must be a finite 𝑚 ∈ ℤ and an operator 𝑅𝑇 satisfies the 

following conditions. 

1) 𝑅𝑇
𝑀 = 𝑅(𝑚)

𝑀 = 𝑅𝑀 ∘ 𝑅𝑀 ∘ … ∘ 𝑅𝑀⏟          
𝑚

. 

2) 𝑅𝑇
𝑀 = 𝑅𝑇

𝑀 ∘ 𝑅𝑇
𝑀 

where 𝑅𝑀 is the fuzzy relations matrix of 𝑅 and 𝑅𝑇
𝑀 is the 

fuzzy relations matrix of 𝑅𝑇. The operator 𝑅𝑇 is called the max-

min transitive closure of 𝑅. 

Proof: Based on Theorem 5.1 and Theorem 5.2 in [46], 𝑅𝑇 

satisfies the following equations. 

𝑅𝑇
𝑀 =⋁𝑅(𝑘)

𝑀

∞

𝑘=1

, 

𝑅𝑇
𝑀 = 𝑅(𝑁−1)

𝑀 . 

Thus, 𝑚 =  𝑁 − 1 (condition 1 is satisfied) and we have  

𝑅𝑇
𝑀 ∘ 𝑅𝑇

𝑀 =⋁𝑅(𝑘)
𝑀

∞

𝑘=1

∘⋁𝑅(𝑙)
𝑀

∞

𝑙=1

 

                  =⋁⋁𝑅(𝑙)
𝑀

∞

𝑙=1

∘ 𝑅(𝑘)
𝑀

∞

𝑘=1

 

                 = ⋁ 𝑅(𝑙+𝑘)
𝑀

∞

𝑙,𝑘 =1

= 𝑅𝑇
𝑀 

thus, condition 2 is satisfied.                                                      □ 

Theorem 1 provides a way to construct fuzzy equivalence 

relations through fuzzy relations. With the constructed fuzzy 

equivalence relations, we can use 𝛼-cut of 𝑅𝑇
𝑀 to cluster 

A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ . Specifically, the matrix of 𝛼-cut of 𝑅𝑇
𝑀 can be 

expressed by the following term. 

(𝑅𝑇
𝑀(𝛼))

𝑖𝑗
= {

1, 𝑖𝑓 (𝑅𝑇
𝑀)𝑖𝑗 ≥ 𝛼 

0, 𝑖𝑓 (𝑅𝑇
𝑀)𝑖𝑗 < 𝛼 

.                     (2) 

𝑅𝑇
𝑀(𝛼) is a binary fuzzy equivalence relation matrix. Fuzzy 

sets that have the same corresponding rows of 𝑅𝑇
𝑀(𝛼) can be 

regarded as the same cluster. The selection of 𝛼 is a decision-

making process, and users can choose 𝛼 based on their own 

requirements. 

Traditional fuzzy equivalence relations are only for one type 

of fuzzy set, such as the set 𝑆1̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁1
̅̅ ̅̅ ̅}, A�̅� ∈

𝐹(ℝ𝑛1). However, for the HeUDA problem, there is always 

another set 𝑆2̅ = {B1̅̅ ̅, B2̅̅ ̅, … , B𝑁2
̅̅ ̅̅ ̅}, B�̅� ∈ 𝐹(ℝ

𝑛2)  and 𝑛1 ≠ 𝑛2, 

𝑁1 ≠ 𝑁2. In general, 𝑅𝑇
𝑀 of 𝑆1 and 𝑆2 are different and cannot 

get the same number of clusters through sharing the same 𝛼, 

which is the main obstacle when dealing with the HeUDA 

problem using fuzzy relations. In order to let 𝑅𝑇
𝑀 of 𝑆1 and 𝑆2 

share the same 𝛼, this paper designs a new shared fuzzy 

equivalence relation (SFER) which is based on two sets. Some 

new properties of traditional fuzzy equivalence are first 

discussed in Section IV, then, SFER is detailed based on these 

new properties. 

III. SIMILARITY OF N-DIMENSIONAL FUZZY VECTORS 

In this section, we propose a new similarity between two 

fuzzy vectors in the n-D FG. The first subsection describes a 

new metric on n-D FG and proves its correctness. The second 

subsection proposes the new similarity based on the new metric 

defined in subsection A. 

A. Metric on n-D FG 

To measure the distance between two fuzzy vectors in the 

n-D FG, researchers defined several metrics, comprising two 

main types: fuzzy metrics [40], [47] and de-fuzzy metrics [42]. 

Although the literature [42] proposed a de-fuzzy metric based 

on the fuzzy metric defined in [40], this de-fuzzy metric cannot 

satisfy the second condition of a metric space. In this section, a 

proper de-fuzzy metric 𝒟 is proposed and we prove that 

(𝐹(ℝ𝑛), 𝒟) is a metric space. First, the detailed expression of a 

fuzzy vector A̅𝑖(𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛)  ∈ 𝐹(ℝ
𝑛) (with the triangular 

membership function) is given as follows: for each �̅�𝑖𝑗 ∈ 𝐹(ℝ), 

its membership function is  

𝜇𝑖𝑗(𝑥|�̅�𝑖𝑗) =  

{
 
 

 
 
0,                              ∀𝑥 < 𝑎𝑖𝑗 − 𝜌𝑖  

1 −
|𝑥 − 𝑎𝑖𝑗|

𝜌𝑖
,     ∀|𝑥 − 𝑎𝑖𝑗| ≤ 𝜌𝑖  

0,                              ∀𝑥 > 𝑎𝑖𝑗 + 𝜌𝑖  

, 𝑥 ∈ ℝ, (3) 

Based on the 𝜇𝑖𝑗(𝑥|�̅�𝑖𝑗), 𝜇𝑖(𝒙|A̅𝑖) is expressed by the following 

term (𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝑛)). 

𝜇𝑖(𝒙|A̅𝑖) =

{
 
 

 
 
0,                          𝑖𝑓 ∃𝑥𝑗 ,   𝑥𝑗 < 𝑎𝑖𝑗 − 𝜌𝑖  

1 −
‖𝒙 − 𝑎𝑖𝑗‖1

𝑛𝜌𝑖
, 𝑖𝑓 ∀𝑥𝑗 , |𝑥𝑗 − 𝑎𝑖𝑗| ≤ 𝜌𝑖  

0,                          𝑖𝑓 ∃𝑥𝑗 ,    𝑥𝑗 > 𝑎𝑖𝑗 + 𝜌𝑖  

 , 𝒙 ∈ ℝ𝒏, (4) 

Then, we define a new metric to measure the distance 

between two fuzzy vectors. 

Definition 5: Given two fuzzy vectors A̅𝑖 ∈ 𝐹(ℝ
𝑛) and A̅𝑗 ∈

𝐹(ℝ𝑛), the new metric between A̅𝑖 and A̅𝑗 is defined by the map 

𝒟: 𝐹(ℝ𝑛) × 𝐹(ℝ𝑛) → [0, +∞): 

𝒟(A̅𝑖 , A̅𝑗) =
1

𝑛
∫ 𝑠𝑢𝑝{𝒟𝜆(𝑢, 𝑣): 𝒟𝜆(𝑢, 𝑣) ∈ Ω(𝜆)}𝑑𝜆
1

0

,  

Ω(𝜆) =  {𝑑 (𝑢, A̅𝑗(𝜆))} ∪ {𝑑(𝑣, A̅𝑖(𝜆))}, 

 

Fig. 1.  Relationships among 𝑠𝑢𝑝{𝒟𝜆(𝑢, 𝑣): 𝒟𝜆(𝑢, 𝑣) ∈ Ω(𝜆)}, 𝑑 (𝑢, A̅𝑗(𝜆)), 

𝑑(𝑣, A̅𝑖(𝜆)) and 𝑑(A𝑖 , A𝑗) 
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where 𝑢 ∈ A̅𝑖(𝜆), 𝑣 ∈ A̅𝑗(𝜆) and the first part of Ω(𝜆) collects 

𝐿1 distances between each 𝑢 and  A̅𝑗(𝜆) (𝑑(𝑢, A̅𝑗(𝜆)) = 

𝑚𝑖𝑛 {𝑑(𝑢, 𝑣), 𝑣 ∈ A̅𝑗(𝜆)} means the minimum 𝐿1 distances 

between 𝑢 and all elements in A̅𝑗(𝜆)), and the second part of 

Ω(𝜆) collects 𝐿1 distances between 𝑣 and A̅𝑖(𝜆) (𝑑(𝑣, A̅𝑖(𝜆)) = 

𝑚𝑖𝑛 {𝑑(𝑣, 𝑢), 𝑢 ∈ A̅𝑖(𝜆)}} means the minimum 𝐿1 distances 

between 𝑣 and all elements in A̅𝑖(𝜆)),  and 𝑑(𝑢, 𝑣) represents 

the 𝐿1 distance (ℓ1-norm) between two n-dimension vector (𝑢 

and 𝑣). 

Remark 1: To measure the distance between two fuzzy vectors 

is a key to define the fuzzy relation between them. Thus, we first 

propose a new measurement represented in Definition 5. 

𝒟(A̅𝑖 , A̅𝑗) is the longest distance among 1) distances between v 

and  A̅𝑖 and 2) distances between u and A̅𝑗.  

Figure 1 shows the meaning of 𝒟(A̅𝑖 , A̅𝑗) and indicates that 

the following equation exists. 

