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Abstract

Background: Seasonal variation has an impact on the hospitalization rate of patients with a range of cardiovascular diseases,
including myocardial infarction and angina. This paper presents findings on the influence of seasonal variation on the results of
a recently completed national trial of home telemonitoring of patients with chronic conditions, carried out at five locations along
the east coast of Australia.
Objective: The aim is to evaluate the effect of the seasonal timing of hospital admission and length of stay on clinical outcome
of a home telemonitoring trial involving patients (age: mean 72.2, SD 9.4 years) with chronic conditions (chronic obstructive
pulmonary disease coronary artery disease, hypertensive diseases, congestive heart failure, diabetes, or asthma) and to explore
methods of minimizing the influence of seasonal variations in the analysis of the effect of at-home telemonitoring on the number
of hospital admissions and length of stay (LOS).
Methods: Patients were selected from a hospital list of eligible patients living with a range of chronic conditions. Each test
patient was case matched with at least one control patient. A total of 114 test patients and 173 control patients were available in
this trial. However, of the 287 patients, we only considered patients who had one or more admissions in the years from 2010 to
2012. Three different groups were analyzed separately because of substantially different climates: (1) Queensland, (2) Australian
Capital Territory and Victoria, and (3) Tasmania. Time series data were analyzed using linear regression for a period of 3 years
before the intervention to obtain an average seasonal variation pattern. A novel method that can reduce the impact of seasonal
variation on the rate of hospitalization and LOS was used in the analysis of the outcome variables of the at-home telemonitoring
trial.
Results: Test patients were monitored for a mean 481 (SD 77) days with 87% (53/61) of patients monitored for more than 12
months. Trends in seasonal variations were obtained from 3 years’ of hospitalization data before intervention for the Queensland,
Tasmania, and Australian Capital Territory and Victoria subgroups, respectively. The maximum deviation from baseline trends
for LOS was 101.7% (SD 42.2%), 60.6% (SD 36.4%), and 158.3% (SD 68.1%). However, by synchronizing outcomes to the
start date of intervention, the impact of seasonal variations was minimized to a maximum of 9.5% (SD 7.7%), thus improving
the accuracy of the clinical outcomes reported.
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Conclusions: Seasonal variations have a significant effect on the rate of hospital admission and LOS in patients with chronic
conditions. However, the impact of seasonal variation on clinical outcomes (rate of admissions, number of hospital admissions,
and LOS) of at-home telemonitoring can be attenuated by synchronizing the analysis of outcomes to the commencement dates
for the telemonitoring of vital signs.
Trial Registration: Australian New Zealand Clinical Trial Registry ACTRN12613000635763;
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364030&isReview=true (Archived by WebCite at
http://www.webcitation.org/ 6xLPv9QDb)

(JMIR Med Inform 2018;6(1):e16)   doi:10.2196/medinform.9680
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Introduction

Telehealth systems in at-home, primary care, and hospital-based
settings have been extensively investigated for more than 20
years [1-5]. Large health care organizations, such as the Veterans
Administration in the United States and the National Health
Service in the United Kingdom, have already adopted a range
of telehealth solutions [6]. Employment of telehealth services
for the management of patients with chronic conditions has
progressively increased in recent years because of population
aging and the increasing burden of chronic disease, along with
the availability of low-cost monitoring technology.

Several trials have been carried out to analyze clinical, service,
and economic benefits of telehealth systems [7,8]. These
analyses are crucial to encourage wide-scale implementation of
telehealth services. However, to the authors’ best knowledge,
no study has examined the impact of seasonal timing of hospital
admission and length of stay (LOS) on clinical outcomes of a
home telemonitoring trial.

This paper discusses the possible effect of seasonal variations
on the clinical outcomes of a recently completed Commonwealth
Scientific and Industrial Research Organization (CSIRO) trial
of home monitoring for chronic disease management, carried
out at several locations along the east coast of Australia [9]. The
aim of this trial was to investigate health care outcomes as well
as clinical and economic benefits of telehealth systems by
introducing a telehealth model of service based on at-home
telemonitoring of vital signs to patients with a range of chronic
conditions supervised in either in hospital-based or
community-based settings. The clinical protocols for the trial
[9], the data architecture design [10], decision support and
statistical trend analysis of vital signs data [11], and the impact
of telemonitoring on health care expenditure, hospital
admissions, and LOS [8] have been published previously.

