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Abstract 

Cape Town was declared a disaster area after the worst drought in almost a century, following its driest three consecutive wet 
seasons (April 1-October 31), in 2015 -2017. Cape Town’s drought was extreme, with “zero day” water storage months away, 
causing severe water rationing to Cape Town’s ~3.8 million population. The crisis extended into surrounding farmlands, as 
agriculture is vital for the region’s economy. Possible drought causes are numerous and, aside from the decreasing wet season 
precipitation, the effects are exacerbated by the increasing population with associated water demand, greater agricultural acreage
and land surface changes. As rainfall decreases, water management becomes critical, requiring predictions for future rainfall. 
Possible climate drivers associated with available Cape Town precipitation and temperature include: The Southern Annular Mode, 
Atlantic Meridional Mode, Indian Ocean Dipole, an Integrated Southern Hemisphere temperature index and several El Niño 
indices. Several variable selection techniques suggest signals in both the Atlantic and Indian Oceans contribute to Cape Town 
droughts.  Machine learning techniques are applied to these drivers for the first time and provide encouraging predictive skill levels.  
Results suggest that machine learning holds promise for adapting to drought by managing water resources in Cape Town and, more 
generally for global locations depending solely on rainfall under a warming climate. 
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1. Introduction 

The global warming trend reported more than a decade ago by the Intergovernmental Panel on Climate Change 
(IPCC) and other institutions, was a warning to Cape Town and many other major cities around the world. These 
cities had in common a heavy dependence on in situ rainfall. Combined with a warming climate, rapid population 
growth and projected annual rainfall decreases, additional water sources and management would be required. 
However, the initial and later warnings were not fully appreciated, even more so because all of Cape Town’s six 
major dams were totally filled by the end of the 2014 wet season. However, the following three-year period from 
2015-2017, all were drought years of increasing severity. Water storage declined rapidly and left the four million 
residents of Cape Town with dams at below 25% of capacity in January 2018 which, as the next wet season was 
several months away, was heading towards “Zero Day,” so-named when the supply capacity falls below a pre-
defined critical level of 13.5% [1]. Some pre-season rainfall in February 2018, and early-wet season rainfall in 
April and May, shifted Zero Day from April 2018 back to August 2018, and it might be avoided altogether in 2018 
if the wet season is near normal. However, the long-term threat of future critically low water storage levels remains. 
As in the case of droughts in other parts of the world that similarly are so heavily reliant on rainfall, there is now a 
focus on analyzing Cape Town droughts in a climate-driven context, with the aim of finding ways of avoiding 
future Zero Days. In particular, it is important to assess whether the recent extreme drought years of 2015 were part 
of natural variability or were a result of global climate change exacerbated by other factors such as population 
growth, significant changes in land use, and management of the existing water supply. 

Chapter 22 of the IPCC’s Fifth Assessment Report (AR5) Working Group 2 [2] provides an assessment of the 
impact of climate change and other factors on Africa in general, and South Africa, in particular, prior to the 
commencement of the 2015-2017 Cape Town drought.  Notably, [2, p.2012] stated that “A reduction in precipitation 
is likely over Northern Africa and the southwestern parts of South Africa by the end of the 21st century under the 
SRES A1B and A2 scenarios (medium to high confidence).”  It also suggested that “Climate change will interact with 
non-climate drivers and stressors to exacerbate vulnerability of agricultural systems, particularly in semi-arid areas 
(high confidence).”  

In this study, rainfall (in units of mm) and temperature (in Celsius) wet season annual means are used for the period 
1920-2017 to determine precisely how extreme was the 2015-2017 drought (in percentiles), among the recurring 
droughts affecting Cape Town that are revealed by almost a century of recorded data. These data also will be used to 
attribute the drought to a range of climate drivers that have relevance to Cape Town, using both traditional step-wise 
linear regression methods and non-linear machine learning techniques.  

2. Data and Methods 

2.1. Data 

Cape Town is situated at the southwest point of South Africa (Fig. 1). As drought in Cape Town is defined as a 
deficit of precipitation, historical precipitation data for Cape Town were obtained for the period 1920-2017. 
Additionally, since Cape Town has a Mediterranean climate, with nearly all the precipitation falling in the seven 
month cool season (April – October), totals for the cool season were calculated.  Owing to the warming climate which 
increases evaporation rate, the air temperature in Cape Town also was obtained.  As this study is concerned with 
apportioning the roles of established climate drivers and global warming in the attribution of drought, a set of tropical 
and Southern Hemispheric climate drivers were investigated as potential predictors of drought. The relationship 
between drought and air temperature is not linear.  At cold air temperatures, the saturated atmosphere holds less water 
than at warmer temperatures.  However, at high air temperatures, the evaporation rate is larger, hastening the onset of 
drought.  Once drought is initiated, the ground and vegetation become drier, and solar radiation no longer is used for 
photosynthesis or evaporation.  Therefore, there are fewer clouds present and a higher percentage of solar radiation 
heats the ground in a positive feedback.  For Cape Town, this relationship is indicated in the scatterplot of air 
temperature versus precipitation (Fig. 2). 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.10.323&domain=pdf
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focus on analyzing Cape Town droughts in a climate-driven context, with the aim of finding ways of avoiding 
future Zero Days. In particular, it is important to assess whether the recent extreme drought years of 2015 were part 
of natural variability or were a result of global climate change exacerbated by other factors such as population 
growth, significant changes in land use, and management of the existing water supply. 