𝒟(A̅𝑖 , A̅𝑗) =  
1

𝑛
∫ 𝑑(A𝑖 , A𝑗)
1

0

+
1

2
|𝑑 (𝑢, A̅𝑗(𝜆)) − 𝑑(𝑣, A̅𝑖(𝜆))| 𝑑𝜆.      (5) 

Based on 𝜇𝑖(𝒙|A̅𝑖), we derive the following equations: 

𝒟(A̅𝑖 , A̅𝑗) =  
1

𝑛
𝑑(A𝑖, A𝑗) +

1

2
∫ |(1 − 𝜆)𝜌𝑖 − (1 − 𝜆)𝜌𝑗|
1

0
𝑑𝜆 

       =  
1

𝑛
𝑑(A𝑖, A𝑗) +

1

2
|𝜌𝑖 − 𝜌𝑗|∫ (1 − 𝜆)

1

0

𝑑𝜆 

                    =  
1

𝑛
𝑑(A𝑖, A𝑗) +

1

4
|𝜌𝑖 − 𝜌𝑗|.                                 (6) 

Theorem 2: (𝐹(ℝ𝑛), 𝒟) is a metric space. 

Proof: To prove this theorem, we need to prove 𝒟 can 

satisfy the following conditions for ∀A̅𝑖 , A̅𝑗 and A̅𝑘 ∈ 𝐹(ℝ
𝑛).  

1) 𝒟(A̅𝑖, A̅𝑗) ≥ 0; 

2) 𝒟(A̅𝑖, A̅𝑗) = 0 if and only if A̅𝑖 = A̅𝑗; 

3) 𝒟(A̅𝑖, A̅𝑗) = 𝒟(A̅𝑗, A̅𝑖); 

4) 𝒟(A̅𝑖, A̅𝑗) ≤ 𝒟(A̅𝑖 , A̅𝑘) + 𝒟(A̅𝑘 , A̅𝑗); 

where A̅𝑖 = A̅𝑗 means that 𝐴𝑖 = 𝐴𝑗 and 𝜌𝑖 = 𝜌𝑗. 

From the definition of 𝒟, it is clear that conditions 1) and 3) 

are achieved. Because 𝑑(⋅,⋅) represents the 𝐿1 distance, 

condition 2) can be satisfied. For condition 4), we have  

𝑑(A𝑖 , A𝑗) ≤ 𝑑(A𝑖, A𝑘) + 𝑑(A𝑘, A𝑗) 

and 

|𝜌𝑖 − 𝜌𝑗| ≤ |𝜌𝑖 − 𝜌𝑘| + |𝜌𝑘 − 𝜌𝑗|. 

Thus, condition 4) is satisfied.                                                    □ 

Theorem 2 shows the correctness of definition 5 and gives 

a new perspective on the measurement of two fuzzy vectors. 

B. Similarity of n-D fuzzy vectors 

The metric 𝒟 can map two fuzzy vectors to a real positive 

number, which cannot be directly used as a fuzzy relation 

(Definition 3). Thus, this subsection transforms 𝒟 into a fuzzy 

relation 𝑅𝒟 as follows. 

Lemma 1: Given two fuzzy vectors where A̅𝑖 ∈ 𝐹(ℝ
𝑛) and 

A̅𝑗 ∈ 𝐹(ℝ
𝑛), if an operator 𝑅𝒟: (A̅𝑖 , A̅𝑗) ↦ [0,1] derived by 𝒟 

is defined as follows, 

𝑅𝒟(A̅𝑖, A̅𝑗) = 𝑒
−
𝒟(A̅𝑖,A̅𝑗)

2𝜎2 ,                            (7) 

then 𝑅𝒟 is a fuzzy relation. 

Proof: Because 𝑓(𝑥) = 𝑒
−𝑥

2𝜎2  is monotonic when 𝑥 ∈
[0, +∞) and (𝐹(ℝ𝑛), 𝒟) is a metric space, we have  

𝑅𝒟(A̅𝑖, A̅𝑗) = 𝑅𝒟(A̅𝑗, A̅𝑖).                            (8) 

Also, we have 

𝑅𝒟(A̅𝑖, A̅𝑖) = 𝑒
−
0
2𝜎2 = 1.                            (9) 

So, based on Definition 3 and Eqs. (8) and (9), the operator 𝑅𝒟 

satisfies reflexivity and symmetry, meaning that 𝑅𝒟 is a fuzzy 

relation.                  □ 

Based on the 𝑅𝒟, we can obtain the fuzzy relations matrix 

of 𝑅𝒟 and denote this matrix by 𝑅𝒟
𝑀, where 𝑅𝒟

𝑀 is a squared 

matrix and (𝑅𝒟
𝑀)𝑖𝑗 = 𝑅𝒟(A̅𝑖, A̅𝑗), 𝑖, 𝑗 = 1,2, …, N. Furthermore, 

the max-min transitive closure of 𝑅𝒟 is denoted by 𝑅𝑇𝒟 and the 

𝑅𝑇𝒟
𝑀  is the fuzzy relations matrix of 𝑅𝑇𝒟, where 𝑅𝑇𝒟

𝑀  is a squared 

matrix and (𝑅𝑇𝒟
𝑀 )𝑖𝑗 = 𝑅𝑇𝒟(A̅𝑖, A̅𝑗), , 𝑖, 𝑗 = 1,2, …, N. Based on 

Theorem 1, we also know that 𝑅𝑇𝒟
𝑀 = 𝑅𝒟

𝑀 ∘ 𝑅𝒟
𝑀 ∘ … ∘ 𝑅𝒟

𝑀
⏟          

𝑁−1

. 

IV. HEUDA VIA SHARED FUZZY EQUIVALENCE RELATIONS 

Before introducing the proposed model, the aim of a 

HeUDA model is formally demonstrated as follows. 

Considering two feature sets of source and target domains: 𝑆1 =

{A1, A2, … , A𝑁1}, A𝑖 ∈ ℝ
𝑛1, 𝑆2 = {B1, B2, … , B𝑁2}, B𝑖 ∈ ℝ

𝑛2  

and 𝑛1 ≠ 𝑛2, 𝑁1 ≠ 𝑁2, the HeUDA models aim to find a 

common feature set 𝑆𝑐 = {C1, C2, … , C𝑁𝑐}, C𝑖 ∈ ℝ
𝑛𝑐, 𝑛𝑐 = 𝑛1 +

𝑛2, and use the labeled information of 𝑆𝑐 (knowledge from the 

 
Fig. 2.  Traditional fuzzy equivalence relations v.s. SFER. In subfigure (a), two domains clearly cannot use the same 𝛼 to obtain the same number of clusters. But 

in the proposed model, SFER, two domains have a much bigger probability of using the same 𝛼 to obtain the same number of clusters. 

  



IEEE TRANSACTIONS ON FUZZY SYSTEMS, TFS-2017-0634 6 

source domain) to label the unlabeled information of 𝑆𝑐 
(unlabeled target domain), where 𝑛1 represents the number of 

instances in the source domain, 𝑛2 represents the number of 

instances in the target domain, 𝑁1 is the number of features in 

the source domain and 𝑁2 is the number of features in the target 

domain. 

Clearly, the core function of HeUDA models is to 

simultaneously transform 𝑆1 and 𝑆2 to 𝑆𝑐 but traditional fuzzy 

equivalence relations can only do this separately. Thus, the 

most important work of this paper is to determine how to apply 

fuzzy equivalence relations to simultaneously transform 𝑆1 and 

𝑆2 to 𝑆𝑐. To provide more detail, we propose SFER to let 𝑅𝑇𝒟
𝑀 s 

of 𝑆1 and 𝑆2 share the same 𝛼, which guarantees that 𝑆1 and 𝑆2 

can be clustered as 𝑁𝑐 categories with the same 𝛼. Figure 2 

illustrates the difference between traditional fuzzy equivalence 

relations and SFER.   

Subsection A is the theoretical guarantee for SFER, which 

is formally demonstrated in subsection B. Subsection C 

proposes an algorithm to learn the parameters of SFER, and the 

last subsection introduces how to transfer knowledge from a 

source domain to a target domain using SFER. 

A. Theoretical guarantees  

This subsection gives two properties of fuzzy equivalence 

relations. The first (Theorem 3) demonstrates how many 

different real numbers exist in the fuzzy equivalence relations 

matrix and the second (Theorem 4) demonstrates how the 

number of clusters changes when 𝛼 changes. 

Lemma 2: Given a set 𝑆 = {A1, A2, … , A𝑁} and a fuzzy set 

𝑆̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ } on 𝑆, then, for 𝑅𝑇𝒟
𝑀  of 𝑆̅, we have 

𝑅𝑇𝒟
𝑀 = (

𝑅(𝑁)
𝑁−1⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ) 𝑅(𝑁−1)
𝑁−1 ∘ 𝑟𝑁

𝑟𝑁
𝑇 ∘ 𝑅(𝑁−1)

𝑁−1 1
), 

where  

𝑅𝒟
𝑀 = (

𝑅𝑁−1 𝑟𝑁
𝑟𝑁
𝑇 1

)
𝑁×𝑁

 , 𝑅(𝑁)
𝑁−1 = 𝑅𝑁−1 ∘ … ∘ 𝑅𝑁−1⏟          

𝑁

, 𝑅(0)
𝑁−1 = 𝐈 

and 𝑅𝑁−1 is a 𝑁 − 1 by 𝑁 − 1 matrix, 𝑟𝑁 is a 𝑁 dimensional 

vector. 