In this paper, we introduce a novel method to estimate seasonal
trends in hospitalization data of 136 patients with cardiovascular
disease, respiratory disease, and diabetes over 3 years (January
1, 2010 to December 31, 2012), recruited in the CSIRO National
Telehealth Trial. The final hypothesis in this paper is to show
that seasonal variations can be minimized to have little or no
significant influence on the clinical outcomes reported for the
CSIRO National Telehealth Trial.

Methods

Research Ethics Committee Approval
The CSIRO Human Research Ethics Committee (HREC) as
well as five other local HRECs approved the clinical trial
protocol for this study (Approval Number: 13/04, March 25,
2013).

Patient Selection
In this trial, 1429 eligible patients from hospital lists provided
by local health districts and patients known to clinical staff
formed a Master Register. The local health districts were located
in the states of Queensland, New South Wales, the Australian
Capital Territory, and Tasmania. Inclusion criteria were
thoroughly described in a previous article [9]; for convenience,
we briefly summarize them here: age 50 years and older; at least
two unplanned acute admissions during the previous 12 months
or at least four unplanned acute admissions during the previous
5 years, with a principal diagnosis of coronary artery disease,
congestive heart failure, hypertensive diseases, chronic
obstructive pulmonary disease (COPD), asthma, or diabetes.
Patients with compromised cognitive function, a neuromuscular
disease, cancer, or a psychiatric condition were excluded from
the trial. From the Master Register, 479 were deemed eligible
and were contactable following individual screening.

Of the 479 eligible patients, only 287 could commence the trial,
of which 114 were allocated to the telemonitoring test group
and 173 were allocated to the control group [8]. The test patients
were supplied with a telemonitoring system and trained on its
use at installation, whereas the control group received only
normal care through their primary care physician. Of the 287
patients monitored in this trial, we only considered patients who
had one or more admissions in the years 2010 to 2012. With
this additional inclusion criterion, 61 patients from the test group
and 75 patients from the control group were selected to estimate
the seasonal variation trends in the three years of 2010 to 2012.
Figure 1 summarizes the patient selection process for this study.

However, because the telemonitoring intervention was only
experienced by the 61 test patients, only these patients could
be considered when evaluating the effect of seasonal variations
on outcome variables, noting that the start of the intervention
was synchronized for all test patients, considering each of the
three climate subgroups separately.
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Figure 1. Final cohort of seasonal variation group.

Definition of Seasons
The temperate zone along the eastern seaboard of Australia
occupies the coastal hinterland of New South Wales, much of
Victoria, and Tasmania. Hence, the four test sites in this trial
are located in the temperate zone where seasons, in terms of
European seasons applied to the southern hemisphere, are
described as follows: summer (December to February), autumn
(March to May), winter (June to August), and spring (September
to November).

However, the fifth trial site, Townsville in Queensland, is within
a subtropical zone, which is dominated by two distinct seasons:
the wet season in summer (November to April) and the dry
season in winter (May to October). Summer months in this city
are generally hot and humid with day temperatures often around
29°C to 31°C and night temperatures around 20°C to 24°C.
Winter months are generally warm to mild with day
temperatures often around 25°C to 29°C and night temperatures
around 13°C to 18°C.

Regression Modeling
The number of hospital admissions and LOS were analyzed as
outcome variables in this study. As discussed in a previous
article [8], all the outcome variables of this trial, including
admission rates and LOS, were expected to increase over time
because the patients involved in this trial were chronically ill
and aging. To remove the aging effects from the 3 years’ of
hospitalization data, we fitted a linear model with the calendar
months of the year as variables (3 years=36 months).

To implement this, the admission rate and LOS were summed
for all patients within each calendar month of the year. The
monthly time course of 3 years’ of data was then modeled using
linear regression to identify statistically significant differences
in admission rates and LOS slopes.

We used the “fit” command in the MATLAB (The MathWorks
Inc) statistics toolbox to carry out linear regression. To obtain
95% prediction intervals, the command “predObs” was used to

plot 95% prediction intervals. A 95% prediction interval is an
estimate of an interval in which future observations will fall,
with 95% probability, given what has already been observed.