Chapter 22 of the IPCC’s Fifth Assessment Report (AR5) Working Group 2 [2] provides an assessment of the 
impact of climate change and other factors on Africa in general, and South Africa, in particular, prior to the 
commencement of the 2015-2017 Cape Town drought.  Notably, [2, p.2012] stated that “A reduction in precipitation 
is likely over Northern Africa and the southwestern parts of South Africa by the end of the 21st century under the 
SRES A1B and A2 scenarios (medium to high confidence).”  It also suggested that “Climate change will interact with 
non-climate drivers and stressors to exacerbate vulnerability of agricultural systems, particularly in semi-arid areas 
(high confidence).”  

In this study, rainfall (in units of mm) and temperature (in Celsius) wet season annual means are used for the period 
1920-2017 to determine precisely how extreme was the 2015-2017 drought (in percentiles), among the recurring 
droughts affecting Cape Town that are revealed by almost a century of recorded data. These data also will be used to 
attribute the drought to a range of climate drivers that have relevance to Cape Town, using both traditional step-wise 
linear regression methods and non-linear machine learning techniques.  

2. Data and Methods 

2.1. Data 

Cape Town is situated at the southwest point of South Africa (Fig. 1). As drought in Cape Town is defined as a 
deficit of precipitation, historical precipitation data for Cape Town were obtained for the period 1920-2017. 
Additionally, since Cape Town has a Mediterranean climate, with nearly all the precipitation falling in the seven 
month cool season (April – October), totals for the cool season were calculated.  Owing to the warming climate which 
increases evaporation rate, the air temperature in Cape Town also was obtained.  As this study is concerned with 
apportioning the roles of established climate drivers and global warming in the attribution of drought, a set of tropical 
and Southern Hemispheric climate drivers were investigated as potential predictors of drought. The relationship 
between drought and air temperature is not linear.  At cold air temperatures, the saturated atmosphere holds less water 
than at warmer temperatures.  However, at high air temperatures, the evaporation rate is larger, hastening the onset of 
drought.  Once drought is initiated, the ground and vegetation become drier, and solar radiation no longer is used for 
photosynthesis or evaporation.  Therefore, there are fewer clouds present and a higher percentage of solar radiation 
heats the ground in a positive feedback.  For Cape Town, this relationship is indicated in the scatterplot of air 
temperature versus precipitation (Fig. 2). 
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Fig. 1. Map of South Africa showing Cape Town. 

Fig. 2. Cape Town air temperature vs. precipitation for each cool season from 1920-2017.  Red line is the kernel smoothed Gaussian fit. 

2.2. The 2015-2017 drought in a historical perspective 

With nearly a century of continuous precipitation temperature data available, the uniqueness of the recent drought 
can be assessed.  The quantiles of the cool season precipitation time series (Fig. 3) show that the 2015-2017 drought 
was unique as it was the first case of three consecutive years with rainfall totals less than the 10th percentile.  Previous 
droughts had only a single year with less than a 10 percentile precipitation (1926, 1973, 1978, 1994, 2003) or two 
consecutive years (2010-2011).  Moreover, the incidence of severe drought can be seen to increasing with time as the 
percentiles of the droughts from 1994 to 2017 become progressively smaller.  Over the same 1920-2017 time span, 
the cool-season temperature (Fig. 4) has been relatively stationary through ~1990, with only a single year (1963) 
reaching the 90th percentile and numerous years falling below the 15th percentile. After 1993, no year had an average 
cool-season temperature below the median and from 1999-2017 the average temperature was almost always above the 
85th percentile.  The years 2014-2017 recorded the warmest temperatures on record. This combination of increasingly 
persistent droughts combined with excessively warm temperatures resembles the recent California drought [3].  
Moreover, both locations have a Mediterranean climate with nearly all their annual precipitation occurring in the cool 
season.  If the cool season precipitation fails to materialize, both locations can run out of water. 
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Fig. 1. Map of South Africa showing Cape Town. 

