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 
Abstract—Multiple kernel learning (MKL) is a principled 

approach to kernel combination and selection for a variety of 
learning tasks such as classification, clustering and dimensionality 
reduction. In this paper, we develop a novel fuzzy multiple kernel 
learning model based on the Hilbert-Schmidt independence 
criterion (HSIC) for classification, which we call HSIC-FMKL. In 
this model, we first propose an HSIC Lasso-based MKL 
formulation, which not only has a clear statistical interpretation 
that minimum redundant kernels with maximum dependence on 
output labels are found and combined, but also enables the global 
optimal solution to be computed efficiently by solving a Lasso 
optimization problem. Since the traditional support vector 
machine (SVM) is sensitive to outliers or noises in the data set, 
fuzzy support vector machine (FSVM) is used to select the 
prediction hypothesis once the optimal kernel has been obtained. 
The main advantage of FSVM is that we can associate a fuzzy 
membership with each data point such that these data points can 
have different effects on the training of the learning machine. We 
propose a new fuzzy membership function using a heuristic 
strategy based on the HSIC. The proposed HSIC-FMKL is a 
two-stage kernel learning approach and the HSIC is applied in 
both stages. We perform extensive experiments on real-world 
data sets from the UCI benchmark repository and the application 
domain of computational biology which validate the superiority of 
the proposed model in terms of prediction accuracy.  
 

Index Terms—Kernel method, classification, multiple kernel 
learning, fuzzy support vector machine. 
 

I. INTRODUCTION 

ERNEL methods such as support vector machines (SVM) 
and kernel Fisher discriminant analysis (KFDA) have 

been successfully applied to a wide variety of machine learning 
problems [1]-[3]. These methods map data points from the 
input space to the feature space, i.e., higher dimensional 
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reproducing kernel Hilbert space (RKHS), where even 
relatively simple algorithms, such as linear methods, can 
deliver very impressive performance. The mapping is 
determined implicitly by a kernel function (or simply a kernel), 
which computes the inner product of data points in the feature 
space. Despite the popularity of kernel methods, there is not yet 
a mechanism that is capable of guiding kernel leaning and 
selection. It is well known that selecting an appropriate kernel 
and thus an appropriate feature space is very important to the 
success of any kernel method [4]-[7]. To address this issue, 
researchers in recent years have engaged in active research on 
learning effective kernels automatically from data. One popular 
technique for kernel learning and selection is multiple kernel 
learning (MKL) [8], [9], which aims to learn a linear or 
nonlinear combination of a set of predefined kernels (base 
kernels) in order to identify a good target kernel for real 
applications. Compared with traditional kernel methods 
employing a fixed kernel, MKL demonstrates flexibility in 
automated kernel learning and also reflects the fact that typical 
learning problems often involve multiple, heterogeneous data 
sources. The idea of MKL can be generally applied to many 
kinds of kernel methods, such as the commonly used SVM and 
KFDA, leading to SVM-based MKL and discriminant MKL, 
respectively. Our work in this paper will mainly focus on the 
SVM-based MKL formulations. 

There are two active research directions in SVM-based MKL 
[9], [10]. One is to improve the learning efficiency of MKL by 
exploiting different optimization techniques. Following the 
seminal work in which MKL was formulated and solved as a 
semidefinite programming (SDP) problem [11], many more 
efficient optimization algorithms [12]-[17] were proposed to 
handle medium or large scale problems. Among these 
algorithms, the alternating optimization technique, which 
alternates between the optimization of kernel weights and the 
optimization of SVM classifiers, is most widely used for 
practical applications. In each step of this technique, given the 
current solution of kernel weights, a classical SVM is solved 
with the combined kernel and a specific procedure to update the 
kernel weights is subsequently used. 

The other research direction is to improve the 
prediction/classification accuracy of MKL by exploring 
possible combinations of base kernels. Researchers have 
developed various regularizers on kernel combinations, such as 

1L -norm [13], pL -norm ( 1p  ) [18], [19], entropy-based [20], 
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and mixed norms [21]. Of these, the 1L -norm of the kernel 

weights, also known as the simplex constraint, is probably the 
most popular choice because it results in sparse solutions and 
potentially eliminates irrelevant and noisy kernels. In addition 
to these linear combinations of base kernels, the possibility of 
nonlinear combinations of kernels has also been investigated 
[22]-[24]. Although the solution space is enlarged, nonlinear 
combinations usually result in a non-convex optimization 
problem, leading to even higher computational cost. Moreover, 
the solution of nonlinear combination is difficult to interpret. In 
summary, the first option makes MKL applicable to large scale 
learning tasks, while the second helps MKL to achieve superior 
classification performance. 

Many extended MKL techniques have also been proposed to 
improve the regular MKL method, e.g., localized MKL [25], 
which achieves local assignments of kernel weights at the 
group level; sample-adaptive MKL [26], which switches off 
kernels at the data sample level; Bayesian MKL [27], which 
estimates the entire posterior distribution of model weights; and 
two-stage MKL [28]-[31], which first learns the optimal kernel 
weights according to certain criteria, then applies the learned 
optimal kernel to train a kernel classifier. Compared with 
one-stage MKL algorithms [14], [19], [25], which learn both 
the optimal weights for kernel combination and the SVM 
solution by solving a joint optimization problem, two-stage 
MKL algorithms generally achieve comparable or even better 
classification performance, while incurring much less 
computational cost. Moreover, two-stage MKL algorithms are 
more flexible, since the learned kernel in the first stage can be 
directly applied to train different kernel classifiers such as SVM 
or KFDA in the second stage. In other words, the two-stage 
MKL is classifer-independent while the one-stage MKL is 
classifier-dependent. 