Moreover, different standard goodness-of-fit measures, including
the coefficient of determination (R2), the R2 value adjusted for
degrees of freedom, the residual sum of squares, and the standard
error or root mean square error were considered.

Following the derivation of a linear model (baseline) in this
study, we replaced the absolute vales of outcome variables (rate
of admission, number of hospital admissions, and LOS) with
percentage deviation from the baseline. The deviation from
baseline was defined as the distance between each observations
point (outcome variable at each month) and its corresponding
point at baseline, which was estimated by the linear regression
line of best fit . Then, a yearly seasonal variation trend was
obtained by averaging over each calendar month the percentage
deviation from baseline over the 3 years’ of data available.

Seasonal Effects on Outcome Variables
During interventions, the 61 test patients were monitored for a
mean 481 (SD 77) days with no significant difference between
average monitoring durations for female patients (mean 498,
SD 82 days) and male patients (mean 463, SD 67 days). Of the
61 test patients, 87% (53/61) were monitored for periods
exceeding 12 months.

As proposed in a previous article [8], a possible method to
minimize the impact of seasonal variation on the outcomes of
the telemonitoring trial is to synchronize medical,
pharmaceutical, and hospital data to the date when the
telemonitoring commenced, thus effectively smoothing the
effect of seasonal variations. However, no accurate analysis was
given in that article on the effect of time synchronization
compared to using actual monitoring durations.

Hence, to compare these two methods, we compensated for the
effect of seasonal variation on each patient monthly data point
by using the yearly seasonal variation model obtained previously
from 3 years’ of hospital data.
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Statistical Analysis
To determine the statistical significance of the differences
between subgroups, a two-sample t test was performed for
continuous variables and the Wilcoxon rank sum test was carried
out for skewed variables. For describing baseline characteristics,
we used means and standard deviations for continuous
symmetrical variables and medians and 95% confidence
intervals for skewed data.

Categorical variables are also presented as counts and
percentages. All statistical tests were two-tailed, and P<.05 was
considered statistically significant. Statistical analyses were
performed using MATLAB (R2016b) and Microsoft Excel.

Results

Findings
Basic demographics of seasonal variation group in the study
are given in Table 1. There were no significant differences in
age between test patients in each of the five sites and between
male and female patients. Test patients continued to be
monitored in their own home, and no patient requested a
relocation of their telemonitoring equipment to another location
during the trial.

In this study, 58.1% (79/136) of the patients were male and
41.9% (57/136) were female. Most patients included in this
study had more than one condition listed as a primary diagnosis,
but for simplicity, primary disease conditions were grouped in

the broad categories of cardiovascular disease (n=55), respiratory
disease (n=66), and diabetes (n=15).

The 136 combined test and control patients were admitted to
hospital 817 times during 2010 to 2012, with a total LOS of
3627 days. Adopting the same definition of season for the site
in Queensland, the highest number of patients were admitted
during spring (218/817, 26.7%) followed by winter (216/817,
26.4%), autumn (207/817, 25.3%), and summer (176/817,
21.5%). Excluding winter, the number of hospital admissions
was significantly higher in spring compared to other seasons
(P values versus winter, autumn, and summer were .86, .04,
and .02, respectively).

However, LOS was higher during winter (1007/3627, 27.76%)
followed by spring (990/3627, 27.30%), and autumn (916/3627,
25.26%). Overall LOS was shorter during summer (714/3627,
19.69%). Except for spring, LOS was significantly longer in
winter compared to other seasons (P values versus spring,
autumn, and summer were .62, .03, and .01, respectively).

We considered three different groupings because of substantially
different climates: (1) Queensland (subtropical), (2) Australian
Capital Territory and Victoria (temperate), and (3) Tasmania
(colder). Regarding Queensland, because only two distinct
seasons (winter and summer) are notable, we compared the
variables for these two seasons. The number of hospital
admission and overall LOS were significantly higher and longer
in winter (hospital admissions=157, LOS=633 days) compared
to summer (hospital admissions=98, P=.01; LOS=338 days,
P=.02).

Table 1. Basic demographics of seasonal variation patients.