Fig. 2. Cape Town air temperature vs. precipitation for each cool season from 1920-2017.  Red line is the kernel smoothed Gaussian fit. 
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Fig. 3. Cape Town cool season precipitation.  Quantiles are shown in dashed colored lines. 

Fig. 4. Cape Town cool season average temperature.  Quantiles are shown in dashed colored lines. 
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2.3. Potential climate drivers related to drought 

Relating the large-scale climate to drought is often accomplished through the use of recurrent atmospheric modes 
of variability, called climate drivers.  Whereas the Northern Hemisphere has a large catalogue of such drivers, fewer 
exist for the Southern Hemisphere.  In previous studies [4], [5], [6], tropical modes, such as El Niño indices have been 
examined as precursors of rainfall modulation in South Africa. Additionally, the Indian Ocean Dipole and the Southern 
Annular Mode are sometimes evaluated.  In the present study, the pool of atmospheric and oceanic climate drivers 
included the Southern Annular Mode (SAM), Atlantic Multidecadal Oscillation (AMO), Atlantic Meridional Mode 
(AMM), The Indian Ocean Dipole (DMI), Niño 3.4 sea surface temperatures (NINO), the Southern Oscillation Index 
(SOI) and, owing to the aforementioned relation between air temperature and precipitation, the cool season average 
temperature (CST), and the average temperature anomaly in the Southern Hemisphere.  Additionally (SHTA), along 
with all two-way interactions between these climate drivers (e.g., SAMxAMO,) were considered as potential 
attributes. 

3. Attribute selection and the potential for predicting drought 

3.1. Attribute selection 

Given the large number of potential attributes, some selection techniques were required to determine those that had 
the best performance in predicting the cool season precipitation in a cross-validation framework.  Both linear 
(correlation-based feature selection - Cfs) and non-linear (radial basis function support vector regression-SVR-feature 
selection) methods were assessed using ten-fold cross-validation.  The first type of attribute evaluator considered the 
individual predictive ability of each feature along with the degree of redundancy between by searching the space of 
attribute subsets by greedy hill climbing method [7].  Both forward (GreF) and backward (GreB) searches were used.  
The second type of attribute selection used the subset evaluation with a genetic search algorithm (Gen) as described 
by [8].  Additionally, a scatter-search algorithm (Scatt) was used to examine the space of attribute subsets [9].  Finally, 
a set of wrapper subset methods [10] were used with SVR employing a radial basis function kernel as a classifier for 
best forward, backward, genetic and scatter search evaluations (SVRGreF, SVRGreB, SVRGen, SVRScatt).  The 
number of times each attribute appeared in the ten folds was for a given method is shown in Table 1.  The goal was to 
find those variables that emerged across several types of evaluation.  The results are summarized for each column of 
Table 1 by the first four central moments.  Owing to the instance of more folds with zero or small percentages for each 
of the attributes, the four Cfs selection methods tends to have a smaller means than the support vector counterparts.  
The standard deviations are comparable.  The skewness statistic, for all but the genetic algorithm, for the Cfs were 
larger than those for SVR methods as there were more solutions with zero or low percentage folds in those methods; 
hence the outliers were those features with a high percentage of folds.  The kurtosis of each Cfs selection method, 
other than the genetic algorithm is larger for the Cfs methods.  In this context, kurtosis is a good proxy for column 
simplicity (i.e., more very small and very high percentage folds), so a positive kurtosis is associated with those 
techniques that select only a few attributes (e.g., greedy forward selection and greedy scatter search).  The SVR-based 
algorithms all are platykurtotic, suggesting less simplicity and selecting more attributes than their correlation-based 
counterparts. 

Analysis of Table 1 by row reveals those attributes that emerge across most or all methods (i.e., CST, SAM, AMO, 
DMI, DMIxCST, CSTxAMO).  Such attributes are characterized by large means, small standard deviations and near-
zero or negative skewness.  Those attributes that tend to emerge for either Cfs or SVR techniques alone (e.g., 
DMIxAMM, SHTAxCST, SHTAxAMO, SAMxAMO, AMOxSOI, AMMxSOI) have moderate means and larger 
standard deviations and negative kurtosis. In both cases, these attributes should be retained for further analysis.  
Additionally, certain attributes never/rarely appear under any selection method (e.g., SOI; NINO, DMIxSAM, 
DMIxSOI, SHTAxSAM, SHTAxNINO, CSTxSOI, SAMxNINO, and SAMxSOI) and have small means.  Such 
attributes can be discarded, a priori.   

.   
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Table 1. Attribute selection for eight different methods.  The percent of folds selecting the attribute is shown for each of the eight methods (columns 
2-9).  Statistics (mean, standard deviation, skewness and kurtosis) for each row and column are shown. 

