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Statistical Sparse Channel Modelling for Measured
and Simulated Wireless Temporal Channels

Peng-Fei Cui, J. Andrew Zhang, Wen-Jun Lu, Y. Jay Guo, Hong-Bo Zhu

Abstract—Time-domain wireless channels are generally mod-
elled by Tapped Delay Line (TDL) model and its variants. These
models are not effective for channel representation and estimation
when the number of multipath taps is large. Compressive sensing
(CS) provides a powerful tool for sparse channel modelling
and estimation. Most of research has been focusing on sparse
channel estimation, while sparse channel modelling (SCM) is
rarely considered for centimeter-wave channels. In this paper,
we investigate statistical sparse channel modelling, using both
measured and simulated channels over a frequency range of
6 to 8.5 GHz, . We first introduce the triple equilibrium
principle to explore the trade-off between sparsity, modelling
accuracy, and algorithm complexity in SCM, and provide a
methodology for characterizing the sparsity of time-domain
channels using single-measurement-vector compressive sensing
algorithms. Mainly using mainly the selected wavelet dictionary
and various CS reconstruction (aka recovery) algorithms, we
then present comprehensive statistical sparse channel models,
including channel sparsity, magnitude decaying profile, sparse co-
efficient distribution and atomic index distribution. Connections
between the parameters of sparse and conventional TDL channel
models are mathematically established. We also propose three
methods for generating simulated channels from the developed
sparse channel models, which validates their effectiveness.

Index Terms—Channel model, sparse channel modelling, com-
pressive sensing, wavelet dictionary, ℓ1-norm algorithm, Orthog-
onal Matching Pursuit (OMP)

I. INTRODUCTION

T IME-DOMAIN wireless channel modelling, which char-
acterizes the propagation of wireless signals, is typically

based on the Tapped Delay Line (TDL) model [1]–[3] and
its variants such as the cluster-based Saleh-Valenzuela (SV)
model [4]. The parameters of these models are described
by statistical distributions, such as small-scale Rayleigh and
Rician fading, exponential power delay profile (PDP), channel
coherent time and bandwidth. Such models are simple and
straightforward in structure, and they would provide clear
physical interpretation for wireless signal propagation. Howev-
er, some of the advantages may disappear for large-bandwidth
channels. For example, there could be tens and even hundreds
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of resolvable multipath in latest 5G channel models [5]. In
such dense multipath channels, there are many parameters to
be characterized for channel modelling, and to be estimated for
channel estimation, which renders TDL model and its variants
ineffective.

A natural question to ask is then, whether we can develop a
channel model to represent such dense multipath channels in a
more sparse and compact way. Compressive sensing (CS) [6]
provides an effective tool for both sparse channel modelling
(SCM) and signal processing based on sparse channel models.
However, it is surprising that most work has been focusing
on the latter, while SCM, which should have been the basis
for sparse signal processing, is somewhat neglected. In the
past decade, there have been strong interest in applying
CS techniques for sparse channel estimation [7]–[9] and for
sparse channel coding [10]–[12]. These works assume that
wireless channels are sparse and compressible, and hence
less training signals at the transmitter and observations at the
receiver can be used to get a complete estimation for the
sparse channels. Such sparsity assumption, however, is not
very well validated by practical SCM results. The channel
sparsity for millimeter-wave channels has been validated by
several channel models established from practically measured
data [13], [14], particularly in the angular domain. However,
for lower-frequency centimeter-wave channels, there are very
limited reported results, validating the sparsity assumption
– not even to mention detailed statistical analysis for the
sparse channel parameters. One of the limited number of
examples is [15], where a sparsity pattern expressed by virtual
channel representation with the Fourier dictionary is proposed
to model the double-selective fading multi-path channels, but
the channel statics is not well developed.

The negligence on SCM is probably linked to its unac-
knowledged importance. SCM, through disclosing the inherent
channel sparse structure, can not only provide a potentially
simpler method for channel simulation, but also benefit to
sparse channel estimation and coding directly. For example,
SCM can demonstrate the sparsity and best dictionaries, and
hence provide guidance to the training symbol design for
channel estimation [9]; the statistics of parameters in sparse
channel models can also be exploited for developing better
channel estimation algorithms, as has been explored in [16].
SCM can also estimate the sparsity, which is a necessary
knowledge required by many sparse reconstruction algorithms
such as CoSaMP.