Proof: Based on the max–min operator ∘, we arrive at the 

following equation: 

𝑅𝒟
𝑀 ∘ 𝑅𝒟

𝑀 = (
𝑅(2)
𝑁−1 ∨ (𝑟𝑁 ∘ 𝑟𝑁

𝑇) 𝑅(2)
𝑁−1 ∘ 𝑟𝑁

𝑟𝑁
𝑇 ∘ 𝑅(2)

𝑁−1 1
).         (10) 

In terms of Eq. (10), 𝑅𝑇𝒟
𝑀 = 𝑅𝒟

𝑀 ∘ 𝑅𝒟
𝑀 ∘ … ∘ 𝑅𝒟

𝑀
⏟          

𝑁

 can be 

expressed as follows 

𝑅𝑇𝒟
𝑀 =

(

 
𝑅(𝑁)
𝑁−1⋁(𝑅(𝑘)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2−𝑘)

𝑁−1 )

𝑁−2

𝑘=0

 𝑅(𝑁−1)
𝑁−1 ∘ 𝑟𝑁

𝑟𝑁
𝑇 ∘ 𝑅(𝑁−1)

𝑁−1 1 )

 , 

where 𝑅(𝑘)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2−𝑘)
𝑁−1 , 𝑘 = 0,… ,𝑁 − 2, cannot 

satisfy the symmetry but ⋁ (𝑅(𝑘)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2−𝑘)
𝑁−1 )𝑁−2

𝑘=0  is a 

symmetrical matrix. Based on the meaning of operator  ∨, we 

have  

⋁(𝑅(𝑘)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2−𝑘)
𝑁−1 )

𝑁−2

𝑘=0

= 𝑅(𝑁−2)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2)
𝑁−1 . 

So, this lemma is proved.                                                          □ 

Lemma 2 demonstrates the structure of the 𝑅𝑇𝒟
𝑀  of 𝑆̅ from 

the perspective of the block matrix and provides a useful way 

to prove Theorem 3. 

Theorem 3: Given a set 𝑆 = {A1, A2, … , A𝑁} and a fuzzy set 

𝑆̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ } on 𝑆, if the fuzzy relations matrix 𝑅𝒟
𝑀 of 𝑆̅ 

has 𝑁(𝑁 − 1) 2⁄ + 1 different elements, then 𝑅𝑇𝒟
𝑀  of 𝑆̅ only has 

𝑁 different elements: 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑁−1 < 𝑟𝑁 = 1. 

Proof: We use mathematical induction to prove this theorem 

based on Lemma 2.  

1) First, when 𝑁=2, obviously, 𝑅𝑇𝒟
𝑀  only has 2 different 

elements 𝑟1
2 < 𝑟2

2 = 1; 

2) Then, we assume that the 𝑅𝑁−1 (the 𝑅𝒟
𝑀 of the subset 

𝑆𝑁−1̅̅ ̅̅ ̅̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁−1̅̅ ̅̅ ̅̅ ̅}) has (𝑁 − 1)(𝑁 − 2) 2⁄ +1 different 

elements and 𝑅(𝑁−2)
𝑁−1  (the 𝑅𝑇𝒟

𝑀  of the subset 𝑆𝑁−1̅̅ ̅̅ ̅̅ ) only has 𝑁 −

1 elements: 𝑟1
𝑁−1 < 𝑟2

𝑁−1 < ⋯ < 𝑟𝑁−1
𝑁−1 = 1. 

3) Based on Lemma 2, we have 

𝑅𝑇𝒟
𝑀 = (

𝑅(𝑁)
𝑁−1⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ) 𝑅(𝑁−1)
𝑁−1 ∘ 𝑟𝑁

𝑟𝑁
𝑇 ∘ 𝑅(𝑁−1)

𝑁−1 1
) 

and we know 𝑅(𝑁)
𝑁−1 only has 𝑁 − 1 elements. So, i) we first 

need to prove 𝑅(𝑁)
𝑁−1 ⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ) only has 𝑁 −

1 different elements, then, ii) we need to prove one of the 

elements in 𝑅(𝑁−1)
𝑁−1 ∘ 𝑟𝑁 do not exist in 𝑅(𝑁)

𝑁−1 ⋁(𝑅(𝑁−2)
𝑁−1 ∘ 𝑟𝑁 ∘

𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ).  

i) We use 𝑟𝑖𝑗
(𝑁1)

 to express elements in 𝑅(𝑁−2)
𝑁−1  and 𝑅(𝑁)

𝑁−1 

(𝑅(𝑁−2)
𝑁−1 = 𝑅(𝑁)

𝑁−1), and  use 𝑟𝑖𝑗
(𝑟𝑟)

 to express elements in 𝑟𝑁 ∘ 𝑟𝑁
𝑇 , 

and use 𝑟𝑖𝑗
(𝑅𝑟𝑅)

 to express elements in 𝑅(𝑁−2)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2)
𝑁−1 . 

Then, we have  

𝑟𝑖𝑗
(𝑅𝑟𝑅) =⋁⋁ 𝑟𝑖𝑘

(𝑁1) ∧ 𝑟𝑘𝑘1
(𝑟𝑟) ∧

𝑁−1

𝑘1=1

𝑁−1

𝑘=1

𝑟𝑘1𝑗
(𝑁1),               (11) 

which means that we need to consider if 𝑟𝑖𝑗
(𝑅𝑟𝑅)

 is greater than 

𝑟𝑖𝑗
(𝑁1)

. Without loss of generality, we select elements (more than 

2) equaling 𝑟𝑚
𝑁−1 (𝑚 < 𝑁 − 1) as examples: 𝑟𝑖1𝑗1

(𝑁1) = 𝑟𝑖2𝑗1
(𝑁1) =

⋯ = 𝑟𝑖𝑡𝑗1
(𝑁1) = 𝑟𝑖𝑡𝑗2

(𝑁1) = ⋯ = 𝑟𝑖𝑡𝑗𝑧
(𝑁1) = 𝑟𝑚

𝑁−1 (because 𝑅𝒟
𝑀 of 𝑆̅ has 

𝑁(𝑁 − 1) 2⁄ + 1 different elements, there are two of the same 

elements in the same rows or columns of 𝑅𝑇𝒟
𝑀 ). Based on eq. 

(11), if one element of 𝑟𝑖𝑗
(𝑁1)

 equaling 𝑟𝑚
𝑁−1 is lower than 𝑟𝑖𝑗

(𝑅𝑟𝑅)
, 

then we have 

𝑟𝑖1𝑗1
(𝑅𝑟𝑅) > 𝑟𝑚

𝑁−1, 𝑟𝑖2𝑗1
(𝑅𝑟𝑅) > 𝑟𝑚

𝑁−1, … 𝑟𝑖𝑡𝑗1
(𝑅𝑟𝑅) > 𝑟𝑚

𝑁−1,       (12) 

𝑟𝑖𝑡𝑗2
(𝑅𝑟𝑅) > 𝑟𝑚

𝑁−1, … 𝑟𝑖𝑡𝑗𝑧
(𝑅𝑟𝑅) > 𝑟𝑚

𝑁−1,                   (13) 

meaning that all elements of 𝑟𝑖𝑗
(𝑁1)

 equaling 𝑟𝑚
𝑁−1 will be lower 

than 𝑟𝑖𝑗
(𝑅𝑟𝑅)

 and will be replaced with one element of 𝑟𝑁 and 

elements of 𝑅(𝑁−2)
𝑁−1  in 𝑅(𝑁)

𝑁−1 ⋁(𝑅(𝑁−2)
𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁

𝑇 ∘ 𝑅(𝑁−2)
𝑁−1 ). 

Thus, 𝑅(𝑁)
𝑁−1 ⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ) still has 𝑁 − 1 

different elements (If there only are two elements equaling 
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𝑟𝑚
𝑁−1, they only can be replaced with an element of 𝑟𝑁, meaning 

that 𝑅(𝑁)
𝑁−1 ⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ) still has 𝑁 − 1 different 

elements). 

ii) Because 𝑅𝒟
𝑀 of 𝑆̅ has 𝑁(𝑁 − 1) 2⁄ + 1 different 

elements, there is only one maximum element in 𝑟𝑁 and this 

maximum element will only exist in the diagonal of  𝑟𝑁 ∘ 𝑟𝑁
𝑇, 

denoted by 𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

. Based on the max-min operator ∘, it is easy 

to know that the 𝑘𝑚
𝑡ℎ element of 𝑅(𝑁−1)

𝑁−1 ∘ 𝑟𝑁 is  𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

. Then, we 

prove that  𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

 does not exist in 𝑅(𝑁)
𝑁−1 ⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘

𝑅(𝑁−2)
𝑁−1 ).  

If ∃𝑖, 𝑗, 𝑠. 𝑡. 𝑟𝑖𝑗
(𝑅𝑟𝑅) = 𝑟𝑘𝑚,𝑘𝑚

(𝑟𝑟)
, we have 

𝑟𝑖𝑗
(𝑅𝑟𝑅) = 𝑟𝑖𝑘𝑚

(𝑁1) ∧ 𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟) ∧ 𝑟𝑘𝑚𝑗

(𝑁1),                  (14) 

meaning that 𝑟𝑖𝑘𝑚
(𝑁1) ∧ 𝑟𝑘𝑚𝑗

(𝑁1) > 𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

. Because  

𝑟𝑖𝑗
(𝑁1) =⋁𝑟𝑖𝑘

(𝑁1) ∧ 𝑟𝑘𝑗
(𝑁1)

𝑁−1

𝑘=1

≥ 𝑟𝑖𝑘𝑚
(𝑁1) ∧ 𝑟𝑘𝑚𝑗

(𝑁1),            (15) 

we have 𝑟𝑖𝑗
(𝑁1) > 𝑟𝑖𝑗

(𝑅𝑟𝑅) = 𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

, which means that 𝑟𝑘𝑚,𝑘𝑚
(𝑟𝑟)

 

does not exist in 𝑅(𝑁)
𝑁−1 ⋁(𝑅(𝑁−2)

𝑁−1 ∘ 𝑟𝑁 ∘ 𝑟𝑁
𝑇 ∘ 𝑅(𝑁−2)

𝑁−1 ). 