Attribute/Method GreF GreB Gen Scatt SVRGreF SVRGreB SVRGen SVRScatt �̅ s skew kurt 

CST 100 100 80 100 90 100 100 100 96.2 7.4 -1.5 0.4 

SHTA 0 0 0 0 10 10 40 0 7.5 13.9 1.7 1.3 

SAM 60 90 100 60 80 70 80 50 73.8 16.9 0.1 -1.3 

AMO 100 80 80 90 70 90 70 80 82.5 10.4 0.3 -1.1 

AMM 0 20 60 10 40 50 50 30 32.5 21.2 -0.2 -1.5 

DMI 100 100 90 100 80 90 90 90 92.5 7.1 -0.3 -1.1 

NINO 0 0 10 0 0 10 10 10 5.0 5.3 0 -2.1 

SOI 0 0 0 0 0 0 0 0 0.0 0.0 NaN NaN 

DMIxSHTA 0 10 30 0 40 30 30 20 20.0 15.1 -0.2 -1.6 

DMIxCST 80 90 90 90 70 70 80 40 76.2 16.9 -1.2 0.3 

DMIxSAM 0 0 0 0 0 10 20 10 5.0 7.6 1.0 -0.6 

DMIxAMO 10 10 10 10 20 30 50 10 18.8 14.6 1.3 0.2 

DMIxAMM 20 30 60 20 80 90 80 90 58.8 30.9 -0.3 -1.8 

DMIxNINO 0 0 60 0 30 50 30 50 27.5 24.9 0.0 -1.8 

DMIxSOI 0 0 10 0 0 10 20 0 5.0 7.6 1.0 -0.6 

SHTAxCST 30 80 100 40 70 70 80 60 66.2 22.6 -0.3 -1.1 

SHTAxSAM 0 0 30 0 10 20 20 0 10.0 12.0 0.5 -1.5 

SHTAxAMO 10 20 60 20 70 90 80 80 53.8 32.0 -0.3 -1.8 

SHTAxAMM 0 0 10 0 20 40 30 20 15.0 15.1 0.4 -1.4 

SHTAxNINO 20 10 0 10 0 20 10 0 8.8 8.3 0.2 -1.5 

SHTAxSOI 0 0 50 0 10 20 40 10 16.2 19.2 0.8 -1.1 

CSTxSAM 0 0 70 0 30 30 40 0 21.2 25.9 0.7 -0.9 

CSTxAMO 60 60 90 60 80 100 100 100 81.2 18.9 -0.2 -1.9 

CSTxAMM 0 0 0 0 10 20 40 20 11.2 14.6 0.9 -0.6 

CSTxNINO 0 0 0 0 50 50 60 30 23.8 26.7 0.2 -1.9 

CSTxSOI 0 0 0 0 0 0 10 0 1.2 3.5 2.1 2.4 

SAMxAMO 10 50 100 20 80 60 90 100 63.8 35.0 -0.4 -1.5 

SAMxAMM 10 10 50 10 60 80 60 70 43.8 29.2 -0.2 -1.8 

SAMxNINO 0 0 0 0 0 10 30 10 6.2 10.6 1.5 0.7 

SAMxSOI 0 0 0 0 0 10 30 10 6.2 10.6 1.5 0.7 

AMOxAMM 0 0 10 0 20 30 40 20 15.0 15.1 0.4 -1.4 

AMOxNINO 0 0 0 0 10 20 50 10 11.2 17.3 1.5 0.7 

AMOxSOI 0 0 0 10 70 90 60 80 38.8 39.8 0.1 -2.0 

AMMxNINO 0 0 50 0 30 30 20 30 20.0 18.5 0.1 -1.4 

AMMxSOI 20 50 40 10 80 90 80 80 56.2 30.7 -0.4 -1.6 

NINOxSOI 0 0 10 0 40 60 40 40 23.8 23.9 0.2 -1.7 

�̅ 17.5 22.5 37.5 18.3 37.5 45.8 48.9 37.5     

s 31.7 34.4 36.8 31.5 31.9 32.7 28.2 35.0     

skew 1.8 1.3 0.4 1.7 0.2 0.3 0.2 0.6     

kurt 1.6 -0.1 -1.4 1.4 -1.6 -1.4 -1.1 -1.2     
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2.3. Potential climate drivers related to drought 

Relating the large-scale climate to drought is often accomplished through the use of recurrent atmospheric modes 
of variability, called climate drivers.  Whereas the Northern Hemisphere has a large catalogue of such drivers, fewer 
exist for the Southern Hemisphere.  In previous studies [4], [5], [6], tropical modes, such as El Niño indices have been 
examined as precursors of rainfall modulation in South Africa. Additionally, the Indian Ocean Dipole and the Southern 
Annular Mode are sometimes evaluated.  In the present study, the pool of atmospheric and oceanic climate drivers 
included the Southern Annular Mode (SAM), Atlantic Multidecadal Oscillation (AMO), Atlantic Meridional Mode 
(AMM), The Indian Ocean Dipole (DMI), Niño 3.4 sea surface temperatures (NINO), the Southern Oscillation Index 
(SOI) and, owing to the aforementioned relation between air temperature and precipitation, the cool season average 
temperature (CST), and the average temperature anomaly in the Southern Hemisphere.  Additionally (SHTA), along 
with all two-way interactions between these climate drivers (e.g., SAMxAMO,) were considered as potential 
attributes. 