This paper devotes to SCM for centimeter-wave channels,
using both practically measured and simulated single-input
single-output dense multipath channels in the frequency-band



2

from 6 to 8.5 GHz. Such channels are known as one type
of ultra wideband channels. With a 2 GHz bandwidth, the
channels consist of a large number of resolvable multipath taps
in the time domain, which can be represented directly by the
TDL model. The original channel impulse response (CIR) can
be downsampled with a low-pass filter to generate channels
for systems with lower bandwidth if needed. In this paper, we
work on the high-resolution dense multipath directly, and will
show that there are great sparsity if we represent the CIRs
using different dictionaries (aka, bases).

One main challenge for SCM is that, a sparse model can be
affected by quite a few factors, such as the used dictionary, the
reconstruction algorithm, and required accuracy of modelling.
Actually, the TDL model can also be treated as a special
sparse model when insignificant multipath taps are ignored
according to a desired accuracy. The dictionary will be a
(partial) identity matrix in this case if represented in the
time domain, or a partial Discrete Fourier Tranform (DFT)
matrix if represented in the frequency domain. But it is not
an efficient sparse representation when the channel is rich
in multipath. The sparsity is also largely affected by the
used reconstruction algorithm with various complexity and the
desired accuracy. Hence a good trade-off between sparsity,
accuracy and complexity needs to be achieved. This trade-off
will be investigated in detail in Section III.

In this paper, we aim to provide a methodology for sparse
modelling of time-domain channels, and to establish statistical
sparse channel models. Our main contributions are as follows.

• We introduce a triple equilibrium principle to character-
ize the trade-off between sparsity, modelling accuracy,
and reconstruction complexity in SCM. Using both mea-
sured and simulated channel datasets, we quantitatively
demonstrate and practise the triple equilibrium principle
in SCM. This principle provides an important guidance
to selecting dictionary and reconstruction algorithm in
SCM;

• We develop comprehensive statistical sparse channel
models, including channel sparsity, dependency of sparsi-
ty on channels, magnitude decaying profile, sparse coef-
ficient distribution, and sparse atomic index distribution,
which are analogous to those in the conventional TDL
model. Novel methods using ordered sparse coefficients
and atomic index separation are proposed for statistical
modelling;

• We mathematically establish the connection between pa-
rameters in the sparse channel model and conventional
TDL model;

• We propose three methods for generating simulated chan-
nels using the sparse channel models. The effectiveness
of the established sparse channel models are validated
by comparing these generated channels with those actual
ones.

The rest of this paper is organized as follows. In Section II,
we describe the channel datasets and our sparse modelling
methodology. In Section III, we introduce the triple equi-
librium principle and discuss the selection of the dictionary
and reconstruction algorithms used for SCM in this paper. In

Section IV, we present detailed SCM results, and investigate
the connection between parameters for sparse and conventional
channel models. In Section V, methods for generating simulat-
ed channels from the established sparse models are presented,
and the generated channels are compared to the actual ones
to verify the effectiveness of the sparse models. Section VI
concludes the paper.

II. CHANNEL DATASETS AND SPARSE MODELLING
METHODOLOGY

In this section, we introduce the channel datasets used in
this work and present our sparse modelling methodology.

A. Tested Channel Datasets

We conduct the channel sparse modelling using two dataset-
s, i.e., the practically measured off-body CIRs [17], [18] and
simulated wireless CIRs following the channel model proposed
by IEEE 802.15.3a working group in [3].

1) Measured dataset: The channel data is measured in a
typical hospital-type room with a few furnitures. An omni-
directional monopole antenna is used to emulate the external
access point (AP), and a wearable loop-dipole antenna worn
on different positions of the volunteer is used to emulate the
receiver (Rx). A vector network analyzer (cf. VNA Agilent
8720) is used to generate a 0 dBm, 801-point sweeping signal
with the frequency ranging from 6 to 8.5 GHz. The off-body
CIRs are observed in different body-worn parts and large-scale
measurement locations. More details on the channel dataset
and measurement can be found in [17], [18].

