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Abstract 

Extraction of rubidium (Rb) which is an economically valuable metal from seawater reverse osmosis 

(SWRO) brine is beneficial. However, potassium (K) in SWRO brine hinders Rb extraction. Natural 

clinoptilolite zeolite in powder form was able to selectively remove K from SWRO brine (Langmuir 

maximum sorption, Qmax (cal.) = 57.47 ± 0.09 mg/g). An integrated submerged membrane sorption 

reactor (SMSR) containing zeolite powder (300 g/L) achieved 65% K removal from SWRO brine. 

Periodic replacement of zeolite in SMSR, coupled with membrane backwashing with tap water was 

effective in maintaining a high K removal efficiency and a stable transmembrane pressure. Less than 

5% Rb losses occurred along with K sorption, establishing the high K selectivity by zeolite in SWRO 

brine. The Rb sorption efficiency of polymer encapsulated potassium copper hexacyanoferrate 

(KCuFC(PAN)) sorbent from SWRO brine with reduced K contents, increased significantly from 

18% to 83%. 
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brine; Sorption; Zeolite 

 

1. Introduction 

Presently, potable water production by seawater reverse osmosis (SWRO) desalination (Fritzmann et 

al., 2007), environmental issues of SWRO brine discharge (Roberts et al., 2010), and economic 

interest in resource recovery (Jeppesen et al., 2009; Shahmansouri et al., 2015; Loganathan et al., 

2017) have established that seawater and likewise SWRO brine are important and largely untapped 

sources of valuable elements. 

Seawater contains vast mineral deposits that are rich in critical metals and valuable trace alkali 

elements (Loganathan et al., 2017). One such trace alkali metal with high economic potential (USD 

14720.00/kg) is rubidium (Rb) (U.S. Geological Survey, 2016). Rb is used in specific fields such as 

fibre optic telecommunication and laser technology (Naidu et al., 2016a). A relatively large quantity 

of Rb is present in total seawater (156000 x 10
6
 tonnes) compared to land mineral reserves (0.08 x 

10
6 

tonnes) U.S. Geological Survey, 2016). However, Rb is present at low concentrations (0.19 to 

0.24 mg/L) with other dominant ions such as sodium (Na), calcium (Ca), magnesium (Mg) and 

potassium (K).  

The capacity of potassium metal hexacyanoferrate sorbent, specifically potassium copper 

hexacyanoferrate (KCuFC) for selective Rb extraction/sorption under high saline conditions such as 

SWRO brine has been highlighted in a previous study (Naidu et al., 2016b). Nevertheless, Rb 

sorption efficiency of KCuFC is significantly reduced by 70 to 75% by the presence of K in SWRO 

brine (Naidu et al., 2016b). 

In view of this, prior elimination of K in SWRO brine may effectively improve the Rb sorption 

efficiency of KCuFC. The application of natural zeolite (from various origins or different 
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monocationic forms) for K sorption from seawater has been evaluated by previous studies (Cao et 

al., 2008; Hou et al., 2012). Although proven to be a favorable, the practical application of natural 

zeolite is still challenged due to its low K sorption capacity in seawater (14-20 mg/g), necessitating 

large column operation with high quantity of sorbent. Moreover, the fine-grain powdery condition of 

zeolite invariably causes bed clogging and decrease in filtration rates. A number of methods have 

been evaluated to overcome this limitation such as the application of magnetic zeolite (Cao et al., 

2008) and potassium membrane (Yuan et al., 2012). Nevertheless, these methods tend to increase the 

overall extraction cost while the K sorption capacity from seawater remain low.  

A submerged membrane sorption reactor (SMSR) which combines sorption and microfilter (MF) 

membrane process, is an integrated low energy system that offers an alternative solution to overcome 

the limitation of fixed bed column sorption. The SMSR system has been widely tested as a 

pretreatment for organic removal (Jeong et al., 2013; Johir et al., 2015). A few studies have 

evaluated the potential of SMSR for the sorption of selective ions (Reddad et al., 2003; Han et al., 