3. Attribute selection and the potential for predicting drought 

3.1. Attribute selection 

Given the large number of potential attributes, some selection techniques were required to determine those that had 
the best performance in predicting the cool season precipitation in a cross-validation framework.  Both linear 
(correlation-based feature selection - Cfs) and non-linear (radial basis function support vector regression-SVR-feature 
selection) methods were assessed using ten-fold cross-validation.  The first type of attribute evaluator considered the 
individual predictive ability of each feature along with the degree of redundancy between by searching the space of 
attribute subsets by greedy hill climbing method [7].  Both forward (GreF) and backward (GreB) searches were used.  
The second type of attribute selection used the subset evaluation with a genetic search algorithm (Gen) as described 
by [8].  Additionally, a scatter-search algorithm (Scatt) was used to examine the space of attribute subsets [9].  Finally, 
a set of wrapper subset methods [10] were used with SVR employing a radial basis function kernel as a classifier for 
best forward, backward, genetic and scatter search evaluations (SVRGreF, SVRGreB, SVRGen, SVRScatt).  The 
number of times each attribute appeared in the ten folds was for a given method is shown in Table 1.  The goal was to 
find those variables that emerged across several types of evaluation.  The results are summarized for each column of 
Table 1 by the first four central moments.  Owing to the instance of more folds with zero or small percentages for each 
of the attributes, the four Cfs selection methods tends to have a smaller means than the support vector counterparts.  
The standard deviations are comparable.  The skewness statistic, for all but the genetic algorithm, for the Cfs were 
larger than those for SVR methods as there were more solutions with zero or low percentage folds in those methods; 
hence the outliers were those features with a high percentage of folds.  The kurtosis of each Cfs selection method, 
other than the genetic algorithm is larger for the Cfs methods.  In this context, kurtosis is a good proxy for column 
simplicity (i.e., more very small and very high percentage folds), so a positive kurtosis is associated with those 
techniques that select only a few attributes (e.g., greedy forward selection and greedy scatter search).  The SVR-based 
algorithms all are platykurtotic, suggesting less simplicity and selecting more attributes than their correlation-based 
counterparts. 

Analysis of Table 1 by row reveals those attributes that emerge across most or all methods (i.e., CST, SAM, AMO, 
DMI, DMIxCST, CSTxAMO).  Such attributes are characterized by large means, small standard deviations and near-
zero or negative skewness.  Those attributes that tend to emerge for either Cfs or SVR techniques alone (e.g., 
DMIxAMM, SHTAxCST, SHTAxAMO, SAMxAMO, AMOxSOI, AMMxSOI) have moderate means and larger 
standard deviations and negative kurtosis. In both cases, these attributes should be retained for further analysis.  
Additionally, certain attributes never/rarely appear under any selection method (e.g., SOI; NINO, DMIxSAM, 
DMIxSOI, SHTAxSAM, SHTAxNINO, CSTxSOI, SAMxNINO, and SAMxSOI) and have small means.  Such 
attributes can be discarded, a priori.   

.   
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Table 1. Attribute selection for eight different methods.  The percent of folds selecting the attribute is shown for each of the eight methods (columns 
2-9).  Statistics (mean, standard deviation, skewness and kurtosis) for each row and column are shown. 

Attribute/Method GreF GreB Gen Scatt SVRGreF SVRGreB SVRGen SVRScatt �̅ s skew kurt 