According to the factors affecting the large-scale fad-
ing, the measured off-body channels are classified in-
to three classes of datasets: body-parts-dependent (denoted
as BAN Parts), distance-dependent (BAN Dis) and height-
dependent (BAN Hei) CIRs. Each CIR is denoised and nor-
malized to unity energy. In one class of datasets, there may
be measurements under different scenarios, for example, for
BAN Parts, there are measurements obtained from different
body parts, and for BAN Hei, measurements are from the AP
placed at different heights.

2) Simulated CIRs: The simulated CIRs are generated from
both the cluster-based model and TDL model. The cluster-
based model follows the SV model in [4], and the TDL model
is given by

h(t) = σ2
0

L−1∑
l=0

αle
−lTs/τRMSδ(t− τl), (1)

where L is the total number of propagation taps, τl is the delay
of l-th tap, τRMS is the Root Mean Square (RMS) delay spread
and Ts is the sampling time, αl is the fading coefficient of the
l-th tap, and σ2

0e
−lTs/τRMS represents an exponential power

delay profile (PDP) of the taps, with σ2
0 = 1−e−Ts/τRMS

1−e−(L+1)Ts/τRMS

ensuring the average CIR energy is unity.
The simulated CIRs include four typical Case Models (CM),

i.e., CM1 for 0-4 meters and Line of Sight (LOS), CM2 for 0-4
meters and none Line of Sight (NLOS), CM3 for 4-10 meters
and NLOS, and CM4 for extremely bad NLOS with RMS
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delay spreads of 5.28, 8.03, 14.28 and 25 nanoseconds [3].
We consider various fading such as Rayleigh, Rician and
Nakagami fading for the fading coefficients α.

B. Methodology for Sparse Channel Modelling

For a given sparse channel coefficient vector x0 of length N ,
channel sparsity here is referred to as either the absolute num-
ber of non-zero elements in the vector, given by K = ∥x∥0,
or the ratio given by K/N . We will use these two optional
definitions interchangeably hereafter. If K or K/N is small
(or large), we say the signal is sparser (or less sparser) and
the sparsity is small/low (or large/high).

For any given samples of single-channel CIR y ∈ RM , we
can formulate the CS representation of the channel as

xs = argmin
x

∥x∥1, subject to y = ΦΨx+ r. (2)

where x is the sparse coefficient vector, ∥x∥1 is norm-1
of x, i.e., the sum of absolute values of the elements in
x, Φ ∈ RM×N (M ≤ N) is the measurement/sensing
matrix, Ψ ∈ RN×N is the dictionary, and r is the residual
vector representing noise and/or residual errors in the sparse
approximation. There are a lot of CS algorithms such as
Orthogonal Matching Pursuit (OMP), L1-minimization and
Bayesian compressive sensing, that can be applied to solve
the optimization problem in (2). Different algorithms have
different complexity and different reconstruction accuracy.

We have full datasets for the originally simulated and
measured channels, sampled at the Nyquist rate. We can design
the sensing matrix Φ with M much smaller than N , to mimic
what is in the practical channel estimation situation. However,
this may make the SCM results lose generality. So instead, we
use all the channel samples in y directly for SCM, without
using Φ.

For a selected dictionary, for example the wavelet dictionary,
we call each column in the dictionary matrix Ψ an atom, and
its index as atomic index. The n-th sparse coefficient corre-
sponds to the n-th atom. For the TDL model, as mentioned
earlier, it can be treated as a special sparse model with the
dictionary being an identity matrix and each atom being a
delta function.

Our SCM methodology consists of three major stages,
which are summarized next and will be detailed in following
sections.

• The first stage is selection of dictionary and reconstruc-
tion algorithms. From the formulation in (2), we can see
that the sparsity k is closely related to three factors, the
product ΦΨ (or just the dictionary Ψ in this paper), the
reconstruction algorithm, and the constraint of residual
vector r (i.e., the desired the accuracy). Understanding
the trade-off between these factors is an important step in
SCM. In Section III, we introduce the triple equilibrium
principle to elaborate the trade-off and discuss how
to select appropriate dictionaries and CS reconstruction
algorithms.

• The second stage is sparse channel modelling as will
be detailed in Section IV. In this stage, analogous to
the parameters in the TDL model including significant
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Fig. 1: The triple equilibrium relationship among sparsity,
complexity and accuracy.