From a more general point of view, the two-stage MKL can 
be considered as a model selection problem: the kernel weights 
are considered as the hyperparameters of the classifier and can 
be tuned based on certain model selection criteria [32]. This 
approach has its root in the notions of kernel alignment [28], 
[33], [34] and kernel polarization [30, 35], which measure the 
level of similarity between a learning task and a kernel and have 
been extensively applied to kernel optimization and selection 
[6]. Geometrically, kernel learning with these criteria seeks a 
desired RKHS, in which data points belonging to different 
classes move apart while those associated with the same class 
come close. On the other hand, in recent years, the 
Hilbert-Schmidt independence criterion (HSIC) [36], a 
well-known kernel statistical dependence measure, has been 
successfully applied to not only the statistical independence test 
[37], [38], but also a variety of learning problems [39]. For 
example, clustering can be achieved by maximizing the 
statistical dependence between a discrete set of labels and the 
observations [40]. If labels are provided, feature selection can 
be viewed as searching for a feature subset in the observations 
which maximize the statistical dependence between features 
and labels [41]. Similarly, in subspace learning, a low 
dimensional embedding is sought which retains additional side 
information such as class labels and distance between 

neighboring observations [42]. The success is based on the fact 
that many existing learning tasks can be cast into problems of 
statistical dependence maximization (or minimization). 
However, there is as yet no such application in MKL.  

Besides, traditional MKL approaches cannot deal with 
uncertainties (noise) in data sets. Actually, real-world data is 
never perfect and can often suffer from noise that may impact 
interpretations of the data, models created from the data and 
decisions made based on the data. Noise can reduce system 
performance in terms of classification accuracy, time in 
building a classifier and the size of the classifier [43]. In the 
binary classification scenario, for instance, a training data point 
may not exactly belong to either of the two classes when the 
outliers or noises exist in real-world applications. For example, 
a data point near the margin may belong to one class or just be a 
noise point. Thus, treating every training data point equally 
may cause over-fitting and lead to the degradation of the 
generalization performance of the final classifier [44]. 

To address these two issues, this paper presents a two-stage 
fuzzy MKL model based on the HSIC, called HSIC-FMKL. In 
the first stage, we propose an HSIC Lasso-based MKL 
formulation 1 , which not only has a clear statistical 
interpretation that minimum redundant kernels with maximum 
dependence on output labels are found and combined, but also 
can efficiently compute the global optimal solution by solving a 
Lasso optimization problem. Since the traditional SVM is 
sensitive to outliers or noises in the data set, fuzzy support 
vector machine (FSVM) [46] is used in the second stage to 
select the prediction hypothesis. The main advantage of FSVM 
is that we can associate a fuzzy membership with each data 
point such that different data points have different effects on the 
training of the learning machine. Although well-determined 
fuzzy memberships can improve classification performance, 
there are no general guidelines for their construction [47]-[52]. 
In this study, a new fuzzy membership function calculation 
method is also proposed in which a heuristic function derived 
from the HSIC is used to calculate the dependence between a 
data point and its associated label. Lastly, the FSVM is trained 
to induce the final decision function to show classification 
results with the learned optimal kernel and fuzzy membership. 
The main contributions of the paper are outlined as follows: 

 A novel MKL formulation based on the HSIC Lasso 
[53]-[55] was proposed, which not only has a clear 
statistical interpretation, but also enables the global 
optimal solution to be computed efficiently by solving a 
Lasso optimization problem. It should be pointed out 
that the HSIC Lasso [54] was originally proposed for 
high-dimensional feature selection, which needs to 
predefine the kernels (for example, Gaussian kernel for 
inputs and delta kernel for outputs) before feature 
selection, whereas our work employs the HSIC Lasso 
for MKL, aiming to learn an optimal composite kernel 

 
1 In statistics and machine learning, Lasso (least absolute shrinkage and 

selection operator, also referred to as LASSO) [45] is a regression analysis 
method that performs both variable selection and regularization to enhance the 
prediction accuracy and interpretability of the statistical model it produces. 
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to train a kernel classifier. 
 To cope with the sensitivity to outliers or noises in the 

data set, FSVM is employed rather than SVM to induce 
the final decision function in the proposed MKL 
framework. A strategy of setting the reasonable fuzzy 
memberships for FSVM based on the HSIC is also 
presented. 

 Comprehensive experiments on real-world data sets 
from the UCI benchmark repository and the application 
domain of computational biology verify the 
effectiveness of the proposed HSIC-FMKL model and 
show its possible real-world applications. 

The rest of this paper is organized as follows. Brief 
introductions to HSIC, FSVM and MKL are given in Section II. 
The formulation, optimization and algorithm of our 
HSIC-FMKL are detailed in Section III. Section IV reports the 
experimental results, followed by the conclusion and further 
study in Section V.  

II. PRELIMINARIES  

In this section, we briefly review some preliminaries on 
HSIC, FSVM and MKL.  

A. Hilbert-Schmidt Independence Criterion 

Let X  and Y  be two domains from which a set of samples 

1{( , )}n
i i iD x y   is jointly drawn from some probability 

distribution Pxy . In the RKHS, HSIC [36] measures the 

independence (or dependence) between x  and y  by 

calculating the norm of the cross-covariance operator over the 
domain X Y . Formally, given ,  Xx x , ,  Yy y , and two 

feature maps : X F   and : Y G  , where F  and G  are 

the RKHSs on X  and Y , respectively, the corresponding 
reproducing kernels are defined as ( , ) ( ), ( )k x x x x    and 

( , ) ( ), ( )l y y y y   , respectively. The cross-covariance 

operator between   and   is a linear operator : G FxyC  , 

such that 

, [[ ( ) [ ( )]] [ ( ) [ ( )]]]xy x y x yC x x y y                (1) 

where   is the tensor product, and the expectations x , y  

and ,x y are taken according to marginal probability 

distributions Px , Py , and probability distribution Pxy , 

respectively. The HSIC is then defined by the square of the 
Hilbert-Schmidt norm of xyC : 