2012). For instance, Reddad et al. (2003) used a dynamic MF reactor integrated with polysaccharide 

particles for the sorption of heavy metals, and indicated the technical feasibility of this approach as a 

low cost solution for treating polluted water. Similarly, Han et al. (2012) reported promising results 

on the removal of cesium (Cs) from tap water by an integrated sorption–MF process. These were 

attributed to continuous feed flow with suitable contact time that enabled to utilize the full capacity 

of sorbents in the reactor. Meanwhile the periodic renewal of new sorbents enabled to maintain high 

removal rates throughout the operation. Further, SMSR offers the flexibility to choose a suitable set 

of operating conditions (feed and permeate flow rate, hydraulic retention time and air flow) based on 

factors such as the sorption capacity and duration, reactor configuration and feed solution 

characteristics. An additional benefit of SMSR is the utilization of sorbent as fine powder instead of 

granular particles required in fixed bed columns. Sorbents as fine powder tend to achieve higher 

sorption capacity than as granular particles due to its higher surface area (Delkash et al., 2015). 
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Nonetheless, the usage of fine particles may increase the susceptible of membrane pore blocking and 

cake formation, resulting in transmembrane pressure increment. The approach of periodic renewal of 

new sorbents while withdrawing used sorbents has shown to be effective in preventing membrane 

pore blocking and cake formation, while providing fresh sorption sites for maintaining a continuous 

high sorption rate (Johir et al., 2015; Smith and Vigneswaran, 2009). Moreover, sorbents adhered on 

the MF membranes in SMSR can be removed with simple cleaning methods such as backwashing 

with tap water (Johir et al., 2015; Han et al., 2012). The potential of using SMSR for removing K 

from SWRO brine with zeolite has not been evaluated thus far.  

Clinoptilolite is one of the most common naturally occurring zeolite (Smičiklas et al., 2007). 

Recently, very dense clinoptilolites have been identified which have been compressed by time and 

nature to form masses with essentially no macroporosity. One such of this clinoptilolite is produced 

by Castle Mountain, Australia (An et al., 2011). This natural zeolite do not have the fragile crystal 

grain boundaries found in synthetic zeolite analogues. Therefore, they have the mechanical 

robustness and have shown favourable performance as a natural zeolite membrane (An et al., 2011). 

The unique nature of this zeolite may enhance K sorption from SWRO brine.  

It is well acknowledged that zeolite does exhibit selectivity for other monovalent ions including Cs 

(Smičiklas et al., 2007). Cs and Rb are both monovalent trace alkali metals with similar 

characteristics, implying that zeolite may simultaneously extract K with Rb from SWRO brine. As a 

result, Rb losses could occur prior to selective extraction with KCuFC sorbent. This factor must be 

evaluated in determining the suitability of zeolite for selective K removal from SWRO brine, prior to 

selective Rb extraction with KCuFC.  

The objectives of this study, therefore, were to evaluate (i) natural zeolite’s capacity for K removal 

from SWRO brine; (ii) the suitability of using an integrated SMSR with powder form zeolite for 

removing K from SWRO brine, and (iii) comparison of Rb sorption efficiency of encapsulated 

KCuFC sorbent using K reduced SWRO brine compared to original SWRO brine. 
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2. Materials and methods 

2.1.  Solutions 

Table 1. Characteristics of SWRO brine obtained from PSDP, Western Australia.  

Parameters Unit Value 

Total dissolved solids (TDS) g/L 58.80 -58.93 

pH  8.0 – 8.2 

Dissolved organic carbon (DOC) mg/L 1.29 -1.67 

Major ion contents  mg/L  

Ca  789.30 -804.20 

Mg  2390.50 - 2524.10  

Na  23100.00 - 24800.00 

K  790.20 –  810.10 

Sr  15.42 – 16.11 

Li  0.39 - 0.41 

Rb  0.19 - 0.23 

 

Stock solutions of K, Rb, Na, Sr, Ca and Mg were prepared by dissolving KCl, RbCl, NaCl, SrCl2, 

CaCl2 and MgCl2 respectively in deionised (DI) water. All reagents were of analytical grade (Sigma-

Aldrich) and were used without further purification. The initial and final ion concentration of the 

single solute solutions were determined by using Microwave Plasma - Atomic Emission 

Spectroscopy (MP-AES) (Agilent 4100, US) upon filtering the solution through a 1.2 µm glass fiber 

syringe filter. 