DemographicsLocation

Female patient age,
mean (SD)

Female, nMale patient age,
mean (SD)

Male, nPatient age,
mean (SD)

Patients, n

Tasmania

69.9 (6.6)970.5 (11.0)1470.3 (9.4)23Test

71.6 (10.1)2073.5 (8.1)2572.7 (9.0)45Control

Australian Capital Territory

73.1 (7.4)370.4 (8.4)871.1 (7.9)11Test

77.3 (8.4)673.3 (7.4)775.8 (7.8)13Control

Victoria

62.1 (6.4)368.6 (4.5)365.4 (6.1)6Test

76.1 (0)1—076.1 (0)1Control

Queensland

73.8 (12.4)968.7 (8.9)1270.9 (10.5)21Test

73.9 (7.6)674.5 (7.9)1074.3 (7.5)16Control

Total

70.8 (9.5)2469.7 (9.1)3770.2 (9.2)61Test

73.2 (9.3)3373.7 (7.7)4273.5 (8.4)75Control

72.2 (9.4)5771.9 (8.6)7972.0 (8.9)136All
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For Australian Capital Territory and Victoria, the maximum
number of admissions was in spring (43/119, 36.1%) followed
by winter (34/119, 28.6%), autumn (21/119, 17.7%), and
summer (21/119, 17.7%). Although hospital admissions were
not significantly higher in spring compared to winter (P=.48),
they were significantly higher than for autumn (P=.009) and
summer (P=.01). Furthermore, the longest LOS was during
spring (192/478, 40.2%), followed by winter (138/478, 28.9%),
summer (75/478, 15.5%), and autumn (73/478, 15.1%). LOS
was significantly longer in spring compared to autumn (P=.004)
and summer (P=.01), but not significantly different from winter
(P=.32), thus matching the results obtained for the number of
hospital admissions. No significant differences were observed
for Tasmania between seasons (hospital admissions: 107, 109,
114, 113; LOS: 522, 554, 645, 457 for winter, spring, autumn,
and summer, respectively). These results are summarized in
Table 2.

Obtaining Seasonal Trends
The objective here is to explain the procedure for obtaining
seasonal trends. As mentioned earlier, three different climate
subgroups were considered: (1) Queensland (subtropical), (2)
Australian Capital Territory and Victoria (temperate), and (3)
Tasmania (colder). As a result, three subtrends were obtained
for the three climate subgroups, accordingly. Note also that due
to space constraints, we only show the analysis for one subgroup
(Queensland) here. Other seasonal trends for other subgroups
were obtained using the same method. Additionally, because
there was a strong positive correlation between number of
hospital admissions and LOS (Figure 2), we only studied LOS
as the outcome variable. The data in Figure 2 suggest that, for
these patients, each admission resulted in an average LOS of
6.31 days.

Table 2. Seasonal variation in hospital admissions and length of stay (LOS).

P (winter vs)aTotal, n (%)Season, n (%)Location

SpringAutumnSummerSpringWinterAutumnSummer

Tasmania

.74.38.51443 (54.2)109 (24.6)107 (24.2)114 (25.7)113 (25.5)Admissions

.59.62.382178 (60.0)554 (25.4)522 (24.0)645 (29.6)457 (21.0)LOS

Australian Capital Territory and Victoria

.48.06.08119 (14.6)43 (36.1)34 (28.6)21 (17.7)21 (17.7)Admissions

.32.04.14478 (13.2)192 (40.2)138 (28.9)73 (15.3)75 (15.7)LOS

Queensland

——.01255 (31.2)—157 (61.6)—98 (38.4)Admissions

——.02971 (26.8)—633 (65.2)—338 (34.8)LOS

aP values were calculated using the Wilcoxon rank sum test.

Figure 2. Length of stay (LOS) versus hospital admissions for 136 (test and control) patients in years 2010 to 2012. Correlation coefficient=0.86. Solid
line is the linear regression line (slope=6.31, intercept=–11.17, R2=.73), and dotted lines are 95% prediction bounds (slope=4.98, 7.63 and intercept=–36.59,
14.24).
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Removing Aging Effects Via Linear Regression
Analysis
Figure 3 shows the LOS summed over each calendar month of
the 3 years before the intervention for the Queensland subgroup.
To estimate and remove the aging effects from the 3 years’ of
hospitalization data, a linear model including the calendar
months of the year as variables (3 years=36 months) was fitted.
The solid line in Figure 3 is the linear regression line (LOS:
slope=3.93, intercept=28.06 with R2=.60).