2
HS , , ,

,

, ,

( , ) ( , )

                         2 ( , )] ( , )]]

                       

(F,G,P ) || || [ ]

  ( , )] (

[

[ )]

[

[ ,

xy xy x x y y

x y x y

x x y y

HSIC C k x x l y y

k x x l y y

k x x l y y

 

 

 

  

  

 



 

 

       (2) 

where , , ,x x y y   is the expectation over both ( , ) ~ Pxyx y  and an 

additional pair of variables ( , ) ~ Pxyx y   drawn according to the 

same law independently. It is easy to find that if both feature 

maps are linear (i.e., ( )x x   and ( )y y  ), HSIC is the 

same as the square of the Frobenius norm of the 
cross-covariance matrix. Given a sample set D , an empirical 
estimator of HSIC is as follows: 

T T T
2 3 4

T T T T
2 2

T T T
2

T T
2

(F,G, )

1 2 1
tr( )

1 1 1 1
tr( ) tr( ) tr( ) tr(

1 1 1 1
tr tr

1 1 1
tr

HSIC D

n n n

n nn n

n n nn

n nn

  

      
                        
              

KL e KLe e Kee Le

KL KLee LKee Lee Kee )

KL I ee Kee L I ee

K I ee L I ee

2

1
tr( ) ( , )HSIC

n
 KHLH K L

(3) 

where tr( )  is the trace operator, T(1, ,1) R n   e ,  

,  Rn nK L  ( R  denotes the set of real numbers) are the kernel 

matrices defined as ( , )ij i jk x xK  and ( , )ij i jl y yL , 

respectively, and T Rn nn   H I ee  is a centering matrix, 

where Rn nI  is the identity matrix. For convenience, we 
denote (F,G, )HSIC D  by ( , )HSIC K L .  

It is clear that the empirical estimator of HSIC is expressed 
completely in terms of kernels. For the so-called universal or 
characteristic kernels [56] such as Gaussian kernel and Laplace 
kernel, HSIC is equal to zero if and only if two random 
variables are statistically independent. Note that non-universal 
kernels or non-characteristic kernels can be also employed in 
HSIC, although they may not guarantee that all dependence can 
be detected [41]. 

B. Fuzzy Support Vector Machines 

Support vector machine is a theoretically well motivated 
algorithm developed from statistical learning theory which has 
shown impressive performance in many fields [1], [2]. In spite 
of its success, it still suffers from the noise sensitivity problem 
originating from the assumption that each training point has 
equal importance or weight in the training process. In many real 
world problems, it is well known that there are cases where 
some training points are noises or outliers, and treating every 
training point equally may lead to over-fitting. 

To relax the noise sensitivity problem, Lin and Wang [46] 
proposed an FSVM model based on the standard SVM for 
classification problems with noises or outliers. In the FSVM, a 
fuzzy membership associated with each training point is 
introduced such that different training points make different 
contributions to the final decision function. Formally, suppose 
we are given a set of labeled training samples 1{( , , )}n

i i i iy s x  in 

a binary classification problem, where X d
i R x  is the 

input data, { 1, 1}iy     is the corresponding class label, and 
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[0,1]is   is the fuzzy membership which represents the degree 

of ix  belonging to iy . As with SVM, the goal of the FSVM is 

also to find an optimal hyperplane T ( ) 0b  w x  that 

separates the training points into two classes with the maximal 
margin, where w  is the normal vector of the hyperplane, b  is 
a bias, and   is a feature map which maps ix  to a 

high-dimensional feature space. This hyperplane can be 
obtained by solving the following optimization problem: 

2

1

T

1
min 

2

s.t.   ( ( ) ) 1  

       0,   1, ,

n
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i i i

i
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where T
1( , , )n     is the vector of slack variables and C  is 

the regularization parameter used to impose a trade-off between 
the training error and generalization. Since the i  is a measure 

of error for classifying the point ix  and the is  is the attitude of 

the point ix  toward one class, the term i is   can be considered 

as a measure of error with different weights. Therefore, a 
smaller is  can reduce the effect of the slack variable i  in the 

objective function in (4), such that the corresponding point ix  

is treated as less important. From another viewpoint, if we 
consider C  as the cost assigned for a misclassification, then 
each data point is assigned with a different misclassification 
cost is C , such that more important data points have a higher 

cost, while less important data points have a lower cost. 
To solve the FSVM optimization problem, suppose i  is the 

Lagrange multiplier corresponding to the thi  inequality in (4), 
the dual problem of (4) is shown to be 

1 1 1
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              (5) 

The only difference between the original SVM 
dual-optimization problem and the FSVM dual-optimization 
problem is the upper bound of the values of i . After the 

solution has been obtained, the FSVM decision function is 
given by 

1

( ) sgn ( , )
n

i i i
i

f y k b


   
 
x x x                    (6) 

where the samples ix  with 0i   are called support vectors. 

This FSVM model has been successfully applied to reduce 
the effect of noises or outliers in a variety of applications with 
different methods of computing fuzzy memberships [46]-[52]. 

C. Multiple Kernel Learning  

Instead of formulating an optimization criterion with a fixed 

kernel k , one can leave the kernel k  as a combination of a set 
of predefined kernels, which results in the problem of MKL [8], 
[9]. MKL maps each sample to a multiple-kernel-induced 
feature space and a linear classifier is learned in this space. The 
feature mapping used in MKL takes the form of 

T T T
1( ) [ ( ), , ( )]M         , which is induced by M  predefined 

base kernels 1{ ( , )}M
m mk    with alternative kernel forms or kernel 

parameters. The linear combination of these kernels is given by 

1

M

m m
m

k k


                                    (7) 

where m  is the corresponding combination coefficient. Let 
T

1( , , )M    , where   is the domain of  . By 

varying the constraint on  , different MKL models can be 

obtained. For example, when   lies in a simplex, i.e.: 

1
1

1: 0,
M

m
m m 



     
 

                        (8) 

we call the 1L -norm of kernel weights, and the resulting model 

is the 1L -MKL. Most MKL methods fall into this category. 