CST 100 100 80 100 90 100 100 100 96.2 7.4 -1.5 0.4 

SHTA 0 0 0 0 10 10 40 0 7.5 13.9 1.7 1.3 

SAM 60 90 100 60 80 70 80 50 73.8 16.9 0.1 -1.3 

AMO 100 80 80 90 70 90 70 80 82.5 10.4 0.3 -1.1 

AMM 0 20 60 10 40 50 50 30 32.5 21.2 -0.2 -1.5 

DMI 100 100 90 100 80 90 90 90 92.5 7.1 -0.3 -1.1 

NINO 0 0 10 0 0 10 10 10 5.0 5.3 0 -2.1 

SOI 0 0 0 0 0 0 0 0 0.0 0.0 NaN NaN 

DMIxSHTA 0 10 30 0 40 30 30 20 20.0 15.1 -0.2 -1.6 

DMIxCST 80 90 90 90 70 70 80 40 76.2 16.9 -1.2 0.3 

DMIxSAM 0 0 0 0 0 10 20 10 5.0 7.6 1.0 -0.6 

DMIxAMO 10 10 10 10 20 30 50 10 18.8 14.6 1.3 0.2 

DMIxAMM 20 30 60 20 80 90 80 90 58.8 30.9 -0.3 -1.8 

DMIxNINO 0 0 60 0 30 50 30 50 27.5 24.9 0.0 -1.8 

DMIxSOI 0 0 10 0 0 10 20 0 5.0 7.6 1.0 -0.6 

SHTAxCST 30 80 100 40 70 70 80 60 66.2 22.6 -0.3 -1.1 

SHTAxSAM 0 0 30 0 10 20 20 0 10.0 12.0 0.5 -1.5 

SHTAxAMO 10 20 60 20 70 90 80 80 53.8 32.0 -0.3 -1.8 

SHTAxAMM 0 0 10 0 20 40 30 20 15.0 15.1 0.4 -1.4 

SHTAxNINO 20 10 0 10 0 20 10 0 8.8 8.3 0.2 -1.5 

SHTAxSOI 0 0 50 0 10 20 40 10 16.2 19.2 0.8 -1.1 

CSTxSAM 0 0 70 0 30 30 40 0 21.2 25.9 0.7 -0.9 

CSTxAMO 60 60 90 60 80 100 100 100 81.2 18.9 -0.2 -1.9 

CSTxAMM 0 0 0 0 10 20 40 20 11.2 14.6 0.9 -0.6 

CSTxNINO 0 0 0 0 50 50 60 30 23.8 26.7 0.2 -1.9 

CSTxSOI 0 0 0 0 0 0 10 0 1.2 3.5 2.1 2.4 

SAMxAMO 10 50 100 20 80 60 90 100 63.8 35.0 -0.4 -1.5 

SAMxAMM 10 10 50 10 60 80 60 70 43.8 29.2 -0.2 -1.8 

SAMxNINO 0 0 0 0 0 10 30 10 6.2 10.6 1.5 0.7 

SAMxSOI 0 0 0 0 0 10 30 10 6.2 10.6 1.5 0.7 

AMOxAMM 0 0 10 0 20 30 40 20 15.0 15.1 0.4 -1.4 

AMOxNINO 0 0 0 0 10 20 50 10 11.2 17.3 1.5 0.7 

AMOxSOI 0 0 0 10 70 90 60 80 38.8 39.8 0.1 -2.0 

AMMxNINO 0 0 50 0 30 30 20 30 20.0 18.5 0.1 -1.4 

AMMxSOI 20 50 40 10 80 90 80 80 56.2 30.7 -0.4 -1.6 

NINOxSOI 0 0 10 0 40 60 40 40 23.8 23.9 0.2 -1.7 

�̅ 17.5 22.5 37.5 18.3 37.5 45.8 48.9 37.5     

s 31.7 34.4 36.8 31.5 31.9 32.7 28.2 35.0     

skew 1.8 1.3 0.4 1.7 0.2 0.3 0.2 0.6     

kurt 1.6 -0.1 -1.4 1.4 -1.6 -1.4 -1.1 -1.2     



254 Michael B. Richman et al. / Procedia Computer Science 140 (2018) 248–257
 Richman and Leslie / Procedia Computer Science 00 (2018) 000–000   

To examine the similarity of the variable selection methods, an average linkage cluster analysis of the Euclidean 
distance was performed on the ensemble of methods.  The dendrogram (Fig. 5) shows all but the genetic algorithm 
search correlation-based feature subset selection methods are clustered.  The SVM-based methods are in a separate 
cluster.  This reinforces the analysis of the aforementioned subjective analysis of the percentage of folds in Table 1 
by each selection method.   

 Fig. 5. Average Linkage cluster dendrogram. 

Determining the underlying dimensionality and structure of the feature selection ensemble was accomplished by 
application of principal component analysis (PCA).  The correlation structure of the fold information in Table 1 served 
as the basis for the analysis.  Three eigenvalues statistically separated from zero were present, suggesting three unique 
principal components (PCs). The eigenvectors were post-multiplied by the square root of their corresponding 
eigenvalue to create PC loadings.  The three PC loadings were rotated orthogonally and their pairwise plots (Fig. 6) 
showed the PC loadings were not aligned with the PC axes, occupying the space between the axes.  Such a 
configuration is indicative of an overly orthogonal frame, so an oblique rotation (Promax) was used. The Promax PC 
loadings were plotted (Fig. 6), showing near-perfect alignment of the PC axes with the clusters of attributes.  The 
interpretation of Fig 6 is that the three dimensions are all SVR selection methods on PC1, all but the genetic Cfs 
algorithm on PC2 and the Cfs genetic algorithm on PC3.  Such an interpretation is consistent with the cluster analysis, 
but the PCA adds value as a specific dimensionality emerges and the Promax rotation finds an excellent simple 
structure [11] with specific Promax PC loadings weighting for each technique (Table 2). 