The characteristics of SWRO brine obtained from Perth Seawater Desalination Plant (PSDP) in 

Western Australia are listed in Table 1. The ion concentrations of the SWRO brine were determined 

by inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 7500, US). The total dissolved 

solids (TDS) and pH value were measured using an HQ40d portable pH meter (Hach, US). The 
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dissolved organic contents (DOC) was measured with a TOC analyser (Shimadzu, Japan) upon 

filtration (0.45 µm Millipore filter). 

2.2.  Sorbent  

2.2.1. Zeolite 

The natural zeolite used in this study was purchased from Castle Mountain Zeolites (Quirindi, NSW, 

Australia). This zeolite is a clinoptilolite-rich mineral composed of clinoptilolite (∼85 wt.%), 

mordenite (∼15 wt.%) and trace amounts of quartz with a bulk density of 2.7 g/cm
3
 (obtained from 

the supplier). The mineralogical composition (obtained from the supplier) is listed in Table 2.  

 

Table 2. Chemical composition of zeolite.   

Mineral content wt.% 

SiO2 71.81 

Al2O3 12.10 

CaO 2.60 

Na2O 2.33 

Fe2O3 1.14 

K2O 0.90 

MgO 0.65 

TiO2 0.22 

MnO 0.03 

SrO 0.22 

P2O5 <0.01 

Loss on ignition 7.77 

 

2.2.2. Polymer encapsulated potassium copper hexacyanoferrate, KCuFC(PAN) 

Details on the preparation and characteristics of the laboratory-prepared polymer encapsulated 

KCuFC(PAN) is reported elsewhere (Naidu et al., 2016b).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

   

7 

 

 

2.3. Sorbent characterisation  

2.3.1.  Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) 

analysis 

The surface morphology and element contents of zeolite (before and after K sorption) were evaluated 

with scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy 

(EDX) operated at 15 kV (Zeiss Supra 55VP Field Emission). 

2.3.2.  Powder X-ray diffraction analysis (XRD) 

XRD data on zeolite (before and after K sorption) were collected on a Siemens D5000 diffractometer 

operating with CuK alpha-radiation and a rotating sample stage. The samples were scanned at room 

temperature in the 2ϴ angular range of 20–110º. 

2.3.3.  pH and zeta potential  

The effect of pH on K sorption at equilibrium condition was investigated at acidic and basic 

conditions. For this purpose, 0.6 g/L zeolite was suspended in glass flasks containing 100 mL of 790 

± 5 mg K/L solution in the pH range of 3 to 11. These flasks were agitated for 24 h in a flat shaker 

(120 rpm speed; 24 ± 1 ºC). The initial pH values were adjusted using NaOH and HCl solutions. The 

initial pH (pHinitial) and equilibrium pH (pHeq) of the solutions were measured using an HQ40d 

portable pH meter (Hach).   

Zeta potential measurement was carried out to determine the sorbent surface charge. For this 

purpose, 0.6 g/L zeolite was suspended in glass flasks containing 100 ml of 10
-3

 M KCL in the pH 

range of 3 to 11. The suspensions were agitated for 24 h in a flat shaker. Zeta values were measured 

with a Zetasizer nano instrument (Nano ZS Zen3600, Malvern, UK) upon recording the pHeq of the 

solutions. 

 

2.4. Sorption experiments 
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All batch sorption experiments with zeolite were conducted with K solution at a concentration of           

790 ± 5 mg K/L, corresponding to the K concentration in SWRO brine (Table 1). Experiments were 

performed in a set of glass flasks containing zeolite with 100 mL of solutions. The flasks were 

agitated in a flat shaker at a shaking speed of 120 rpm at room temperature (24 ± 1 
o
C). The solution 

pH was initially adjusted to a predetermined value (based on the pH evaluation test) and re-adjusted 

to the same value after 4 h and 8 h with HCl or NaOH solutions, to ensure a constant pH was 

maintained throughout the sorption duration. Experiments were duplicated and the average values 

were recorded for data analysis. The difference between the duplicate values were within ±2%.  

2.4.1.  Sorption isotherm  

Batch equilibrium sorption experiments were conducted at different doses of zeolite ranging from 0.2 

to 400 g/L. The K sorption amount at equilibrium, qe (mg/g), was calculated based on the difference 

between K concentration in the initial C0 and equilibrium Ce (mg/L) solution, per volume of solution, 

V (L) and sorbent mass, M (g) (Naidu et al., 2016b). The sorption data were evaluated using 

Langmuir isotherm based on previous studies on K sorption with zeolite which showed good 

isotherm model fitting (Guo et al., 2008; Hor et al., 2016; Guo et al., 2017). 