When 

 : 1, , 01 mp
p                               (9) 

we call the pL -norm of kernel weights, and the resulting model 

is pL -MKL [19]. A special case is the 2L -norm of kernel 

weights and the resulting model 2L -MKL [18]. 

Like SVM, the dual problem of MKL can be represented as 

1 1 1 1
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The goal of training MKL is to learn m , i  and b  with the 

given M  base kernels, and the final decision function is given 
by 

1 1

( ) sgn ( , ) .
n M

i i m m i
i m

f y k b 
 

 
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III. THE TWO-STAGE FUZZY MKL METHOD (HSIC-FMKL) 

In this section, we present the two-stage fuzzy MKL method 
(HSIC-FMKL) for learning kernels in detail. The learned 
kernel is in the form of a linear combination of M  base kernels 

1{ ( , )}M
m mk    or kernel matrices 1{ }M

m mK . The corresponding 

combination coefficient m  is selected subject to the condition 

0m  . In the first stage, the algorithm determines the 

combination coefficient m , and in the second stage, an FSVM 
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is trained with the learned kernel. 

A. The First Stage: MKL Using Lasso 

Let L HLH  and K HKH , where K , L  and H  are 
the kernel matrix for input data, kernel matrix for output labels, 
and centering matrix, respectively. We propose the use of HSIC 
Lasso [54] to estimate the combination coefficient  :  
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where F|| ||  is the Frobenius norm and 0   is the 

regularization parameter. In (12), the first term means that we 
are aligning the centered output kernel matrix L  by a linear 
combination of the centered input base kernel matrices 

1{ }M
m mK , and the second term means that the combination 

coefficients for irrelevant base kernels become zero since the 

1L -regularizer tends to produce a sparse solution. After 

estimating  , we normalize each element of   as 
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we can rewrite the first term of (12) as 
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In (13), the 2n  and ( , )HSIC L L  are constant and can be 

ignored. We have a clear statistical interpretation of MKL using 
HSIC Lasso. First, if the thm  kernel matrix mK  has high 

dependence on the output matrix L , ( , )mHSIC L K  takes a 

large value and thus m  should also be large so that (13) is 

minimized. On the other hand, if mK  and L  are independent, 

( , )mHSIC L K  is close to zero and thus m  tends to be 

removed by the 1L -regularizer. This means that relevant 

kernels that have strong dependence on output L  tend to be 
selected by the HSIC Lasso. Second, if mK  and oK  are 

strongly dependent, which means one of them is a redundant 
kernel, ( , )m oHSIC K K  takes a large value and thus either m  

or o  tends to be zero. This means that redundant kernels tend 

to be removed by the HSIC Lasso. In summary, HSIC Lasso 
tends to find non-redundant kernels with strong dependence on 
output L , which is a preferable property in kernel learning. 

In practice, many Lasso optimization techniques can be 
applied to solve the HSIC Lasso problem shown in (12), such as 
dual augmented Lagrangian (DAL) [57], [58], which has been 
successfully employed for high-dimensional feature selection 
[53], [54]. 

The statistical interpretation of MKL using HSIC Lasso is 
very similar to feature selection using the minimum 
redundancy maximum relevance (MRMR) criterion [59], [60], 
which aims to find non-redundant features with strong 
dependence on output labels. The idea of MRMR was recently 
applied to base kernel selection before the optimization of 
MKL solvers [61]. In [61], the kernel alignment [33] rather than 
the mutual information in [59], [60] was employed as the 
dependence measure. Mathematically, let KC  be a set of 
candidate kernels, mKS  consisting of m  kernels be a selected 

subset of KC . The thm   kernel is selected according to 

1
1

1
( , ) ( , )

1
max

i m
j m

i i jKA KA
m


 

 
 
 


 


K KC-KS

K KS

K L K K        (14) 

or 

1
1

1
( , ) ( , )

1
max

i m
j m

i i jKA KA
m






 
 
  


K KC-KS

K KS

K L K K        (15) 

where 1 2( , )KA K K  is the kernel alignment between kernel 

matrices 1K  and 2K , and given by 

1 2 F
1 2

1 1 F 2 2 F

,
( , ) .

, ,
KA

 


   

K K
K K

K K K K
             (16) 

It is evident that the method in [61] employs a greedy search 
strategy, i.e., forward selection, to find the expected kernels 
from KC . Although greedy approaches are more 
computationally efficient than the brute search method, they 
tend to only produce a locally optimal base kernel set. 

A limitation of kernel alignment is that it does not consider 
the unbalanced class distribution, which may cause the 
sensitivity of the measure to drop drastically. Cortes et al. [28] 
proposed to center kernels (or kernel matrices) before 
computing the alignment measure to cancel the effect of 
unbalanced class distribution. Centered kernel alignment (CKA) 
is defined as 

1 2 F
1 2

1 1 F 2 2 F

,
( , ) .

, ,
CKA

 


   

K K
K K

K K K K
            (17) 

Although this improved definition of alignment may appear to 
be a technicality, it is actually a critical difference. Without that 
centering, the definition of alignment does not correlate well 
with the performance of learning machines [28]. It is interesting 
to note the relationship between the proposed MKL method 
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using HSIC Lasso and MKL using CKA. The MKL using CKA 
can be expressed as 

F
1

1

F F
1 1

1

,
max  ( , )

, ,

s.t.  , , 0     

M

m mM
m

m m M M
m

m m m m
m o

M

CKA



 

 





 

 


   

  




 

K L
K L

K K L L

        (18) 

which is equivalent to 

F
1

F F 1
1 1

1

max  ,

s.t.  , , ,

        , , 0     

M

m m
m

M M

m m m m
m m

M

C



 

 



 

 

    

  



 

K L

K K L L          (19) 

where 1 0C   is a constant. Let 2 1 F,C C  L L , (19) can 

be rewritten as 

F
1

F 2
1 1

1

max  ,

s.t.  , ,

        , , 0.     