Based on i) and ii), we prove that 𝑅𝑇𝒟
𝑀  has only 𝑁 different 

elements. Combining 1), 2) and 3), this theorem is proved.      □ 

Theorem 3 demonstrates an important property for a fuzzy 

equivalence matrix and derives Lemma 3 and Theorem 4. 

Lemma 3: Given a fuzzy set 𝑆̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ }, if the 

fuzzy relations matrix 𝑅𝒟
𝑀 of 𝑆̅ has 𝑁(𝑁 − 1) 2⁄ + 1 different 

elements, then, for 𝑅𝑇𝒟
𝑀  of 𝑆̅, we have 

𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) = 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑖−1)) + 1, 𝑖 = 2,… , 𝑁.   (16) 

Proof: Because 𝑅𝑇𝒟
𝑀 (𝑟𝑖−1) ≥ 𝑅𝑇𝒟

𝑀 (𝑟𝑖) holds for 𝑟𝑖 , 𝑖 =

2, … , 𝑁, the element “1” of 𝑅𝑇𝒟
𝑀 (𝑟𝑖) will change to “0” when 𝑖 

increasing, meaning that 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑖−1)) 

holds. Then, we will prove that 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) is greater than 

𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖−1)).  

We use 𝑟𝑙𝑠
(𝑖)

 to represent the element in the 𝑖𝑡ℎ row and 𝑠𝑡ℎ 

column of 𝑅𝑇𝒟
𝑀 (𝑟𝑖), and 𝑟𝑙∗

(𝑖)
 to represent elements in 𝑖𝑡ℎ of 

𝑅𝑇𝒟
𝑀 (𝑟𝑖). For a specific 𝑖, we assume 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑖−1)) = 𝑘  

and ∀𝑙1, 𝑙2 ∈ 𝐼𝑡
(𝑖−1), 𝑟𝑙1∗

(𝑖−1) = 𝑟𝑙2∗
(𝑖−1)

, where  𝐼𝑡
(𝑖−1)

 is a set to 

collect indicators of same rows of  𝑅𝑇𝒟
𝑀 (𝑟𝑖−1) and 𝑡 = 1, 2, … , 𝑘. 

Without loss of generality, we assume that 𝑟𝑙𝑠
(𝑖−1) = 1 but 𝑟𝑙𝑠

(𝑖) =

0 and analyze the value of 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)).  

Because the reflexivity of 𝑅𝑇𝒟
𝑀 (𝑟𝑖−1), we know ∃𝑡0 𝑠. 𝑡. 

∀𝑙1, 𝑙2 ∈ 𝐼𝑡0
(𝑖−1), 𝑟𝑙1𝑙2

(𝑖−1) = 1,                         (17) 

and 𝑙 ∈ 𝐼𝑡0
(𝑖−1), 𝑠 ∈ 𝐼𝑡0

(𝑖−1)
. This means 𝑟𝑙∗

(𝑖) ≠ 𝑟𝑠∗
(𝑖)

 (because 

𝑟𝑙𝑠
(𝑖) = 0 ≠ 1 = 𝑟𝑠𝑠

(𝑖)
). So, 𝐼𝑡0

(𝑖−1)
 will be divided into two sets 

when 𝑟𝑖−1 is replaced with 𝑟𝑖, meaning that 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) >

𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖−1)). 

Based on Theorem 3, we know 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) at most has 

𝑁 values: 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟1)), …, 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑁)). Since 

𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) > 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑖−1)) and 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) ≤ 𝑁, 

we have 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) = 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟

𝑀 (𝑟𝑖−1)) + 1.                 □ 

Theorem 4: Given a fuzzy set 𝑆̅ = {A1̅̅ ̅, A2̅̅ ̅, … , A𝑁̅̅ ̅̅ }, if the 

fuzzy relations matrix 𝑅𝒟
𝑀 of 𝑆̅ has 𝑁(𝑁 − 1) 2⁄ + 1 different 

elements and 𝛼 ∈ (𝑟𝑖−1, 𝑟𝑖], then 𝑆̅ will be clustered as 𝑖 
categories, where {𝑟𝑖 , 𝑖 = 1, 2… ,𝑁} is the set of 𝑁 different 

elements of 𝑅𝑇𝒟
𝑀  of 𝑆̅ and 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑁−1 < 𝑟𝑁 = 1. 

Proof: When 𝛼 ∈ (𝑟𝑖−1, 𝑟𝑖], 𝑅𝑇𝒟
𝑀 (𝛼) of 𝑆̅ is equal to 𝑅𝑇𝒟

𝑀 (𝑟𝑖). 

Based on Lemma 3, we know 𝑟𝑎𝑛𝑘(𝑅𝑇𝒟
𝑀 (𝑟𝑖)) = 𝑖, which 

means that 𝑆̅ will be clustered as 𝑖 categories 𝐼𝑡
(𝑖)

, where 𝐼𝑡
(𝑖−1)

 

is a set to collect indicators of same rows of  𝑅𝑇𝒟
𝑀 (𝑟𝑖−1) and 

∀𝑡1, 𝑡2 ∈ {1, 2, … , 𝑖}, 𝐼𝑡1
(𝑖) ∩ 𝐼𝑡2

(𝑖) = ∅ and ⋃𝐼𝑡
(𝑖) = {1, 2, … , 𝑁}. □ 

Theorem 4 demonstrates a significant property for fuzzy 

equivalence: the number of clusters is decided by the value of 

𝑟𝑖, which means that we can use 𝑟𝑖 of two domains to represent 

how many clusters both domains have when two domains are 

applied by the same 𝛼. 

B. Shared fuzzy equivalence relations (SFER)  

Based on subsection A, the aim of the SFER is to let two 

domains 𝑆1 and 𝑆2 have almost the same 𝑟𝑖 , 𝑖 = 1, … ,𝑀 =

min(𝑁1, 𝑁2), denoted by 𝑟𝑖
𝑆1 for 𝑆1 and 𝑟𝑖

𝑆2 for 𝑆2. Formally, 

we define a cost function 𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙
𝑆1, 𝜌𝑘

𝑆2 ) to express the 

divergence between 𝑟𝑖
𝑆1 and 𝑟𝑖

𝑆2, which is shown as follows. 

𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙
𝑆1, 𝜌𝑘

𝑆2 ) = ∑ (𝑟𝑖
𝑆1(𝑆1, 𝜌𝑙

𝑆1) − 𝑟𝑖
𝑆2(𝑆2, 𝜌𝑘

𝑆2))
2

𝑀−1

𝑖=1

, (18) 

where 𝜌𝑙
𝑆1 is the parameter vector for elements in 𝑆1 and 𝜌𝑘

𝑆2 is 

the parameter vector for elements in 𝑆2 (parameters of the 

triangular membership function). Thus, the SFER aims to 

minimize the 𝐉(𝑆1, 𝑆2, 𝜌𝑙
𝑆1, 𝜌𝑘

𝑆2 ) by tuning 𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2, 

expressed by 

min
𝜌𝑙
𝑆1,𝜌𝑘

𝑆2
𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙

𝑆1, 𝜌𝑘
𝑆2 ) 

                   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜌𝑙
𝑆1 > 0,                                             (19) 

 𝜌𝑘
𝑆2 > 0.          

If the cost function 𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙
𝑆1, 𝜌𝑘

𝑆2 ) is approaching 0, 𝑟𝑖
𝑆1 

is almost same as 𝑟𝑖
𝑆2, which means that domains 𝑆1 and 𝑆2 will 

have the same number of clusters when applying the same 𝛼 to 

two domains (Fig. 2-(b)). 

C. Learning for SFER 

To learn the best 𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2, we first consider how to 

minimize (𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
, where 1 ≤ 𝑖0 ≤ 𝑀 − 1 and 𝑟𝑖0

𝑆1 <

𝑟𝑖0+1
𝑆1  and 𝑟𝑖0

𝑆2 < 𝑟𝑖0+1
𝑆2 . Because of the nature of max-min 

operator, 𝑟𝑖0
𝑆1 equals one element in 𝑅𝒟

𝑀 of 𝑆1 and 𝑟𝑖0
𝑆2 equals 

one element in 𝑅𝒟
𝑀 of 𝑆2, which means 

𝑟𝑖0
𝑆1 = 𝑒𝑥𝑝 (−

1
𝑛
𝑑 (A𝑙0 , A𝑙0′ ) +

1
4
|𝜌𝑙0
𝑆1 − 𝜌

𝑙0
′
𝑆1|

2𝜎2
),     (20) 

𝑟𝑖0
𝑆2 = 𝑒𝑥𝑝 (−

1
𝑛
𝑑 (B𝑘, B𝑘0′) +

1
4
|𝜌𝑘0
𝑆2 − 𝜌

𝑘0
′
𝑆2|

2𝜎2
).     (21) 

It is obvious that 𝑟𝑖0
𝑆1 is related to |𝜌𝑙0

𝑆1 − 𝜌
𝑙0
′
𝑆1|, so the 

constrained conditions of 𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙
𝑆1, 𝜌𝑘