2.4.2.  Sorption kinetics 

Sacrificial batch sorption kinetics were conducted with zeolite dose of 0.6 g/L (selected based on 

isotherm results). The suspensions were agitated for time intervals ranging from 10 min to 24 h. The 

ion concentrations of the solutions collected at these different time intervals were measured. The 

sorption amount (qt) at time t was calculated and evaluated using pseudo-second order (PSO) kinetic 

model. This model was chosen based on its good fitting of K sorption with zeolite from previous 

studies (Guo et al., 2008; Hor et al., 2016; Guo et al., 2017). 

 

2.5. Influence of co-existing SWRO brine ions on K sorption 
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The selectivity of zeolite towards K in the presence of major inorganic ions in SWRO brine (Na, Ca, 

Mg and Sr) was evaluated in this study. Further, the possibility of co-sorption of Rb during K 

sorption was evaluated. All experiments were conducted with an initial K concentration of 790 ± 5 

mg K/L and zeolite dose of 1.2 g/L while the competitor ion concentrations were set at a range of 

concentration emulating SWRO brine as listed in Table 1. The pH value of the solutions were 

maintained at a predetermined value (based on the pH evaluation test). 

 

2.6. Submerged membrane sorption reactor (SMSR)  

2.6.1.   Experimental set-up 

The SMSR (Fig. 1) consist of a reactor containing SWRO brine maintained at a constant volume of 4 

L with a submerged hollow fiber microfilter (MF) membrane (Cleanfil
®
-S, Kolon membrane) 

(effective membrane surface area of 0.08 m
2
). The MF membrane was made of three materials 

(Polysulfone, Polyethersulfone, Polyvinlidene Fluoride) with a nominal pore size of 0.1 µm, inner 

and outer diameter of 1.1 mm and 2.1 mm respectively.  

For the SMSR operation, a predetermined amount of zeolite was initially dosed into the reactor 

followed by periodic sorbent replacement (approximately 25% of the initial predetermined sorbent) 

to maintain a 60% K removal from SWRO brine. Periodic zeolite renewal was carried out by 

withdrawing a measured volume of suspension, filtering the used zeolite, and replacing fresh zeolite 

in equivalent amount to the used sorbent withdrawn. The effluent samples were collected at regular 

time intervals to analyse the ion concentrations. The SMSR operation was carried out for a duration 

of 7 h. 

Air was supplied from the bottom of the reactor using an external aerator at a rate of 3.5 L/min to 

keep the zeolite in suspension. Effluent/permeate was channelled out using a peristaltic pump at a 

constant flux of 8.0 L/m
2
 h (LMH), maintaining a hydraulic retention time (HRT) of 6.3 h. This was 
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based on previous zeolite K sorption studies which indicated achieving maximum sorption by a 

duration of 4 - 6 h (Guo et al., 2008; Guo et al., 2017). 

The transmembrane pressure (TMP) was automatically measured using a pressure transducer (PTX 

1400 Druck Industrial Pressure Sensor, Druck Limited, UK) installed between the membrane and 

permeate peristaltic pump. 

 

 

Fig. 1. A schematic diagram of submerged membrane sorption reactor (SMSR) system. 

 

2.6.2.   Membrane cleaning 

Periodic membrane backwashing with tap water at a high flow rate of 5 L/h for 5 min was carried out 

every 2 h throughout the SMSR operation. At the end of the SMSR operation, a portion of the used 

MF membrane was soaked in a beaker containing 0.1% NaOCl for 4 h. The beaker was kept in 

suspension at a speed of 40 rpm. Membrane autopsy (SEM/EDX) of the virgin, used (tap water 

washed) and chemically cleaned membranes were carried out per the procedure described in Section 

2.3.1. 