MultiPath Components (MPC), PDP, small-scale fading,
and delay, we analyze the statistics for sparsity, mag-
nitude decaying profile (MDP), distribution of sparse
coefficients, and distribution of atomic indexes. Thus a
complete statistical sparse channel model is established.

• The third stage is sparse channel validation, as will be
detailed in Section V. During this stage, we stochastically
generate the sparse coefficients and atomic indexes using
the developed statistical sparse channel models, and com-
pare the generated channels with the original measured
and simulated channels from which the statistical sparse
models are developed. This process is used to validate
the effectiveness of the developed models.

III. TRIPLE EQUILIBRIUM PRINCIPLE AND SELECTION OF
DICTIONARIES AND RECONSTRUCTION ALGORITHMS

In this section, we first introduce the triple equilibrium
principle for characterizing the trade-off between sparsity,
modelling accuracy and complexity in SCM. We then discuss
how we select the dictionary and reconstruction algorithms
to achieve a trade-off under the guidance of the principle, by
investigating the actual impact of the trade-off on SCM.

A. Triple Equilibrium among Sparsity, Complexity and Accu-
racy in SCM

In the sparse channel modelling, we will consider the
interaction and tradeoff between channel sparsity, reconstruc-
tion complexity and accuracy. Reconstruction complexity and
accuracy are associated with, e.g., the reconstruction algo-
rithms, times of iterations used in the algorithms, the adopted
dictionary and its size, and the number of measurements.
According to many research results on compressive sensing
including the classical work by Donoho, Candes et al. [6],
sparsity, reconstruction complexity and accuracy interact with
each other. Generally, the sparsity of practical signals can
change with the required reconstruction accuracy and the
affordable complexity, and the changes can be significantly
different for different signal sources.
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For sparse channel modelling, we hence keep in mind
the triple equilibrium relationship among sparsity, complexity,
and accuracy as illustrated in Fig. 1. Firstly, the achievable
channel sparsity is expected to grow from smaller to larger
when the required reconstruction accuracy increases and/or
the required complexity decreases. Secondly, to achieve a
given sparsity level, e.g., 5% sparsity ratio, the sparser the
actual signal is, the lower the reconstruction complexity will
be to attain certain reconstruction accuracy. Thirdly, there is a
complexity tradeoff between the selected recovering algorithm
and dictionary. Fig. 1 lists uncomplete, critical complete,
concatenation dictionaries and recovering algorithms such as
greedy algorithm (like OMP), optimization algorithm (ℓ1-
Minimization denoted as ℓ1-Min.) and iterative algorithm (5
step reweighted ℓ1-Minimization denoted as ℓ1-MinIT5) from
low to high complexity. It is observed in [19] that with 3 to 5
concatenation dictionaries, even the simplest OMP algorithm
can achieve better performance than the optimal algorithm
such as iterative ℓ1-MinIT5. Finally, it is noted that the de-
nosing ability of CS algorithms can also have a great impact
on the reconstruction accuracy. Measurement noise can be the
upper limit of sparse processing ability.

The triple-equilibrium relationship in sparse channel mod-
elling will be explored in detail in Section IV-A and III-C.

B. Impact of Dictionary on Sparse Channel Modelling

Dictionary can have a significant impact on the sparsity
and reconstruction accuracy of a general CS problem, as
well as our sparse channel modelling. For example, in our
experiments, it is widely observed that to achieve the similar
modelling accuracy, the sparsity for recovering the same
BAN Part CIR using the ℓ1-Min algorithm are 17, 18, 72,
94 and 210 for the symlet 3-5 wavelet, exponential, truncated
cosine wave, Fourier and random Gaussian dictionaries, re-
spectively. The wavelet and exponential dictionaries exhibit
much lower sparsity than the others. This is because their
fast-fading atoms adapt to the sparse properties of significant
clusters, i.e., the properties of compact support and locality
have advantages in representing the cluster characteristics. The
observation here is consistent with the quantitative dictionary
selection formula and the results shown in [20]. So we will
mainly present the sparse channel modelling results using
wavelet and exponential dictionaries in this paper.