𝑆2 ) do not affect the 

value of 𝐉𝟏. Thus, we can define a new optimization problem 

(no constrained condition) related to  𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2 as follows: 
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min
𝜌𝑙
𝑆1,𝜌𝑘

𝑆2
𝐉𝟏(𝑆1, 𝑆2, 𝜌𝑙

𝑆1, 𝜌𝑘
𝑆2 ) .                       (22) 

Then, we can obtain the gradients of 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2 with 

respect to  (𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
: 

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌𝑙0
𝑆1 =

−2(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
𝑟𝑖0
𝑆1 |𝜌𝑙0

𝑆1 − 𝜌
𝑙0
′
𝑆1|

2𝜎2𝑠𝑖𝑔𝑛 (𝜌𝑙0
𝑆1 − 𝜌

𝑙0
′
𝑆1)

,        (23) 

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌
𝑙0
′
𝑆1 =

2(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
𝑟𝑖0
𝑆1 |𝜌𝑙0

𝑆1 − 𝜌
𝑙0
′
𝑆1|

2𝜎2𝑠𝑖𝑔𝑛 (𝜌𝑙0
𝑆1 − 𝜌

𝑙0
′
𝑆1)

,         (24) 

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌𝑘0
𝑆2 =

−2(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
𝑟𝑖0
𝑆1 |𝜌𝑘0

𝑆2 − 𝜌
𝑘0
′
𝑆2|

2𝜎2𝑠𝑖𝑔𝑛 (𝜌𝑘0
𝑆2 − 𝜌

𝑘0
′
𝑆2)

,       (25) 

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌
𝑘0
′
𝑆2 =

−2(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2
𝑟𝑖0
𝑆1 |𝜌𝑘0

𝑆2 − 𝜌
𝑘0
′
𝑆2|

2𝜎2𝑠𝑖𝑔𝑛 (𝜌𝑘0
𝑆2 − 𝜌

𝑘0
′
𝑆2)

.    (26) 

Inspired by incremental gradient descent, for each 𝑟𝑖0
𝑆1, we can 

optimize 𝜌𝑙0
𝑆1 and 𝜌

𝑙0
′
𝑆1 once using the following equations. 

𝜌𝑙0
𝑆1 = 𝜌𝑙0

𝑆1 − 𝜂
𝜕(𝑟𝑖0

𝑆1 − 𝑟𝑖0
𝑆2)

2

𝜕𝜌𝑙0
𝑆1 ,                      (27) 

𝜌
𝑙0
′
𝑆1 = 𝜌

𝑙0
′
𝑆1 − 𝜂

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌
𝑙0
′
𝑆1 .                      (28) 

Similarly, 𝜌𝑘0
𝑆2 and 𝜌

𝑘0
′
𝑆2 are optimized once using the following 

equations. 

𝜌𝑘0
𝑆2 = 𝜌𝑘0

𝑆2 − 𝜂
𝜕(𝑟𝑖0

𝑆1 − 𝑟𝑖0
𝑆2)

2

𝜕𝜌𝑘0
𝑆2 ,                     (29) 

𝜌
𝑙0
′
𝑆1 = 𝜌

𝑙0
′
𝑆1 − 𝜂

𝜕(𝑟𝑖0
𝑆1 − 𝑟𝑖0

𝑆2)
2

𝜕𝜌
𝑘0
′
𝑆2 .                     (30) 

So, using 𝑟𝑖0
𝑆1 and 𝑟𝑖0

𝑆2, we can optimize 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2 

once (no iterations). This means 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2 can be 

optimized 𝑀 − 1 times using different 𝑟𝑖0
𝑆1 and 𝑟𝑖0

𝑆2, where 1 ≤

𝑖0 ≤ 𝑀 − 1. With the optimized 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2, 𝑅𝒟

𝑀 of 

𝑆1 and 𝑅𝒟
𝑀 of 𝑆2 will be updated. Then 𝜌𝑙0

𝑆1, 𝜌
𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2 

will be optimized 𝑀 times using different 𝑟𝑖0
𝑆1 and 𝑟𝑖0

𝑆2 again. 

Within limited iterations (or reaching a termination condition), 

we can obtain the optimized 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2. Based on 

these procedures, Algorithm 1 is designed to optimize 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 

𝜌𝑘0
𝑆2 and 𝜌

𝑘0
′
𝑆2 as follows. 

Algorithm 1. Learning parameters for SFER 

    Input: 𝑆1, 𝑆2 

    Parameter: IterM 

1 Randomly generate 𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2 

2 For 𝑖 = 1: 𝐼𝑡𝑒𝑟𝑀 

3  Calculate 𝑅𝑇𝒟
𝑀  of 𝑆1 and 𝑆2 (based on 𝜌𝑙

𝑆1 and 𝜌𝑘
𝑆2); 

4  Extract 𝑟𝑖0
𝑆1 and 𝑟𝑖0

𝑆2 from 𝑅𝑇𝒟
𝑀  of 𝑆1 and 𝑆2; 

5  For 𝑖0 = 1:𝑀 − 1 

6   Find 𝑙0 and 𝑙0
′  such that 𝑅𝒟

𝑀(𝑙0, 𝑙0
′ ) = 𝑟𝑖0

𝑆1; 

7   Find 𝑘0 and 𝑘0
′  such that 𝑅𝒟

𝑀(𝑘0, 𝑘0
′ ) = 𝑟𝑖0

𝑆2; 

8 

 

  Update 𝜌𝑙0
𝑆1, 𝜌

𝑙0
′
𝑆1, 𝜌𝑘0

𝑆2 and 𝜌
𝑘0
′
𝑆2 using Eqs. (27)-

(30); 

9  end 

10 end 

11 𝜌𝑙
𝑆1 = 𝜌𝑙

𝑆1 +min(𝜌𝑙
𝑆1) + 𝜖; 

12 𝜌𝑘
𝑆2 = 𝜌𝑘

𝑆2 +min 𝜌𝑘
𝑆2 + 𝜖.  

 

In Algorithm 1, lines 11 and 12 ensure that 𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2 are 

more than 0 (𝜖 > 0).  

D. HEUDA via SFER (F-HeUDA) 

In this section, we introduce how to select 𝛼, how to generate 

𝑆𝐶  and how to transfer knowledge from the source domain to 

the target domain. 

After executing Algorithm 1, we obtain 𝑟𝑖0
𝑆1 and 𝑟𝑖0

𝑆2 

generated by the best 𝜌𝑙
𝑆1 and 𝜌𝑘

𝑆2, 𝑖0 = 0,… ,𝑀 − 1. So, the 

intervals of sharing 𝛼 between two domains can be calculated 

(two domains can share the same 𝛼 when 𝛼 is in these intervals). 

These intervals can be expressed as follows: 

[max(𝑟𝑖0
𝑆1, 𝑟𝑖0

𝑆2) ,min(𝑟𝑖0+1
𝑆1 , 𝑟𝑖0+1

𝑆2  )),                (31)  

where 𝑟0
𝑆1 = 𝑟0

𝑆2 = 0 and 𝑟𝑀
𝑆1 = 𝑟𝑀

𝑆2 = 1. We obtain following 

intervals, [0,min(𝑟1
𝑆1, 𝑟1

𝑆2 )), [max(𝑟1
𝑆1, 𝑟1

𝑆2 ) , min(𝑟2
𝑆1, 𝑟2

𝑆2 )), …, 

[max(𝑟𝑀−1
𝑆1 , 𝑟𝑀−1

𝑆2  ) , 1). If the 𝛼, in these intervals, is selected, 𝑆1 

and 𝑆2 have the same number of clusters. Then, we select the 𝛼 

which is in the largest interval as the best 𝛼 (because two 

domains can share most information in this largest interval).  

Remark 2: If we select the 𝛼 ∈ [𝑟𝑖0
𝑆1, 𝑟𝑖0+1

𝑆1 ), we do know 𝑆1 is 

clustered into 𝑖0 + 1 clusters but do not guarantee that 𝑆2 also 

TABLE II 

TRANSFER TASKS IN TWO FIELDS (4 TASKS IN TOTAL) 

Field Source Domain 
Target 

Domain 
Labels 

Task 

Name 

Credit 
Assessment 

(two 

datasets) 

German Credit 
Data 

Australian 

Credit 

Approval 

1: Good G2A 

Australian 

Credit Approval 

German 

Credit Data 
1: Good A2G 

Cancer 

Detection 
(two 

datasets) 

Breast Cancer 
Wisconsin 

(Original) 

dataset 

Breast Cancer 
Wisconsin 

(Diagnostic) 

dataset 

1: 

Maligna
nt 

CO2CD 

Breast Cancer 

Wisconsin 

(Diagnostic) 
dataset 

Breast Cancer 

Wisconsin 

(Original) 
dataset 

1: 
Maligna

nt 

CD2CO 

 

 

TABLE I 
DESCRIPTIONS OF THE FOUR DATASETS 

Field Data Name # of Instances 
# of 

Attributes 

Credit 
Assessment 

(two datasets) 

German Credit 

Data 
1000 24 

Australian Credit 

Approval 
690 14 

Cancer 
Detection 

(two datasets) 

Breast Cancer 

Wisconsin 

(Original) Dataset 

699 9 

Breast Cancer 

Wisconsin 

(Diagnostic) 
Dataset 

569 30 
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has 𝑖0 + 1 clusters. Thus, we need to select 𝛼 belonging to 

[𝑚𝑎𝑥(𝑟𝑖0
𝑆1, 𝑟𝑖0

𝑆2) ,𝑚𝑖𝑛(𝑟𝑖0+1
𝑆1 , 𝑟𝑖0+1

𝑆2  )) to make sure 𝑆1 and 𝑆2 

have 𝑖0 + 1 clusters. 