3.2. Prediction of drought 

Owing to previous success in prediction of California drought [3], SVR was applied to assess the potential to predict 
Cape Town precipitation.  The cool-season precipitation served as the target and the aforementioned climate drivers 
passing the variable selection from section 3.1 serve as attributes.  Both polynomial and radial basis function SVR 
were employed.  A ten-fold cross validation was employed to gather statistics on the goodness of the model.  Attributes 
with near-zero weights were discarded to construct a more parsimonious model, removing a single attribute and re-
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testing the model.  The SVR polynomial model maximized the 10-fold cross validation with the following attributes: 
CST, AMM, DMI, DMIxAMM, CSTxAMO, CSTxAMM and SAMxAMM.  The cross-validated statistics are shown 
in Table 3 as well as the model errors in recent drought years. The same attributes were used for the RBF SVR with 
nearly equal accuracy in the cross-validation (Table 3).  The predicted and observed values for the various folds in 
leave one of cross-validation are shown in Fig. 7. 

Fig. 6. Biplots for the 3 PC Promax solution.

Table 2. Promax rotated PC (RPC) loadings for 3 PC solution. 

Attribute Selection Method RPC 1 RPC 2 RPC 3 

GreF 0.0 1.07 -0.10 

GreB -0.06 0.74 0.25 

Gen -0.03 0.0 0.97 

Scat -0.03 0.99 -0.02 

SVRGreF -0.88 -0.01 0.15 

SVRGreB -1.02 0.05 -0.10 

SVRGen -0.79 0.10 0.11 

SVRScat -1.04 -0.04 -0.06 
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To examine the similarity of the variable selection methods, an average linkage cluster analysis of the Euclidean 
distance was performed on the ensemble of methods.  The dendrogram (Fig. 5) shows all but the genetic algorithm 
search correlation-based feature subset selection methods are clustered.  The SVM-based methods are in a separate 
cluster.  This reinforces the analysis of the aforementioned subjective analysis of the percentage of folds in Table 1 
by each selection method.   

 Fig. 5. Average Linkage cluster dendrogram. 

Determining the underlying dimensionality and structure of the feature selection ensemble was accomplished by 
application of principal component analysis (PCA).  The correlation structure of the fold information in Table 1 served 
as the basis for the analysis.  Three eigenvalues statistically separated from zero were present, suggesting three unique 
principal components (PCs). The eigenvectors were post-multiplied by the square root of their corresponding 
eigenvalue to create PC loadings.  The three PC loadings were rotated orthogonally and their pairwise plots (Fig. 6) 
showed the PC loadings were not aligned with the PC axes, occupying the space between the axes.  Such a 
configuration is indicative of an overly orthogonal frame, so an oblique rotation (Promax) was used. The Promax PC 
loadings were plotted (Fig. 6), showing near-perfect alignment of the PC axes with the clusters of attributes.  The 
interpretation of Fig 6 is that the three dimensions are all SVR selection methods on PC1, all but the genetic Cfs 
algorithm on PC2 and the Cfs genetic algorithm on PC3.  Such an interpretation is consistent with the cluster analysis, 
but the PCA adds value as a specific dimensionality emerges and the Promax rotation finds an excellent simple 
structure [11] with specific Promax PC loadings weighting for each technique (Table 2). 

3.2. Prediction of drought 

Owing to previous success in prediction of California drought [3], SVR was applied to assess the potential to predict 
Cape Town precipitation.  The cool-season precipitation served as the target and the aforementioned climate drivers 
passing the variable selection from section 3.1 serve as attributes.  Both polynomial and radial basis function SVR 
were employed.  A ten-fold cross validation was employed to gather statistics on the goodness of the model.  Attributes 
with near-zero weights were discarded to construct a more parsimonious model, removing a single attribute and re-
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testing the model.  The SVR polynomial model maximized the 10-fold cross validation with the following attributes: 
CST, AMM, DMI, DMIxAMM, CSTxAMO, CSTxAMM and SAMxAMM.  The cross-validated statistics are shown 
in Table 3 as well as the model errors in recent drought years. The same attributes were used for the RBF SVR with 
nearly equal accuracy in the cross-validation (Table 3).  The predicted and observed values for the various folds in 
leave one of cross-validation are shown in Fig. 7. 