 

2.7.    Rb sorption by KCuFC(PAN) with SWRO brine (reduced K contents) 
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The performance of KCuFC(PAN) on Rb sorption using SWRO brine with reduced K contents as 

well as original SWRO brine was evaluated in terms of sorption isotherm using the same procedure 

reported in Section 2.4.1.  
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3.  Results and discussion 

3.1.  Characteristics of zeolite 

3.1.1.  SEM-EDX analysis  

The SEM images showed similar zeolite appearance before and after K sorption (Fig. S1). The 

heterogeneous condition of natural zeolite was attributed to the combination of different zeolite 

phases with other crystalline and amorphous materials (Elaiopoulos et al., 2010). The EDX emission 

pattern revealed the presence of O, Si, Al, K, Na, Mg, Ca and Fe peaks in the zeolite structure (Fig. 

S1). O, Si and Al are the major elements in zeolite, with relatively low presence of Na, Ca, Mg, K 

and Fe (< 2% atomic ratio). This was in line with the sorbent chemical composition listed in Table 2. 

Both the EDX and chemical composition showed a good match of Si/Al molar ratio at 5.0 and above. 

Similar values were reported in previous studies using natural zeolite (An et al., 2011; Elaiopoulos et 

al., 2010; Camacho et al., 2011). A high Si/Al ratio indicate a high negative charge of the zeolite 

structure, which is beneficial in increasing the sorbent surface affinity towards positively charged 

ions.  

Upon K sorption, a higher K peak intensity was observed in the EDX spectra with a reduction of Na 

and Ca peak intensity, suggesting the likely exchange of K with Na and Ca. 

 

3.1.2.  Powder X-ray diffraction (XRD) analysis  

The XRD composition of the original zeolite was consistent with other studies, matching the 

structure of natural clinoptilolite zeolite (Wang et al., 2007; Guo et al., 2016). The same diffraction 

peaks were observed for both the original and K sorbed zeolite, confirming no changes of crystal 

structure occurred upon K sorption by zeolite (Fig. S2).  

 

3.2.  Influence of pH on K sorption  
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(a) (b) 

Fig. 2. Influence of pH on zeolite (dose = 0.6 g/L) in terms of (a) K sorption and pH variation (Co = 

790 ± 5 mg K/L) (b) zeta potential with 10
-3

 M KCl.  

 

The equilibrium pH (pHeq) showed an increase of initial pH values in acidic conditions and a 

decrease of initial pH values in alkaline conditions (Fig. 2a). This trend indicated the tendency of 

zeolite to neutralize the solution acting as a proton acceptor or as a proton donor depending on the 

pH.  K sorption by zeolite was minimally influenced by the change of pH values, especially above 

pHeq of 6 (Fig. 2a). Similar observations were made by other studies on K and Cs sorption with 

zeolite (Smičiklas et al., 2007; Guo et al., 2016). The slightly lower K sorption at low pH (below 

pHeq 6) could be due to the competition of H with K for sorption sites in highly acidic solution. The 

minimal K sorption reduction observed above pHeq 6 could be associated to the high negative surface 

charge of zeolite at higher pH as indicated by the zeta potential trend (Fig. 2b). The zeolite surface 

zeta potential of -17 to -24 mV at pHeq below 6 increased to higher negative values (-34 to -39 mV) 

at pHeq above 6. Similarly, Englert and Rubio (2005) showed a trend of more negative zeta potential 

at higher solution pH for natural zeolite. Increased negative surface of zeolite above pHeq of 6 would 

increase the sorption affinity towards positively charged ions such as K by electrostatic sorption 

(outer sphere complexation).  
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Based on the zeta potential and K sorption trend at different pH, all further experiments were carried 

out at a constant pH of 8.0 ± 0.5, corresponding to the pH of SWRO brine (Table 1). 

 

3.3.  Equilibrium isotherm and kinetics with pure K solution 

Table 3 The parameters of Langmuir isotherm and PSO kinetics model for K sorption by zeolite 

with K solution and SWRO brine. 

Model type Parameter 

Solution type 

K solution SWRO brine 

Langmuir Experimental Qmax(exp.) (mg/g) 208.53 ± 0.13 51.50 ± 0.11 

 Calculated Qmax(cal.) (mg/g) 217.68 ± 0.17 57.47 ± 0.09 

 KL (L/mg) 0.02 ± 0.01 0.02 ± 0.01 

 R
2
 0.97 0.97 

Pseudo second order 

(PSO) 

Experimental qe(exp.) (mg/g) 114.67 ± 0.10 44.51 ± 0.09 

Calculated qe(cal.) (mg/g) 122.32 ± 0.13 46.72 ± 0.05 

k2 x 10
-4

 (g/mg min)  0.48 ± 0.03 3.67 ± 0.02 

R
2
 0.98 0.97 

 

K sorption by zeolite fitted well to Langmuir model (R
2
 = 0.97), achieving a Qmax(cal.) of 217.68 ± 

0.17 mg/g (Fig. 3a, Table 3). Similarly, Cao et al. (2008) reported a K sorption of 245.1 mg/g with 

zeolite.  