Based on the SFER (with the best 𝛼), both 𝑆1 =

{A1, A2, … , A𝑁1} and 𝑆2 = {B1, B2, … , B𝑁2} can be clustered as 

𝑁𝑐 clusters, such as  

𝑆1 = {{A1, A2}1, {A3, A4, A5 }2, … , {A𝑁1}𝑁𝑐
},        (32) 

𝑆2 = {{B1}1, {B2, B3, B4 }2, … , {B𝑁1−1, B𝑁1}𝑁𝑐
}.    (33) 

Next, we generate the latent features of the two domains using 

an addition operator, such as 

𝑆1
𝑙𝑎𝑡𝑒𝑛𝑡 = {A1 + A2, A3 + A4 + A5, … , A𝑁1},       (34) 

𝑆2
𝑙𝑎𝑡𝑒𝑛𝑡 = {B1, B2 + B3 + B4, … , B𝑁1−1 + B𝑁1}.       (35) 

Then, the standard score is used to normalize each latent feature 

and we have 

𝑆1
𝑐𝑜𝑚𝑚𝑜𝑛 = {𝑓(A1 + A2), 𝑓(A3 + A4 + A5), … , 𝑓(A𝑁1)},    (36) 

𝑆2
𝑐𝑜𝑚𝑚𝑜𝑛 =  {𝑓(B1), 𝑓(B2 + B3 + B4), … , 𝑓( B𝑁1−1 + B𝑁1)}. (37) 

where 𝑓(∙) represents the standard score function. Thus, we 

obtain the common feature set 𝑆𝑐 = {C1, C2, … , C𝑁𝑐}, C𝑖 ∈ ℝ
𝑛𝑐, 

𝑛𝑐 = 𝑛1 + 𝑛2 (without loss of generality, the former 𝑛1 

instances in 𝑆𝑐 comes from source domain). Finally, we can use 

the labeled information of 𝑆𝑐 (knowledge from the source 

domain) to label the unlabeled information of 𝑆𝑐 (unlabeled 

target domain) using a support vector machine (SVM). 

V. EXPERIMENTS 

In this section, we use four real datasets to test the proposed 

F-HeUDA model and analyze the convergence of Algorithm 1 

and how 𝛼 influences the model’s performance. 

A. Dataset description and parameters setting 

To validate the effectiveness of the proposed model on small 

datasets, we select four datasets from the UCI Machine 

Learning Repository (http://archive.ics.uci.edu/ml/index.html). 

The details of these datasets are provided in Table I. For each 

dataset, we generate four transfer tasks, as shown in Table II. 

Each task is described in detail as follows: 

1) Task 1- G2A: Assume that the German data is labeled and 

the Australian data is unlabeled and has far fewer instances than 

the German data. Label “1” means “good credit” and label “2” 

means “bad credit”. This task aims to answer the question: “Can 

we use knowledge from German credit records to label 

unlabeled Australian data (small dataset)?” 

2) Task 2-A2G: Assume that the Australian data is labeled 

and the German data is unlabeled and has far fewer instances 

than the Australian data. Label “1” means “good credit” and 

label “2” means “bad credit”. This task aims to answer the 

question: “Can we use knowledge from Australian credit 

 
Fig. 3.  The performance of each model (mean accuracy and standard deviation) on 4 tasks. In each subfigure, the minimum mean accuracy is set as 0.4. 
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records to label unlabeled German data (small dataset)?” 

3) Task 3-CO2CD: Assume that in the Breast Cancer 

Wisconsin (Original) dataset (CO in Table II) “1” represents 

“malignant” and “0” represents “benign”. Another unlabeled 

dataset related to breast cancer also exists but has far fewer 

instances than the CO dataset. This task aims to answer the 

question: “Can we use the knowledge from CO to label 

‘malignant’ in the unlabeled small dataset?” 

4) Task 4-CD2CO: Assume that in the Breast Cancer 

Wisconsin (Diagnostic) dataset (CD in Table II) “1” represents 

“malignant” and “0” represents “benign”. Another unlabeled 

dataset related to breast cancer also exists. This task aims to 

answer the question: “Can we use the knowledge from CD to 

label ‘malignant’ in the small unlabeled dataset?” 

For the Algorithm 1, this paper sets IterM as 1000, 𝜎 as 3 and 

𝜂 as 0.5. For SVM, we adopt LIBSVM with default parameters: 

the SVM type is C-SVM with C equaling to 1, kernel function 

is radial basis function with gamma equaling to 
1

# 𝑜𝑓 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
, 

epsilon, the tolerance of termination criterion, is set as 0.001. 

B. Prediction performance  

In this section, we describe the prediction performance of the 

proposed model and benchmarks. We select two non-transfer 

models, A1 and CM, as baselines and three transfer models, 

dimension reduction GFK (DG), KCCA [26], random linear 

monotonic maps GFK (RLG) [27], GLG [27] as the main 

benchmarks. The A1 model labels all instances of a target 

domain with 1 and the CM model clusters instances of a target 

domain and gives each instance a pseudo label (clustering 

model is the fuzzy c-means model with ). The DG model is 

based on dimension reduction technology, introduced in [27] as 

a benchmark of HeUDA models, and KCCA is based on 

canonical correlation analysis and requires both domains to 

have the same number of instances. The RLG and GLG models 

are proposed in our previous work. The former does not require 

both domains to have the same number of instances but the 

latter requires this condition. To test these models’ prediction 

performance when a target domain is a small dataset, we carried 

out experiments when 𝑛2 (the number of instances in a target 

domain) is 40, 100, 200, 300, 400. For each model, we carried 

out the experiments 20 times to obtain reliable results.  

The results, as illustrated in Fig. 3, clearly show the 

prediction performance of each model. From this figure, it is 

apparent that the proposed model outperforms the others when 

𝑛2 is small. The CM and DG models have lower mean accuracy 

and higher standard deviation than the other models in most 

cases. For the KCCA model, its performance increases when 𝑛2 

increases but its accuracy is always lower than RLG, GLG and 

F-HeUDA. This is because the KCCA model cannot reliably 

transfer knowledge from the source domain to the target 

domain. The RLG model has better performance than the GLG 

model when 𝑛2 is 40 and 100 in some cases, but it is still 

unstable when 𝑛2 increases. The GLG model has good 

performance when 𝑛2 increases but it cannot guarantee reliable 

results when 𝑛2 is small (see task G2A).  From Fig. 3, the 

following results can be observed. 

1) The KCCA model has a worse performance than non-

transfer models in some cases; 

2) The RLG, GLG and F-HeUDA models have more stable 

results than the non-transfer models and DG and KCCA; 

3) Compared to RLG and GLG, the proposed model has a 

better performance when the number of instances in the target 

domain is small (<200); 

4) Although the GLG model is worse than the proposed 

model when 𝑛2 is small, the performance of the GLG model 

improves when 𝑛2 increases; 

5) When 𝑛2 increases, the performance of the proposed 

model approaches the performance of the GLG model. 

Table III shows the overall prediction performance of each 

model (averaging the mean accuracy of each model when 𝑛2 is 

40, 100, 200, 300, 400). It is apparent that the proposed model 

is better than the benchmarks. The proposed model needs much 

less running time than the GLG model: the F-HeUDA takes 16 

seconds to label 400 instances of the target domain while the 

TABLE III 
THE OVERALL PERFORMANCE OF EACH MODEL ON FOUR TASKS 

Tasks A1 CM DG KCCA RLG GLG F-HeUDA 

A2G 50.00% 49.15% 51.48% 50.01% 58.46% 58.98% 59.74% 

G2A 50.00% 50.75% 47.02% 51.52% 72.10% 72.12% 75.38% 

CD2CO 50.00% 22.04% 19.54% 65.00% 96.59% 96.57% 96.93% 

CO2CD 50.00% 23.40% 26.96% 55.24% 87.94% 87.98% 88.51% 

 

 
TABLE IV 

THE OVERALL STANDARD DEVIATION OF EACH MODEL ON FOUR TASKS 

Tasks A1 CM DG KCCA RLG GLG F-HeUDA 

A2G - 6.43% 3.49% 6.17% 4.83% 4.07% 4.99% 

G2A - 25.78% 5.37% 10.45% 6.70% 8.52% 3.90% 

CD2CO - 20.29% 12.12% 14.65% 1.37% 1.65% 1.33% 

CO2CD - 15.76% 8.65% 7.88% 2.45% 2.46% 2.23% 
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GLG model needs 107 seconds to finish the same work with the 

proposed model, which means that the proposed model is still a 

potential choice even when 𝑛2 is a large number. Except for 

accuracy, this section also discusses the stability of each model 

using standard deviation. The mean overall standard deviation 

of each model is listed in Table IV. From Table III and Table 

IV, we can obtain following results. 

1) The F-HeUDA model is the most stable model for three 

tasks: G2A, CD2CO and CO2CD; 

2) For tasks CD2CO and CO2CD, RLG, GLG and F-HeUDA 

models have much better performance in terms of stability than 

the other models; 

3) The KCCA model is the most unstable model among DG, 

KCCA, RLG, GLG and F-HeUDA, which means that the 

KCCA model experiences difficulty in correctly transferring 

knowledge from the source domain to the target domain; 

4) When 𝑛2 is small, the GLG model becomes unstable, 

mainly because the GLG model only uses a few instances of the 

source domain (the transferable knowledge of the GLG model 

is limited by 𝑛2); 

5) Although the RLG model uses all instances of the source 

domain, its random map nature limits its ability to obtain good 

feature representation. 