M

m m
m

M M

m m m m
m m

M

C



 

 



 

 

  

  



 

K L

K K                (20) 

Using the Lagrange multiplier method, (20) is equivalent to 

F F 2
1 1 1

1

max  , ,

s.t.  , , 0     

M M M

m m m m m m
m m m

M

C   

 
  

       
 

   

  K L K K
    

(21) 

where 0  . Since the alignment is invariant to rescaling  , 

we can choose 1 2  . Therefore, the MKL using CKA can be 

finally represented as 

F F
1 1 1

1

1
max  , ,

2

s.t.  , , 0.     

M M M

m m m m m m
m m m

M

  

 
  

    

  

  K L K K
    (22) 

Comparing (12) and (22), it is clear that the difference between 
the proposed MKL method using HSIC Lasso and the MKL 
using CKA is that the latter does not have the 1L -regularization 

term. Without this constraint term, the kernel can over-fit its 
alignment to the training set, making its alignment to the test set 
poor [34]. 

B. The Second Stage: Training FSVM with HSIC-based Fuzzy 
Membership 

A limitation of traditional SVM-based MKL approaches is 
that they do not consider the noise sensitivity problem, which 
originates from the assumption that each training point has 
equal importance or weight in the training process. To address 
this issue, we propose the employment of FSVM rather than 

SVM for MKL. A key step before training FSVM is to 
determine the fuzzy memberships of training samples. 
Although many techniques to define membership functions 
exist and well-defined membership functions can improve 
classification performance, there are so far no general 
guidelines for determining them [46]-[52]. 

In this study, we present a strategy in which the reasonable 
fuzzy memberships for FSVM are set using the HSIC. For a 

binary classification problem, let T
1( , , )ny y  y , thus the 

HSIC can be rewritten as 

T
F F

1 1

2 2

2

2

, ,

                   ( , )

                   ( , ) ( ,

1 1
( , )

1

)
1

i j i j

n n

i j i j
i j

i j i j
y y y y

HSIC
n

y y

n

n
k

k k
n

 

 



 
 
  

    



 



 

K K L KL yy

x x

x x x x

        (23) 

where ( , )i jk x x  is the centered kernel function and 

,( , )i j i jk  Kx x . Given the specific input data ( , )t tyx , where 

1 t n  , we define the instance HSIC (called I-HSIC) as 

2

1
- ( , () ( , ) , ) .

t i t i

t i t i
y

t
y y y

I HSIC
n

k k
 

 
 
 

  K L, x x x x x     (24) 

Since the kernel ( , )t ik x x  measures the similarity between 

points tx  and ix , it is clear that the I-HSIC will increase if the 

similarity represented by the kernel is large for input patterns of 
the same class and small for patterns from different classes. In 
other words, data points with a larger I-HSIC value should 
make a greater contribution to classification performance and 
those with smaller I-HSIC value can be considered as outliers 
or noises. Hence, we can use I-HSIC as the scoring function, 
denoted by tscore , which measures the degree of importance of 

data point tx  for classification. Similar to the method used in 

[52], we apply the following linear map function to map the 
scores into fuzzy membership values in the unit interval: 

1

1 1

min{ }

max{ } min{ }

n
t i i

t n n
i i i i

score score
s

score score


 





                  (25) 

where 1min{ }n
i iscore   and 1max{ }n

i iscore   are the minimum 

and maximum of the scores of the training data points, 
respectively. 

C. The Overall Procedure of HSIC-FMKL and its 
Computational Complexity 

Putting the above two parts together, we sketch the overall 
procedure of the proposed HSIC-FMKL in Algorithm 1, where 
the centered kernel matrix can be calculated by 

2
1 1 1 1

1 1 1n n n n

ij ij ij ij ij
i j i jn n n   

     K K K K K          (26) 
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Algorithm 1. HSIC-FMKL 

Input: Labeled data 1{( , )}n
i i iy x , base kernels 1{ ( , )}M

m mk    or 

kernel matrices 1{ }M
m mK , and regularization  parameters 

C  and  . 
Output: Fuzzy SVM classifier ( )f x . 

1: Initialize M e . 

2: Calculate the kernel matrix TL yy . 

3: Calculate the centered kernel matrices L  and 1{ }M
m mK . 

4: Obtain   by solving (12). 

5: Normalize each element of   as 
1

M

m m mm
  


  . 

6: Obtain 1{ }n
i is   using (24) and (25). 

7: Combine the kernel matrices using the weight   and train a 

fuzzy SVM classifier. 
 
We analyze the computational complexity of Algorithm 1 

with the O  notation. First, the computational complexity of 

calculating centered kernel matrices in step 3 is 2( )O Mn . 

Second, the complexity of the quadratic programming (QP) 
solver in step 4 is 3( )O TM  with T  being the number of 

iterations in solving (12). Third, calculating the fuzzy 
memberships in step 6 costs ( )O M n . Lastly, note that 

empirically the SVM training complexity is 2.3( )O n  [62] and 

given the fuzzy memberships, the training cost of fuzzy SVM is 
the same as the SVM, thus the computational complexity of 
step 7 is 2.3( )O M n . The total computational complexity of 

our proposed HSIC-FMKL is therefore 

2 3 2.3

2 3 2.3

( ) ( ) ( ) ( )

( ).

O Mn O M O M n O M n

O Mn M n

    

  
           (27) 

It should be noted that we suppose that multiple base kernels 
(kernel matrices) can be precomputed and loaded into memory 
prior to the HSIC-FMKL training. The computational cost of 
calculating the base kernels is then ignored. 