K sorption increased with time achieving a maximum sorption within 8 h with 0.6 g/L of zeolite 

(Fig. 3b). The data fitted well to the PSO model (R
2
 = 0.98), with a derived qe(cal.) of 122.32 ± 0.13 

mg/g, matching well with the experimental qe(exp.) of 114.67 ± 0.10 mg/g (Fig. 3b, Table 3). In 

correspondence with K sorption, Na and Ca releases were detected throughout the entire sorption 

duration (Fig. S3). Previous studies have indicated that Na and Ca are the major cations involved in 

the zeolite exchange process (Abusafa and Yücel, 2002).  At the same time, the presence of Si was 
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detected in the solution. Nevertheless, similar Si concentration over the sorption duration indicated 

that Si did not participate in the exchange mechanisms and was merely residues released from the 

zeolite structure. Neligible presence of Al, Fe and Mg ions were detected over time 

 

3.4. Equilibrium isotherm and kinetics with SWRO brine 

  

(a) (b) 

Fig. 3. K sorption by zeolite with pure K solution and SWRO brine (a) equilibrium Langmuir 

isotherm model fit (b) PSO kinetics model fit (Co= 790 ± 5 mg K/L; pHeq = 8.0 ± 0.5; kinetic zeolite 

dose = 0.6 g/L).  

 

In SWRO brine, zeolite exhibited a maximum K sorption capacity with an experimental value, 

Qmax(exp.) of 51.50 ± 0.06 mg/g. The theoretical Qmax(cal.) of 57.47 ± 0.08 mg/g obtained by Langmuir 

model (R
2
 = 0.97) was in good agreement with the actual experimental value (Fig. 3a, Table 3). At a 

dose of 0.6 g/L zeolite, maximum K sorption in SWRO brine was achieved within a duration of 6 to 

7 h, with a derived qe(cal.) of 46.72 ± 0.02 mg/g (Fig. 3b, Table 3). The 75% lower K sorption in 

SWRO brine compared to pure K solution indicated that the presence of other ions in SWRO brine 
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influenced the zeolite performance. A detail evaluation on coexisting ion competition is discussed in 

Section 3.4.1.  

Although the K sorption capacity of natural zeolite in powder form was reduced considerably in 

SWRO brine compared to pure K solution, it still showed considerably superior capacity in 

comparison to previous studies that indicated K sorption capacity from seawater in the range of 14 to 

20 mg/g (Cao et al., 2008; Hou et al., 2012). 

 

3.4.1.  Influence of co-existing SWRO brine ions on K sorption 

K solutions with Na, Ca, Mg, Sr and Rb, spiked at molar concentrations representing SWRO brine 

was used to evaluate the influence of co-existing SWRO brine ions on K sorption by zeolite. The 

presence of these ions reduced K sorption capacity of zeolite in the order of Ca > Mg > Na while 

negligible changes were observed with Rb and Sr (Fig. 4a). The influence of these ions on K 

sorption was associated to factors such as ionic radius, zeolite structure, ion charge, and ion 

concentration (Mimura and Kanno, 1985; Abusafa and Yücel, 2002).  

In the presence of high Na (23-24 g/L), K sorption reduced by 33% while a 5% of Na sorption 

occurred. This indicated that Na and K competed for zeolite surface sorption sites. Nevertheless, due 

to the smaller ionic radius of K (Table 4) (Lehto et al., 1992; Smičiklas et al, 2007; Qing et al, 

2015), it tend to adsorb more easily on the sites of tunnel-like structure of zeolite, compared to Na. 

Meanwhile, divalent Mg (2.4 -2.5 g/L), having higher ion charge compared to monovalent K, 

reduced the ion exchangeability between K and Ca. As a result, K sorption reduced by 46%, while 

4% sorption of Mg occurred. The presence of Ca (0.78 – 0.80 g/L) reduced the exchange affinity 

between Ca in the zeolite structure with K, attributed to ion saturation, resulting in a 65% K sorption 

reduction.  