C. Convergence of learning algorithm  

This section discusses the convergence of the learning 

algorithm for the parameters of the SFER. Figure 4 illustrates 

the convergence of Algorithm 1 on four tasks when the target 

domain has 400 instances. It is apparent that the proposed 

algorithm can effectively optimize the parameters of SFER. 

From subfigures Fig. 4-(e)-(h), we can see that the two domains 

have almost the same 𝑟𝑖 after optimizing SFER, which means 

that two domains can share almost every 𝛼 ∈ [0, 1] (like Fig. 2-

(b)). For a different task, Algorithm 1 has a different 

performance. For example, for 1000 iterations, the G2A and 

A2G tasks have fewer errors than the CD2CO and CO2CD 

tasks, mainly because the divergence of the number of features 

of the CD and CO datasets is greater than that of the German 

and Australian datasets. This indicates that for a high 

divergence task (divergence of the number of features of two 

domains), the IterM should be set as a larger number to ensure 

the performance of Algorithm 1. 

TABLE V 

THE PREDICTION PERFORMANCE OF F-HEUDA FOR 𝛼-CUT DECISION MAKING 

Tasks 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.9 

A2G 59.90%±4.19% 59.05%±3.73% 62.35%±4.53% 60.85%±4.67% 58.30%±5.99% 

G2A 74.20%±5.55% 75.80%±4.84% 75.65%±4.17% 73.55%±9.17% 56.75%±15.33% 

CD2CO 96.60%±1.50% 97.40%±1.31% 96.85%±1.50% 97.00%±1.41% 95.00%±2.70% 

CO2CD 89.50%±2.98% 88.70%±2.68% 91.40%±2.56% 92.15%±3.83% 90.75%±3.77% 

 

 

 
Fig. 4.  The convergence of Algorithm 1 on four tasks. Subfigures (a)-(d) illustrate the value of the cost function 𝐉𝟏 and subfigures (e)-(f) illustrate the 𝑟𝑖 of 𝑅𝑇𝒟

𝑀  
of the source domain and the target domain. 
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D. “𝛼 − 𝑐𝑢𝑡” decision making   

When Algorithm 1 has optimized the parameters of the 

SFER, two domains can apply the same 𝛼 to obtain the same 

number of clusters, which provides a way to transfer knowledge 

from the source domain to the target domain. In section IV-D, 

we propose to adopt the 𝛼 which is in the largest interval as the 

best 𝛼 because two domains can share the most information in 

the largest interval. However, the selection of 𝛼 is actually a 

decision-making issue (different users may select different 𝛼 

based on their requirements), so it is necessary to discuss how 

the selection of 𝛼 influences the performance, which provides 

another way to analyze the SFER model. In this section, we let 

the number of instances of the target domain be 100 and test 

how the prediction performance changes when 𝛼 is set as 0.1, 

0.3, 0.5, 0.7 and 0.9. Similarly, we demonstrate the results on 

four tasks and each experiment is carried out 20 times. 

Table V gives the detailed prediction performance of F-

HeUDA when 𝛼 changes on each task. First, we analyze the 

relationship between the 𝛼 selected by the F-HeUDA and the 

best 𝛼 shown in Table V. 1) For task A2G, the 𝛼 selected by the 

F-HeUDA is around 0.6112 (after running the experiment 20 

times) and Table V shows that the best 𝛼 is around 0.5. 2) For 

task G2A, the F-HeUDA selects 𝛼 as 0.2674 and Table V shows 

that the best 𝛼 is around 0.3. 3) For task CD2CO, the 𝛼 selected 

by the F-HeUDA is around 0.3729 and the best 𝛼 shown in 

Table V is around 0.3. 4) For task CO2CD, the F-HeUDA 

selected 0.4689 as the 𝛼 and Table V shows that the best 𝛼 is 

around 0.7. Based on these results and Table V, we can 

conclude the following:  

1) Except for task CO2CD, the 𝛼 selected by the F-HeUDA 

is near the best 𝛼 as shown in Table V;  

2) When 𝛼 lies in the interval [0.3 0.7], the F-HeUDA model 

obtains a better performance; 

3) When 𝛼 increases, the standard deviation of the proposed 

model is higher, especially for task G2A. 

These results demonstrate that the best 𝛼 will not be near to 

extreme numbers (such as 0 or 1), which is consistent with 

normal decision-making scenarios (extreme decisions rarely 

occur). So, the F-HeUDA is a suitable model for decision 

making and its method of automatically selecting 𝛼 is effective 

and accurate.  

VI. CONCLUSION AND FUTURE STUDIES 

 In this paper, we applied fuzzy equivalence relations into 

heterogeneous unsupervised domain adaptation, the most 

challenging issue in the field, through developing the F-

HeUDA model. We first propose a metric 𝒟 on an n-

dimensional fuzzy space ℱ(ℝ𝑛) and use this metric to measure 

the similarity between two fuzzy vectors and to build the fuzzy 

equivalence relations matrixes of the source domain and the 

target domain. Then, based on two discovered properties of the 

fuzzy equivalence relations, we propose the SFER model which 

lets two domains share the same 𝛼 and obtain the same number 

of clustering categories. Eventually, through these clustering 

categories, knowledge from the source domain is successfully 

transferred to the target domain where two domains have a 

different number of instances. This paper shows the potentiality 

of fuzzy technologies to address the HeUDA issues and outlines 

a new way (like the SFER) to obtain common representations 

of two different domains using fuzzy technologies. 

Compared to existing HeUDA models, the proposed F-

HeUDA model overcomes the drawbacks of CCA and the 

Grassmann manifold (both need two domains that have the 

same number of instances) and works well when the target 

domain has very few instances. It means that the proposed 

model is suitable to address the issue of small datasets via 

transferring knowledge from big datasets to small datasets. To 

validate the performance of the proposed model, we selected 

four real datasets to generate four transfer tasks. The prediction 

accuracy and stability of the proposed model are better than 

those of the benchmarks. These results show the superiority of 

the proposed model lies in transferring more knowledge from 

the source domain to the target domain. From the theoretical 

perspective, this paper proves that (𝒟, ℱ(ℝ𝑛)) is a metric space 

and proves two important properties of the fuzzy equivalence 

relations. Both properties are key to the performance of the 

SFER model. 

 This study particularly presents how fuzzy techniques can be 

applied in transfer learning to produce advanced learning 

models. Our future work includes: 1) the automatic selection of 

source domains for a specific target domain by applying the 

metric on the fuzzy geometry; 2) the extension of fuzzy 

equivalence relations based SFER model for multiple domains; 

and 3) development of new F-HeUDA via multiple source 

domains. 

ACKNOWLEDGEMENT 

The work presented in this paper was supported by the 

Australian Research Council (ARC) under Discovery Grant 

DP170101632. 

REFERENCES 

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. 

Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010. 

[2] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer 

learning using computational intelligence: A survey,” Knowledge-

Based Syst., vol. 80, pp. 14–23, 2015. 

[3] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation 

via transfer component analysis,” IEEE Trans. Neural Networks, vol. 

22, no. 2, pp. 199–210, 2011. 

[4] B. Gong, K. Grauman, and F. Sha, “Learning kernels for unsupervised 

domain adaptation with applications to visual object recognition,” Int. 

J. Comput. Vis., vol. 109, no. 1–2, pp. 3–27, 2014. 

[5] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, “Fuzzy 

regression transfer learning in Takagi-Sugeno fuzzy models,” IEEE 

Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1795–1807, 2017. 

[6] M. Xiao and Y. Guo, “Feature space independent semi-supervised 

domain adaptation via kernel matching,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 37, no. 1, pp. 54–66, 2015. 

[7] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong, “Transductive multi-

view zero-shot learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 

37, no. 11, pp. 2332–2345, 2015. 

[8] F. Liu, X. Xu, S. Qiu, C. Qing, and D. Tao, “Simple to Complex 

Transfer Learning for Action Recognition,” IEEE Trans. Image 

Process., vol. 25, no. 2, pp. 949–960, 2016. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, TFS-2017-0634 13 

[9] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang, “Scatter 
component analysis : A unified framework for domain adaptation and 

domain generalization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 

39, no. 7, pp. 1414–1430, 2017. 

[10] N. Courty, R. Flamary, D. Tuia, S. Member, and A. Rakotomamonjy, 

“Optimal transport for domain adaptation,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 39, no. 9, pp. 1853–1865, 2017. 

[11] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, “Granular 

Fuzzy Regression Domain Adaptation in Takagi-Sugeno Fuzzy 

Models,” IEEE Trans. Fuzzy Syst., vol. Accept, 2017. 

[12] Y. Aytar and A. Zisserman, “Tabula Rasa : Model Transfer for Object 

Category Detection,” in Proceedings of the 13th International 

Conference on Computer Vision, 2011, pp. 2252–2259. 

[13] J. Yang, R. Yan, and A. G. Hauptmann, “Cross-domain video concept 

detection using adaptive SVMs,” in Proceedings of the 15th ACM 

International Conference on Multimedia, 2007, pp. 188–197. 

[14] A. Bergamo and L. Torresani, “Exploiting weakly-labeled web images 

to improve object classification : A domain adaptation approach,” in 

Proceedings of the 24th Annual Conference on Neural Information 

Processing Systems, 2010, pp. 181–189. 

[15] J. Hoffman, U. C. B. Eecs, E. Rodner, U. C. B. Eecs, T. Darrell, U. C. 