IV. EXPERIMENTS 

In this section, we perform extensive experiments on binary 
classification problems to evaluate the efficacy of the proposed 
HSIC-FMKL approach. To validate the fuzzy technology 
employed in HSIC-FMKL, we also train an SVM on the same 
combination of the base kernel matrices used by HSIC-FMKL, 
which we refer to as HSIC-MKL. 

A. Comparison Approaches and Parameter Settings 

We compare HSIC-FMKL and HSIC-MKL with the 
following state-of-the-art kernel learning algorithms: 

 AvgMKL: The average combination of multiple base 
kernels. It has been reported that AvgMKL is 
competitive with many algorithms [8] [9]. 

 SimpleMKL [14]: An algorithm reformulates the 

mixed-norm regularization of MKL problem as the 
weighted 2-norm regularization, and the 1L -norm is 

imposed on kernel weights. 
 LpMKL [19]: An algorithm generalizes the regular 

1L -norm MKL to arbitrary pL -norm ( 1p  ) MKL. We 

adopt the cutting plane algorithm with second order 
Taylor approximation of pL . 

 SMKL [20]: An algorithm employs the entropy of the 
kernel weights and transforms the non-smooth function 
induced by the 1L -norm simplex constraint into a 

smooth one. 
 BM3KL [27]: A Bayesian max margin MKL with the 

Dirichlet prior and Three Parameter Beta Normal 
(TPBN) prior imposed on the kernel weights and 
sample weights, respectively. 

 CKA-MKL [28]: The two-stage MKL with centered 
kernel alignment. 

For parameter settings, the regularization parameters C  and 
  are determined by 5-fold cross-validation on the training set. 
We perform grid-search in one dimension (i.e., a line-search) to 
choose the regularization parameters C  from the set 

2 1 2{10 ,10 , ,10 }      for all the compared methods except 

BM3KL. We perform grid-search over two dimensions for our 
proposed HSIC-FMKL and HSIC-MKL approaches, i.e., 

2 0 2{10 ,10 , ,10 }C     and 2 1 2{10 ,10 , ,10 }    . In addition, 

we examine 2,3,4p   for LpMKL and report the best results. 

The hyper-parameter settings of BM3KL are the same as those 
in [27]. All methods are implemented using MATLAB in the 
SVM-KM toolbox 2  framework. Note that SimpleMKL has 
been implemented in the SimpleMKL software package 3 , 
which requires the SVM-KM toolbox. 

 
TABLE I 

STATISTICS OF THE SELECTED NINE DATA SETS FROM UCI  

Data set  
Number of 
samples 

Number of 
features 

Original data set 

Australian 690 14 
Australian Credit 
Approval 

Breast 683 9 
Breast Cancer 
Wisconsin 
(Original) 

Diabetes 768 8 
Pima Indians 
Diabetes 

German 1000 20 
German Credit 
Data 

Heart  270 13 Heart 
Ionosphere 351 34 Ionosphere 
Liver 345 7 Liver Disorders 
Sonar 208 60 Sonar 
Spambase 4601 57 Spambase 

 

 
2 http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/ 
3 http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html 
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TABLE II  
CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT MKL ALGORITHMS ON UCI DATA SETS 

Classification accuracy (%) Data set 
AvgMKL SimpleMKL LpMKL SMKL BM3KL CKA-MKL HSIC-MKL HSIC-FMKL

Australian 66.8±4.5 85.1±1.3 84.6±1.7 85.2±1.2 86.0±1.6 87.2±0.4 86.7±1.3 87.0±0.9 
Breast 95.4±0.9 96.6±0.7 96.1±0.6 96.5±0.6 96.2±1.2 96.4±0.9 96.6±1.0 97.0±1.2 
Diabetes 65.3±1.8 75.9±2.3 72.7±2.4 75.8±2.7 74.5±3.0 75.3±3.5 77.1±2.2 78.5±0.7 
German 69.6±1.4 71.5±2.6 74.4±1.5 74.5±2.2 74.7±1.7 72.0±1.2 72.4±0.9 73.6±1.8 
Heart 75.5±5.3 83.1±2.8 80.6±3.6 81.4±3.5 81.0±3.4 82.1±1.8 83.3±2.6 83.7±3.2 
Ionosphere 91.2±1.8 93.5±1.2 94.8±2.1 95.1±2.6 95.3±1.9 93.7±1.0 95.5±0.8 96.3±1.5 
Liver 57.4±2.1 62.4±4.3 69.3±2.8 69.0±1.7 69.7±2.3 68.8±1.6 70.0±2.9 71.5±2.3 
Sonar 59.0±8.7 78.2±3.5 84.7±3.3 84.9±3.5 84.1±3.8 81.3±2.8 81.8±3.2 83.4±2.6 
Spambase 88.3±1.2 88.9±0.8 89.5±1.4 90.0±0.7 89.8±1.3 90.0±0.9 90.5±1.2 91.2±1.1 

 
 
 

 
 

TABLE III 
 SIGNIFICANCE TEST OF CLASSIFICATION RESULTS ON UCI DATA SETS 

Win-tie-loss (W-T-L) 

Data set HSIC-MKL  
vs. 

AvgMKL 

HSIC-MKL  
vs. 

SimpleMKL 

HSIC-MKL 
vs. 

LpMKL 

HSIC-MKL 
vs. 

SMKL 

HSIC-MKL 
vs.  

BM3KL 

HSIC-MKL 
vs. 

 CKA-MKL 

HSIC-FMKL 
vs. 