Generally, zeolite exhibit a selectivity in the order of Cs > Rb > K > Na > Sr > Ca >Mg (Abusafa 

and Yücel, 2002) based on the ionic radius size as shown in Table 4. This implied the high affinity 
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of zeolite towards Rb and Sr, which are present in SWRO brine (Table 1). Nevertheless, the 

presence of Sr (9.5-10.5 mg Sr/L) and Rb (0.20-0.23 mg Rb/L), in concentrations representing 

SWRO brine, did not significantly affect K sorption and neither were these ions sorbed by zeolite 

(Fig. 4a). The minimal influence of these ions could be related to their low concentrations compared 

to 750 - 780 mg K/L in SWRO brine. Likewise, as predicted, in actual SWRO brine, a combination 

of all the major ions led to 70-75% K sorption reduction with a 2% Na sorption. During the selective 

K sorption in SWRO brine by zeolite, Rb sorption/losses did not occur. It is also worth mentioning 

that the low DOC contents in SWRO brine (Table 1) would not have a significant effect on zeolite 

performance towards K sorption, as reported by Mitrogiannis et al. (2017). 

3.4.2. K removal efficiency in SWRO brine  

In SRWO brine, higher K sorption/removal efficiency in SWRO brine was achieved with increased 

zeolite doses (Fig. 4b). Higher sorbent doses increased the availability of exchangeable sites 

enabling to achieve higher removal efficiencies. A total of 72% K sorption was achieved with 400 

g/L zeolite. This was accompanied by 20% Na sorption. At high zeolite doses (> 200 g/L), a 2-5% 

Rb sorption occurred, while at low doses (< 200 g/L), minimal Rb losses occurred. This could 

explain the observation in Section 3.4.1 indicating negligible Rb losses, in which, the test was 

carried out at low zeolite dose of 1.2 g/L. Nevertheless, even at high zeolite doses, Rb losses (2-5%) 

were considerably minimal.  

 

Table 4. Hydrated and unhydrated ionic radius of major elements and trace alkali metal in SWRO 

brine (Letho et al., 1992; Smičiklas et al., 2007; Qing et al., 2017). 

Elements Hydrated ionic radius, Å                        Unhydrated ionic radius, Å  

Cs 2.26 - 2.28 1.68-1.69 

Rb 2.28 -2.29 1.48-1.53 

K 2.32 - 3.31 1.33-1.37 
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Na 2.76 - 3.60 0.95 -0.12 

Sr 3.80 - 4.12 1.00- 1.13 

Ca 4.10 - 4.13 1.00 -1.12 

Mg 4.28 -4.30 0.72 - 0.81 

 

  

(a) (b) 

Fig. 4. Performance of zeolite in SWRO brine (a) influence of co-existing ions on K 

sorption/removal (zeolite dose =1.2 g/L) (b) sorption/removal efficiency of K, Na and Rb as a 

function of zeolite dose.  

 

3.5. Submerged membrane sorption reactor (SMSR) with SWRO brine 

3.5.1. K removal  

SMSR was operated with SWRO brine and zeolite at a dose of 300 g/L for a duration of 7 h. In view 

of the high amount of zeolite dose required, the SMSR operation was carried out with periodic 

sorbent replacement. The approach provided the flexibility of withdrawing 25% of the used zeolite 

while replacing similar amount of new zeolite for K sorption. This was beneficial in maintaining the 

same zeolite dose throughout the operation duration, while providing fresh surface sites for K 

sorption. The SMSR operation enabled to maintain 65% K sorption/removal in SWRO brine (Fig. 
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5a) throughout the operation duration of 7 h, accompanied by 15% removal of Na and 2-5% Rb 

removal.  

 

  

(a) (b) 

Fig. 5. SMSR operation with SWRO brine as a function of time (a) sorption/removal efficiency of K, 

Na and Rb (b) TMP trend (zeolite dose = 300 g/L; permeate flux = 8.0±0.5 LMH). 