B. Eecs, J. Donahue, U. C. B. Eecs, and K. Saenko, “Efficient learning 
of domain-invariant image representations,” in Proceedings of the 1st 

International Conference on Learning Representations, 2013, pp. 1–9. 

[16] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for 
unsupervised domain adaptation,” in IEEE Conference on Computer 

Vision and Pattern Recognition, 2012, pp. 2066–2073. 

[17] Y. Shi, L. Angeles, and F. Sha, “Information-theoretical learning of 

discriminative clusters for unsupervised domain adaptation,” in 

Proceedings of the 29th International Conference on Machine 

Learning, 2012, pp. 1079–1086. 

[18] M. Long, J. Wang, Y. Cao, J. Sun, and P. S. Yu, “Deep learning of 

transferable representation for scalable domain adaptation,” IEEE 

Trans. Knowl. Data Eng., vol. 28, no. 8, pp. 2027–2040, 2016. 

[19] A. Gretton, “A kernel two-sample test,” J. Mach. Learn. Res., vol. 13, 

pp. 723–773, 2012. 

[20] R. Gopalan, R. Li, and R. Chellappa, “Unsupervised adaptation across 

domain shifts by generating intermediate data representations,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11, pp. 2288–2302, 

2014. 

[21] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented 

features for supervised and semi-supervised heterogeneous domain 
adaptation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 6, pp. 

1134–1148, 2014. 

[22] B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you 
get: Domain adaptation using asymmetric kernel transforms,” in 

Proceedings of the 24th IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2011, pp. 1785–1792. 

[23] X. Shi, Q. Liu, W. Fan, and P. S. Yu, “Transfer across completely 

different feature spaces via spectral embedding,” IEEE Trans. Knowl. 

Data Eng., vol. 25, no. 4, pp. 906–918, 2013. 

[24] C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using 

manifold alignment,” in Proceedings of the 22nd International Joint 

Conference on Artificial Intelligence, 2011, pp. 1541–1546. 

[25] H. V Nguyen, H. T. Ho, S. Member, and V. M. Patel, “DASH-N : Joint 

hierarchical domain adaptation and feature learning,” IEEE Trans. 

Image Process., vol. 24, no. 12, pp. 5479–5491, 2015. 

[26] Y. R. Yeh, C. H. Huang, and Y. C. F. Wang, “Heterogeneous domain 

adaptation and classification by exploiting the correlation subspace,” 

IEEE Trans. Image Process., vol. 23, no. 5, pp. 2009–2018, 2014. 

[27] F. Liu, G. Zhang, and J. Lu, “Heterogeneous transfer learning: An 

unsupervised approach,” arXiv:1701.02511 [cs.LG], pp. 1–48, 2017. 

[28] C. Yang, Z. Deng, K. Choi, and S. Wang, “Takagi – Sugeno – Kang 
Transfer Learning Fuzzy Logic System for the Adaptive Recognition of 

Epileptic Electroencephalogram Signals,” IEEE Trans. Fuzzy Syst., vol. 

24, no. 5, pp. 1079–1094, 2016. 

[29] V. Behbood, S. Member, J. Lu, and G. Zhang, “Fuzzy Refinement 

Domain Adaptation for Long Term Prediction in Banking Ecosystem,” 

IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 1637–1646, 2014. 

[30] V. Behbood, J. Lu, G. Zhang, and W. Pedrycz, “Multistep fuzzy 

bridged refinement domain adaptation algorithm and its application to 

bank failure prediction,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 

1917–1935, 2015. 

[31] Z. Deng, Y. Jiang, F. L. Chung, H. Ishibuchi, and S. Wang, 

“Knowledge-leverage-based fuzzy system and its modeling,” IEEE 

Trans. Fuzzy Syst., vol. 21, no. 4, pp. 597–609, 2013. 

[32] Z. Deng, Y. Jiang, K. S. Choi, F. L. Chung, and S. Wang, “Knowledge-

leverage-based TSK fuzzy system modeling,” IEEE Trans. Neural 

Networks Learn. Syst., vol. 24, no. 8, pp. 1200–1212, 2013. 

[33] Z. Deng, Y. Jiang, H. Ishibuchi, K.-S. Choi, and S. Wang, “Enhanced 

Knowledge-Leverage-Based TSK Fuzzy System Modeling for 

Inductive Transfer Learning,” ACM Trans. Intell. Syst. Technol., vol. 8, 

no. 1, pp. 1–21, 2016. 

[34] Z. Deng, I. S. Member, Y. Jiang, I. Member, and F. Chung, “Transfer 
Prototype-based Fuzzy Clustering,” Trans. Fuzzy Syst., vol. 24, no. 5, 

pp. 1210–1232, 2016. 

[35] Z. Deng, K. S. Choi, Y. Jiang, and S. Wang, “Generalized hidden-
mapping ridge regression, knowledge-leveraged inductive transfer 

learning for neural networks, fuzzy systems and kernel methods,” IEEE 

Trans. Cybern., vol. 44, no. 12, pp. 2585–2599, 2014. 

[36] S. Sun, J. Yun, H. Lin, N. Zhang, A. Abraham, and H. Liu, “Granular 

transfer learning using type-2 fuzzy HMM for text sequence 

recognition,” Neurocomputing, vol. 214, pp. 126–133, 2016. 

[37] D. Ghosh and D. Chakraborty, “Analytical fuzzy plane geometry I,” 

Fuzzy Sets Syst., vol. 209, pp. 66–83, 2012. 

[38] D. Chakraborty and D. Ghosh, “Analytical fuzzy plane geometry II,” 

Fuzzy Sets Syst., vol. 243, pp. 84–109, 2014. 

[39] D. Ghosh and D. Chakraborty, “Analytical fuzzy plane geometry III,” 

Fuzzy Sets Syst., vol. 283, pp. 83–107, 2016. 

[40] J. J. Buckley and E. Eslami, “Fuzzy plane geometry I : Points and 

lines,” Fuzzy Sets Syst., vol. 86, pp. 179–187, 1997. 

[41] J. J. Buckley and E. Eslami, “Fuzzy plane geometry II : Circles and 

polygons,” Fuzzy Sets Syst., vol. 87, pp. 79–85, 1997. 

[42] Y. Li, Q. Huang, W. Xie, and X. Li, “A novel visual codebook model 
based on fuzzy geometry for large-scale image classification,” Pattern 

Recognit., vol. 48, no. 10, pp. 3125–3134, 2015. 

[43] R. Goetschel and W. Voxman, “Topological properties of fuzzy 

numbers,” Fuzzy Sets Syst., vol. 10, pp. 87–99, 1983. 

[44] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Inf. Sci., vol. 3, 

pp. 177–200, 1971. 

[45] A. Mirzaei and M. Rahmati, “A novel hierarchical-clustering-

combination scheme based on fuzzy-similarity relations,” IEEE Trans. 

Fuzzy Syst., vol. 18, no. 1, pp. 27–39, 2010. 

[46] G. J. Klir and B. Y. Yklsit, Fuzzy sets and fuzzy logic: theory and 

applications, 1st ed. Prentice Hall PTR, 1995. 

[47] O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets Syst., 

vol. 12, pp. 215–229, 1984. 

 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, TFS-2017-0634 14 

Feng Liu received a M.S. in probability and 

statistics and a B.S. in mathematics from the 

School of Mathematics and Statistics, 

Lanzhou University, China, in 2015 and 

2013, respectively. He is working toward a 

Ph.D. with the Faculty of Engineering and 

Information Technology, University of 

Technology Sydney, Australia. His research interests include 

transfer learning and domain adaptation. He is a Member of the 

Decision Systems and e-Service Intelligence (DeSI) Research 

Laboratory, Center for Artificial Intelligence, University of 

Technology Sydney. 
 

Jie Lu (F’18) is a Distinguished Professor 

and the Director of Centre for Artificial 

Intelligence at the University of Technology 

Sydney, Australia. She received the Ph.D. 

degree from Curtin University of 

Technology, Australia, in 2000. 

Her main research expertise is in fuzzy 

transfer learning, decision support systems, concept drift, and 

recommender systems. She has published six research books 

and 400 papers in Artificial Intelligence, IEEE transactions on 

Fuzzy Systems and other refereed journals and conference 

proceedings. She has won over 20 Australian Research Council 

(ARC) discovery grants and other research grants for over $4 

million. She serves as Editor-In-Chief for Knowledge-Based 

Systems (Elsevier) and Editor-In-Chief for International 

Journal on Computational Intelligence Systems (Atlantis), has 

delivered 20 keynote speeches at international conferences, and 

has chaired 10 international conferences. She is a Fellow of 

IEEE and Fellow of IFSA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Guangquan Zhang is an Associate Professor 

and Director of the Decision Systems and e-

Service Intelligent (DeSI) Research 

Laboratory in Centre for Artificial 

Intelligence, Faculty of Engineering and 

Information Technology, University of 

Technology Sydney, Australia. He received a 

Ph.D. in applied mathematics from Curtin University of 

Technology, Australia, in 2001. 

His research interests include fuzzy machine learning, fuzzy 

optimization, and machine learning and data analytics. He has 

authored four monographs, five textbooks, and 350 papers 

including 160 refereed international journal papers. 

    Dr Zhang has been awarded seven Australian Research 

Council (ARC) Discovery Project grants and many other 

research grants. He was awarded an ARC QEII fellowship in 

2005.  He has served as a member of the editorial boards of 

several international journals, as a guest editor of eight special 

issues for IEEE transactions and other international journals, 

and co-chaired several international conferences and 

workshops in the area of fuzzy decision-making and knowledge 

engineering. 