Percentage of Deviation From Baseline
We then replaced the absolute values of LOS with the percentage
deviation from the baseline trend line as shown in Figure 4. The
seasonal variation trend (Figure 5) for LOS was then derived
by averaging the 3 years’ of values in Figure 4.

Distribution of Commencement Dates
Figure 6 shows the wide distribution of commencement dates
for test patients supplied with a device for the daily monitoring
their vital signs.

Influence of Synchronization of Commencement Days
on Seasonal Variation
Seasonal annual variation for LOS is shown in Figure 7,
calculated from the average trend of the previous 3 years prior
to the start of intervention, for the three subgroups (Queensland,
Tasmania, and Australian Capital Territory and Victoria). The
seasonal variation in LOS shows that the maximum deviation
from baseline was 101.7% (SD 42.2%), 60.6% (SD 36.4%),
and 158.3% (SD 68.1%) for the Queensland, Tasmania, and
Australian Capital Territory and Victoria subgroups,
respectively.

Figure 3. Length of stay for 37 (test and control) patients of Queensland subgroup in years 2010 to 2012. Solid line is the linear regression line
(slope=1.12, intercept=6.32, R2=.33), and dotted lines are 95% prediction bounds (slope=0.56, 1.67 and intercept=–5.41, 18.06).

Figure 4. Deviation from baseline (fitted values) in length of stay of 37 (test and control) patients of Queensland subgroup in years 2010 to 2012.
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Figure 5. Average deviation from baseline: seasonal variation trend of length of stay in hospital for Queensland patients.

Figure 6. Distribution of commencement dates for monitoring of vital signs.

The synchronized profile shown in Figure 7 was derived by
averaging the LOS calculated for the actual calendar month
when monitoring began for each of the subsequent 12 calendar
months. Note that month 1 after the start of monitoring for one
patient could be March, whereas it could be September for
another, as shown in Figure 6. Thus, for example, the value of
the synchronized profile in the i th (i=1,...,12) month results
from the ratio of the sum of the corresponding values of the
obtained seasonal profiles at the first month of monitoring (ie,
March or September) for all patients, and the number of patients
monitored at the i th month. Similarly, this value can be
calculated for subsequent months. In summary, the synchronized
profile can be obtained by the formula in Figure 8.

In Figure 8, Sp(i) denotes synchronized profile at i th month, Nj
denotes the number of patients in j th (j=1,2,3) subgroups (ie,
Tasmania, Queensland, and Australian Capital Territory and

Victoria), and Pj is the seasonal profile achieved for j th
subgroups.

As evident from Figure 7, by synchronizing the data to the start
of monitoring, the impact of seasonal variation in LOS is greatly
reduced to a peak of 9.5% (SD 7.7%), thus minimizing the
impact of seasonal variations on the time course of LOS and
other output variables.

Let us assume that the recruitment distribution is a Poisson
distribution with lambda as the rate (mean) parameter (ie, the
average number of patients recruited in a month). To identify
lambda from the actual distribution of recruitments in the trial,
we used the “poissfit” command of MATLAB, which returns
the maximum likelihood estimate of the Poisson distribution,
with lambda given by the data. The estimated value of lambda
was 6.5.
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Figure 7. Estimated seasonal variation impact on length of stay with synchronized commencement days at different trial sites in Australia. QLD:
Queensland, TAS: Tasmania, ACT: Australian Capital Territory, VIC: Victoria.

Figure 8. The formula to obtain the synchronized seasonal profile.

Using the lambda estimate, we created 100 sets of random
numbers following the Poisson distribution by using
poissrnd(6.5,1,61), where 61 was the number of test subjects,
and the achieved average maximum deviation from baseline,
after synchronizing the analysis of LOS to the commencement
of the intervention, was 9.0% (SD 7.5%). These values are quite
close to the ones derived when the actual recruitment distribution
was used, showing that the actual recruitment distribution is
very close to a Poisson distribution.