HSIC-MKL 
Australian W W W W W T T 
Breast W T T T T T T 
Diabetes W W W W W W W 
German W W L L L T W 
Heart W T W W W W T 
Ionosphere W W W T T W W 
Liver W W W W T W W 
Sonar W W L L L T W 
Spambase W W W W W T W 

 
 

B. Experiments on UCI Data Sets 

We select nine popular binary classification data sets, i.e., 
Australian Credit Approval, Breast Cancer Wisconsin 
(Original), Pima Indians Diabetes, German Credit Data, Heart, 
Ionosphere, Liver Disorders, Sonar, and Spambase from the 
UCI machine learning repository [63]. For Breast Cancer 
Wisconsin (Original), we directly eliminate the samples with 
missing attribute values. Table I provides the statistics of these 
data sets. The short name of each data set is presented, as well 
as the number of samples, the number of features, and the 
original name of the data set. 

We partition each data set into a training set and a test set by 
stratified sampling (whereby which the object generation 
follows class prior probabilities): 50% of the data set serves as 
the training set and the remaining 50% forms the test set. The 
training samples are normalized to be of zero mean and unit 
variance, and the test samples are also normalized using the 
same mean and variance as the training data. Following the 
settings of previous MKL studies [10], [14], [20], and [27]  , we 

use the Gaussian kernel 
2 2( , ) exp( 2 )i j i jk   x x x x  and 

polynomial kernel ( , ) ( 1)d
i j i jk   x x x x  as the base kernels: 

 Gaussian kernels with 10 different widths 
3 2 6{2 ,2 , , 2 }     on each individual feature  as well  

as all features. 
 Polynomial kernels with three different degrees 

{1, 2,3}d   on each individual feature as well as all 

features. 

All kernel matrices are normalized to unit trace and 
precomputed prior to running the algorithms. It is clear that 
there are 13( 1)n   base kernels (i.e. 13( 1)M n  ) in total 

used for MKL, where n  is the  number of features.  
To obtain stable results, we independently split each data set 

and then run each algorithm on it 20 times. The average 
classification accuracy and standard deviation of each 
algorithm are reported in Table II. To conduct a rigorous 
comparison, the paired t-test [64] [65] is performed. The paired 
t-test is used to analyze whether the difference between two 
compared algorithms on one data set is significant. The p-value 
of the paired t-test represents the probability that two sets of 
compared results come from distributions with an equal mean. 
A p-value of 0.05 is considered to be statistically significant. 
The win-tie-loss (W-T-L) summarizations based on the paired 
t -test are listed in Table III, where HSIC-MKL and AvgMKL, 
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SimpleMKL,  LpMKL, SMKL, BM3KL, and CKA-MKL are 
respectively compared. HSIC-FMKL and HSIC-MKL are also 
compared. In comparing two algorithms such as algorithm 1 vs. 
algorithm 2, a win or a loss means that algorithm 1 is better or 
worse than algorithm 2 on a data set. A tie means that both 
algorithms achieve the same performance. In Table II,  for each 
data set, the boldface with underline denote the best 
performance of MKL methods and those that exhibit no 
statisitcal difference with the best method are written in bold 
without underline. 

From Tables II and III, we find that the proposed 
HSIC-MKL and HSIC-FMKL achieve superior performance to 
other baseline approaches, and that HSIC-FMKL consistently 
achieves the overall best classification performance. Of the 
nine data sets evaluated, SMKL, BM3KL, and CKA-MKL 
report one best result, respectively, while our HSIC-FMKL 
reports six best results. We make two observations concerning 
the significance test. First, although HSIC-MKL is 
outperformed by LpMKL on the German and Sonar data sets, it 
produces significantly better classification performance than 
LpMKL on the Australian, Diabetes, Heart, Ionosphere, Liver, 
and Spambase data sets.  Similar analysis can be done when 
HSIC-MKL and SMKL, and HSIC-MKL and BM3KL are 
compared. Compared with CKA-MKL, HSIC-MKL 
significantly outperforms CKA-MKL on the Diabetes, Heart, 
Ionosphere, and Liver data sets, and yields the same 
performance on the rest of the data sets. Overall, HSIC-MKL is 
better than LpMKL, SMKL,  BM3KL, and CKA-MKL. Second, 
HSIC-FMKL significantly outperforms HSIC-MKL on the 
Diabetes, German, Ionosphere, Liver, Sonar, and Spambase 
data sets, and yields the same performance on the rest of the 
data sets. Clearly, the performance of HSIC-MKL is further 
improved by HSIC-FMKL. We attribute this to the fact that the 
HSIC-FMKL model assigns a weight to each sample as its 
fuzzy membership to reflect its corresponding confidence level 
or importance, and thus effectively suppresses the influence of 
noises or outliers during the training process. 

C. Experiments on Protein Fold Prediction 

Protein fold recognition is an important method of structure 
discovery in computational biology that does not rely on 
sequence similarity [66]. It is crucial for drug design since the 
function of a protein is closely linked to its folding class. We 
utilize the Protein Fold Prediction data set 4, composed of 27 
folds which have six or more proteins and represent all major 
structure classes:  ,  ,   , and    [66]. The folds and 

corresponding number of proteins for training and testing are 
shown in Table IV. Collectively, this data set consists of 27 fold 
classes with 311 proteins used for training and 383 proteins for 
testing. In addition, there are 12 feature representations from 
different sources in this data set, which are summarized in 
Table V.  

We construct a binary classification problem by combining 
the major structure classes {  ,  } as one class and 

 
4 

http://mldata.org/repository/data/viewslug/protein-fold-prediction-ucsd-mkl/ 

{  ,  } as the other class. We employ the second-order 

polynomial kernel 2( , ) ( 1)i j i jk   x x x x  for each global 

representation (COM, SEC, HYD, VOL, POL, PLZ, L1, L4, 
L14, and L30) and linear kernel ( , )i j i jk  x x x x  for each 

local representation (BLO and PAM) as they provide better 
embedding of the feature representations [67]. All kernel 
matrices are normalized to unit trace and precomputed prior to 
running the algorithms. 