  

3.5.2. Trans membrane pressure (TMP) development 

The TMP increased to 60 kPa after 2 h of SMSR operation (Fig. 5b). The membrane was covered 

with a thick layer of zeolite, which was most likely the main cause of the high TMP build-up. As a 

mitigation measure, intermittent backwashing of the membrane was carried out every 2 h of the 

SMSR operation with tap water at a flow rate of 5 L/h for 5 min. The zeolite adhered onto the 

membrane was easily removed by this simple backwashing with tap water, thereby enabling to 

restore the TMP to its initial level and maintain the TMP at 60 kPa throughout the SMSR operation 

(Fig. 5b).  

 

3.5.3. Membrane analysis 

The cross section and surface of the virgin membrane, used membrane (with tap water backwashing) 

and chemically cleaned membrane (0.1% NaOCl) were analysed with SEM-EDX (Fig. S4). The 
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SEM images showed similar appearance for all membranes while the presence of tiny particles were 

observed on the used membrane surface (Fig. S4b). The EDX element analysis of the used 

membrane cross-section revealed the presence of Na, Ca, Mg, S and Cl, which are dominant 

elements present in SWRO brine. Meanwhile, on the used membrane surface, apart from these 

elements, traces of Si, K and Al were also detected. This was likely attributed to zeolite, which could 

be related to the particles observed on the used membrane surface. The presence of zeolite on the 

surface of the used membrane and not on the cross section established that zeolite did not block the 

membrane pores and predominately adhered on the membrane surface. This explains the 

effectiveness of simple tap water backwashing in removing most of the zeolite layer during the 

SMSR operation. The chemical cleaned membrane (Fig. S4c) showed similar characteristics to the 

virgin membrane (Fig. S4a), with no traces of particles. This established the capacity of the 

membrane to be restored to its initial condition with simple chemical cleaning.  

 

3.6. Rb sorption from K reduced SWRO brine by KCuFC(PAN)  

  

(a) (b) 

Fig. 6. Comparison of Rb sorption by KCuFC(PAN) with original SWRO brine and K reduced 

SWRO brine (a) sorption efficiency at same sorbent dose (0.4 g/L) (b) equilibrium Langmuir 

isotherm model fit (pHeq = 8.0 ± 0.5). 
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KCuFC(PAN) exhibited a significantly better Rb sorption capacity with K reduced SWRO brine 

compared to the original SWRO brine.  At the same KCuFC(PAN) dose (0.4 g/L), a 83% Rb 

sorption from K reduced SWRO brine was achieved compared to 18% Rb sorption with the original 

SWRO brine (Fig. 6a). A maximum Rb sorption, Langmuir Qmax(cal.) of 7.83 ± 0.02 mg/g was 

achieved with K reduced SWRO brine (Fig. 6b). Meanwhile, a maximum Rb sorption, Langmuir 

Qmax(cal.) of 1.81 ± 0.04 mg/g was achieved with K reduced SWRO brine. The results established the 

positive benefit of reducing K contents in SWRO brine for enhancing the performance of 

KCuFC(APN) for efficient Rb selectivity. 

 

4. Conclusions  

In SWRO brine, the K sorption capacity by natural clinoptilolite zeolite (powder form) reduced by 

75% compared to pure K solution. The presence of Na, Mg and Ca in SWRO brine reduced the K 

sorption efficiency of zeolite. An integrated SMSR system with zeolite (dose of 300 g/L) achieved 

65% K removal for 7 h. Membrane backwashing with tap water every 2 h and zeolite replacement 

enabled to maintain stable K removal efficiency and TMP. Selective Rb sorption efficiency by 

KCuFC(PAN) sorbent was significantly increased to 83% with K reduced SWRO brine, achieving a 

Qmax(cal.) of 7.83 ± 0.02 mg/g.  
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Supplementary Figures 

Figure numbers: 4 

 

  

SEM EDX 

Fig. S1. SEM–EDX analysis of original and K sorbed zeolite. 

  

Supplementary Figures



 

 

Fig. S2. XRD peaks of original zeolite and K loaded zeolite. 

  



 

Fig. S3.  Amount of K sorbed and Na and Ca released as a function of time (Co= 790 ± 5 mg 

K/L; pHeq = 8.0 ± 0.5; zeolite dose = 0.6 g/L) (presented in mmol/g for element comparison). 
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Fig. S4. SEM-EDX analysis of surface and cross-sectioned SMSR membrane (a) virgin (b) 

used (tap water backwashed) (c) chemically cleaned. 

 