Let us now assume that the recruitment distribution is a discrete
uniform distribution (ie, the recruitment of patients is equally
likely to occur during the whole duration of the intervention).
Again, we created 100 sets of random numbers following a
discrete uniform distribution by using unidrnd(15,1,61), where
15 here is the total length of intervention in month.

Synchronizing the analysis of LOS to the commencement of
the intervention, the average maximum deviation from baseline
was obtained as 4.9% (SD 3.0%), which is significantly smaller
than the one obtained from the previous Poisson distribution.
In other words, the impact of seasonal variation on the outcome
variables of a telemonitoring trial can be minimized by evenly
distributing recruitment over the entire monitoring duration and
synchronizing the analysis of outcome variables to the
commencement of the intervention.

Discussion

The existence of seasonal variation in incidence of stroke, blood
pressure, sudden death, myocardial ischemia, acute myocardial
infarction, pulmonary embolism, lung function, and symptoms
in COPD has been widely documented [12-17]. Seasonal
variation also has an impact on the hospitalization rate of
patients with a range of cardiovascular diseases [18,19], as well
as acute myocardial infarction and angina in a western Sicily
(Italy) hospital [20-21]. From these references, most admissions
occur in the winter season for patients with cardiovascular
disease from increased hypertension [22], ischemia [23,24], and
recurrent infections [25].

The relationship between COPD exacerbation and seasonality
has also been investigated in the Towards a Revolution in COPD
Health [26] and Prevention of Exacerbations with Tiotropium
in COPD [27] trials, both large international studies with more
than 13,000 patients. These studies showed an increase in COPD
exacerbations as well as an increase in hospitalization rate during
the winter months. However, no association was observed in
the tropics. This could be due to the fact that respiratory viruses
are more prevalent in the cold months of temperate countries
[28].

In the CSIRO National Telehealth Trial, a winter-spring
predominance was evident in the seasonal variation in
hospitalization and LOS both in the overall patient cohort as
well as the Queensland and Australian Capital Territory and
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Victoria subgroups. This finding is partially in-line with the
results of several other studies [12-17] performed in different
countries with COPD and congestive heart failure patients
showing a peak in winter.

The average LOS per admission was in summer (4.06 days)
followed by autumn (4.42 days), spring (4.54 days), and winter
(4.66 days). This reveals that an increase in the hospitalization
rate coincided with a longer average LOS in cold months.

In Launceston, Tasmania, admissions were below average in
spring and summer, increased rapidly in autumn (which
coincided with high rainfall periods), and then dropped off again
in winter before increasing again quite rapidly as winter ended.

The LOS broadly matches this pattern of admissions except for
unexpectedly high LOS and below average rates of admissions
in January. This anomaly is explained by local circumstances
at Launceston base hospital, where new and inexperienced
medical staff arrive in January to replace more experienced
clinicians on leave, and have a tendency to keep patients in
hospital longer as a precautionary measure.

Townsville in Queensland is a subtropical area with a rainy
season in January, February, and March. Admissions were below
average during the wet season, but increased rapidly following
the end of the wet season, possibly due to increased pollen
counts. However, LOS remained fairly static until August, at
the end of winter, when they almost doubled. This is difficult

to explain because peak average temperatures in winter are
around 25°C in Townsville versus 12°C in Tasmania.

This study confirms the existence of a significant seasonal
variation in hospital admissions as well as LOS in a recently
completed CSIRO national trial of home telemonitoring of
patients with chronic conditions, carried out at five locations
along the east coast of Australia. Climactic and environmental
conditions can also change year by year as shown in Figures 3
and 4, making the analysis of seasonal impacts more difficult
to interpret.

We have shown that by synchronizing analysis of outcomes to
the start of the intervention, the effect of seasonal variation on
clinical outcome of an at-home telemonitoring trial can be
significantly attenuated. To the authors’ knowledge, this is the
first study to introduce a method to attenuate the effect of
seasonal variations on the time course of outcome variables by
synchronizing the analysis to the start of intervention for each
patient.

This method recognizes that difficulties of recruitment of test
patients in clinical trials are common, and patients may often
be recruited over many months. This study suggests that by
evenly distributing recruitment over the intervention duration
and synchronizing the analysis of outcome variables to the
commencement of the intervention, the confounding impact of
seasonal variations can be minimized.
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