 
TABLE IV 

PROTEIN FOLDS AND CORRESPONDING NUMBER OF TRAINING AND TEST 

SAMPLES 

Fold 
Number of 
training 
samples 

Number 
of testing 
samples 

  
Globin-like 13 6 
Cytochrome c  7 9 
DNA-binding 3-helical bundle 12 20 
4-helical up-and-down bundle 7 8 
4-helical cytokines 9 9 
Alpha; EF-hand 6 9 
  

Immunoglobulin-like  -sandwich 30 44 
Cupredoxins 9 12 
Viral coat and capsid proteins 16 13 
ConA-like lectins/glucanases 7 6 
SH3-like barrel 8 8 
OB-fold 13 19 
Trefoil 8 4 
Trypsin-like serine proteases 9 4 
Lipocalins 9 7 
   

(TIM)-barrel 29 48 
FAD (also NAD)-binding motif 11 12 
Flavodoxin-like 11 13 
NAD(P)-binding Rossmann-fold 13 27 
P-loop containing nucleotide 10 12 
Thioredoxin-like 9 8 
Ribonuclease H-like motif 10 12 
Hydrolases 11 7 
Periplasmic binding protein-like 11 4 
   

 -grasp 7 8 
Ferredoxin-like 13 27 
Small inhibitors, toxins, lectins 13 27  

 
 
Fig. 1 presents the classification performance of SVM 

classifiers with  individual base kernels, which are constructed 
on the corresponding  feature representations. Fig .2 shows the 
performance comparison of the MKL algorithms in terms of 
classification accuracy with different combinations of base 
kernels: kernels on feature representations 1 to 6 (COM, SEC, 
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HYD, VOL, POL, and PLZ), kernels on feature representations 
1 to 10 (COM, SEC, HYD, VOL, POL, PLZ L1, L4, L14, and 
L30), and kernels on all feature representations. It is evident 
that all the MKL algorithms outperform the single kernel 
method. More importantly, the proposed HSIC-MKL and 
HSIC-FMKL are the two best algorithms, and that 
HSIC-FMKL achieves the highest accuracy. In additon, it is 
worth noting that higher classification accuracies are obtained 
with a larger number of base kernels for all the comparion MKL 
algorithms. This observation suggests that these feature 
representations as a whole carry complementary (rather than 
conflict) discriminative information and MKL can utilize such 
information to improve predictive performance. 

 
 

TABLE V 
 MULTIPLE FEATURE REPRESENTATIONS FROM DIFFERENT SOURCES 

ID 
Feature 
representation 

Data source 
Number 
of features

1 COM Amino-acid composition 20 

2 SEC 
Predicted secondary 
structure 

21 

3 HYD Hydrophobicity 21 
4 VOL Van der Waals volume 21 
5 POL Polarity 21 
6 PLZ Polarizability 21 

7 L1 
Pseudo amino-acid 
composition at interval 1 

22 

8 L4 
Pseudo amino-acid 
composition at interval 4 

28 

9 L14 
Pseudo amino-acid 
composition at interval 14 

48 

10 L30 
Pseudo amino-acid 
composition at interval 30 

80 

11 BLO 
Smith-Waterman scores 
with the BLOSUM 62 
matrix 

311 

12 PAM 
Smith-Waterman scores 
with the PAM 50 matrix 

311 

 
 
 

 

Fig. 1.  Classification accuracies of SVM classifiers with individual base 
kernels for Protein Fold Prediction 

 
Fig. 2.  Classification accuracy comparison of MKL algorithms for Protein Fold 
Prediction 

V. CONCLUSION AND FURTHER STUDY 

This paper presents an effective two-stage fuzzy MKL 
algorithm based on the notion of HSIC, called HSIC-FMKL. In 
discussing the connection between MKL and HSIC Lasso, we 
find that the proposed algorithm not only has a clear statistical 
interpretation that minimum redundant kernels with maximum 
dependence on output labels are found and combined, but also 
can efficiently compute the global optimal solution by solving a 
Lasso optimization problem. To further improve the accuracy 
of traditional MKL methods, the notion of instance HSIC 
(denoted by I-HSIC) is introduced in the second stage of this 
algorithm to calculate the fuzzy memberships for constructing a 
fuzzy SVM classifier, which is used to select the final 
prediction hypothesis. Comprehensive experiments on a 
number of benchmark data sets demonstrate the promising 
results of the proposed algorithm. 

Future investigation will focus on the theoretical analysis of 
the proposed HSIC-FMKL. The classification ability 
(generalization to unseen data) of the SVM-based MKL is 
generally decided by two factors: the empirical error on the 
training data and the complexity of the classifier. In [68], the 
empirical Rademacher complexity is used to quantify the 
complexity of the classifier. Generally, a more complex 
classifier demonstrates a better classification performance on 
the training data. Hence, the optimal classification ability is a 
tradeoff between the empirical error and the empirical 
Rademacher complexity. Since the classification ability is 
quantified by the generalizaiton error, we will attempt to  
develop a convergence bound of the generalization error of 
HSIC-FMKL based on the established theory of Rademacher 
complexities. Besides, expanding the proposed model to 
multiple kernel clustering [69], extreme learning machine [70] 
and domain transfer learning [71], as well as adding more 
complicated complicated kernels such as the Chebyshev kernel 
and Hermite kernel [72] into the pool of base kernels for MKL 
are also important issues to be investigated.  

Last but not least, it is interesting to further investigate 
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feature selection based on the relevance redundancy trade-off 
criteria [73], [74], which aims to find non-redundant features 
with strong dependence on output labels.  For example, since 
the statistical interpretation of MKL using HSIC Lasso is very 
similar to feature selection using the minimum redundancy 
maximum relevance criterion [59], [60], it is worth considering 
a unified view on kernel learning and feature selection based on 
relevance redundancy trade-off criteria. By treating various 
learning models under a unifed framework and elucidating their 
relations, we also believe the research results on fuzzy multiple 
kernel learning can be applied in data-driven decision support 
systems for, e.g., business intelligence [75]. 
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