Fig. 6. Biplots for the 3 PC Promax solution.

Table 2. Promax rotated PC (RPC) loadings for 3 PC solution. 

Attribute Selection Method RPC 1 RPC 2 RPC 3 

GreF 0.0 1.07 -0.10 

GreB -0.06 0.74 0.25 

Gen -0.03 0.0 0.97 

Scat -0.03 0.99 -0.02 

SVRGreF -0.88 -0.01 0.15 

SVRGreB -1.02 0.05 -0.10 

SVRGen -0.79 0.10 0.11 

SVRScat -1.04 -0.04 -0.06 
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Table 3. SVR model accuracy in 10 fold cross-validation (columns 2 and 3) and in predicting the 2015-2017 cool-season rainfall (columns 4-6) 

Model/Statistic Correlation MAE (mm) 2015 error (mm) 2016 error (mm) 2017 error (mm) 

Polynomial SVR 
(Poly, E=1, C=1) 

0.561 73.04 -20.0 +52.3 +116.0 

Radial Basis Function 
SVR (G=. 02, C= 50) 

0.562 72.61 -27.0 +32.9 +115.9 

Fig. 7. Precipitation for each fold using leave one out cross-validations for (a) SVR polynomial and (b) SVR RBF models. 

4. Conclusions and Future Work 

By detailed application of an ensemble of attribute selection techniques and support vector regression, cross-
validated prediction of precipitation was made.  The correlation between the actual and modeled precipitation was 
~0.56 for the two SVR methods tested.  The key result is that the traditional use of the El Niño sea surface temperatures 
(in a region known as Niño 3.4), or the El Niño atmospheric response (known as the Southern Oscillation Index), for 
precipitation prediction was found to be ineffective for this Cape Town study.  Linear regression of each of those two 
attributes (not shown herein) gave R2 values of 0.004 and 0.001, respectively.  The decreased attribution and predictive 
capacity of ENSO phases, which for a long period of time have formed the basis for seasonal and climate outlooks, is 
alarming. To mention just one example of many, the Australian Bureau of Meteorology’s seasonal tropical cyclone, 
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temperature and precipitation outlooks all rely heavily on ENSO phase projections [12]. Adding additional attributes 
and applying machine learning techniques to winnow the number of predictors can be at least moderately effective in 
increasing the predictive capability [13].  The detection of other climate drivers now is of paramount importance to 
increase the accuracy of climate projections.  Although arduous, this can be accomplished through a grid search of 
attributes in the global ocean and atmosphere, applying rank correlation between the attribute at each grid location 
and Cape Town precipitation as an importance metric. 

Based on our findings in the present study, future work will be carried out on temperature predictions for Cape 
Town and, more generally, for the Southwest Cape region of South Africa.  As mentioned in the Introduction, this 
region has been identified as one on which has been identified by the IPCC as being vulnerable to the combined 
impacts of lower rainfall, increasing temperature, and indirect or non-climate factors, such as rapid population growth 
and massive land use changes.  All these factors should be the subject of future research in leading to extended 
droughts. The long term, limited definition of drought in terms of precipitation deficits has now been recognized and 
studies addressing drought that include other factors now are necessary. To do so requires, among other factors, an 
increased emphasis on Southern Hemisphere climate driver modes, and on current and projected population growth 
and land use change estimates. 
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capacity of ENSO phases, which for a long period of time have formed the basis for seasonal and climate outlooks, is 
alarming. To mention just one example of many, the Australian Bureau of Meteorology’s seasonal tropical cyclone, 
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temperature and precipitation outlooks all rely heavily on ENSO phase projections [12]. Adding additional attributes 
and applying machine learning techniques to winnow the number of predictors can be at least moderately effective in 
increasing the predictive capability [13].  The detection of other climate drivers now is of paramount importance to 
increase the accuracy of climate projections.  Although arduous, this can be accomplished through a grid search of 
attributes in the global ocean and atmosphere, applying rank correlation between the attribute at each grid location 
and Cape Town precipitation as an importance metric. 

Based on our findings in the present study, future work will be carried out on temperature predictions for Cape 
Town and, more generally, for the Southwest Cape region of South Africa.  As mentioned in the Introduction, this 
region has been identified as one on which has been identified by the IPCC as being vulnerable to the combined 
impacts of lower rainfall, increasing temperature, and indirect or non-climate factors, such as rapid population growth 
and massive land use changes.  All these factors should be the subject of future research in leading to extended 
droughts. The long term, limited definition of drought in terms of precipitation deficits has now been recognized and 
studies addressing drought that include other factors now are necessary. To do so requires, among other factors, an 
increased emphasis on Southern Hemisphere climate driver modes, and on current and projected population growth 
and land use change estimates. 
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