Fig. 2 and 3 illustrate the original, recovered and residuals
of one BAN Part CIR using different dictionaries and CS
algorithms. The combination of wavelet-OMP and exponent-
ℓ1-Min both perform well, achieving similar sparsity levels
around 20 under the same MSE of 10−4. It is noticed that the
exponential dictionary achieves less accurate results in the seg-
ment of the primary cluster. This is mainly because all atoms
of the exponential dictionary have the same waveform, i.e.,
dk(t) =

√
1− β2e−βt, t ≥ k, while the wavelet dictionaries

have multiple different waveforms.
Fig. 4 depicts the compact support length and waveforms

for six atoms of the symlet 3-5 wavelet dictionary. Waveform
1 is the scale (father) wavelet of Symlet 3, and waveforms
2 to 6 are the different scales of level 5 to 1 of the mother
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Fig. 2: Comparison of original, recovered and residual signals
using wavelet dictionary and OMP algorithm. Sparsity k = 20.
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Fig. 3: Comparison of original, recovered and residual signals
using exponential dictionary and L1-Minimization algorithm.
Sparsity K = 18.

wavelet. These waveforms also have good quasi-orthogonal
characteristics. Such versatile waveform combinations make
wavelet dictionary adapt to different signal types including
the clustered channels.

Of course, single-shape exponential dictionary also has its
unique advantages. For example, if using three different β-
shaped concatenation exponential dictionaries to form multi-
shape over-complete dictionary, the sparsity can even be
reduced to 10 taps [21]. However, a combination of different
wavelet dictionaries does not seem to work well. Thus, it is
important to select/train adaptive projection atoms to form
dictionaries for specific signals.

C. Sparsity-Complexity Relationship Under Fixed Accuracy

The achievable channel sparsity can be affected by different
reconstruction algorithms for the same residual error, accord-
ing to the sparsity-accuracy analysis in Section IV-A. Different
algorithms, or the same algorithm with different iterations, can
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Fig. 4: Waveforms for six types of atoms in the symlet 3 level
5 wavelet dictionary. For the index of atom types, the first
(with index 1) is the father wavelet, the last (with index 6) is
the mother wavelet and the child wavelets ranging from level
2 to 5 are indexed as type 5 to 2. The number beside each
waveform denotes the support length of the wavelet.

have very different complexity. Here, we quantitatively analyze
the complexity associated with sparse channel modelling and
reconstruction, using the ℓ1-Min and its iterative algorithms as
examples. The required multiplications for ℓ1-Min and ℓ1-Min
ITq are O(qMN2), O((T+1)qMN2), where T is the number
of iteration or reweight times, and T = 0 for ℓ1-Min [22].

Fig. 5 depicts sparsity variations for many BAN Parts CIRs,
using ℓ1-Min reconstruction algorithms with iterations ranging
from 0 to 10. For all datasets the mean sparsity decreases as
the iteration number increases, and the first iteration always
achieves the largest sparsity reduction. The average sparsity
value for a particular dataset also quickly converges, and
further increasing the number of iterations only leads to
negligible reduction on sparsity. For all datasets, the number of
iterations up to 5 is shown to be sufficient. We can also see that
all CIRs under good LOS conditions have lower sparsity than
those under NLOS cases. Similarly, experimental results for
simulated CM1-4 channels lead to an average sparsity of 7, 9,
14 and 25 taps, respectively, which is in line with the trend of
the increasing RMS delay spread (5, 8, 14, 25 nanoseconds).
The connection between the average sparsity and RMS delay
will be mathematically shown in IV-D.

D. Summary of the Triple Equilibrium Principle

It is found that the residual error in sparse modelling ex-
ponentially decreases with the desired sparsity increasing, and
the desired sparsity can be reduced up to certain bounds at the
cost of linearly increasing complexity. The triple equilibrium
among sparsity, complexity, and accuracy is thus qualitatively
verified. It is nearly impossible to improve any one without
impacting the other two.

In next section, we use the selected wavelet and exponential
dictionaries and the algorithm sets (OMP, ℓ1-Min and ℓ1-Min
ITq) to conduct SCM for both measured and simulated CIRs.
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IV. SPARSE CHANNEL MODELLING

In this section, we conduct detailed sparse channel mod-
elling, focusing on sparsity, “magnitude decaying profile”
(MDP), “fading” and atomic index distribution, which have
analogies in conventional TDL modelling. We will also in-
vestigate the dependency of sparse coefficients on channel
parameters.

Ideally, we would like to investigate the MDP and fading for
each sparse coefficient corresponding to each atom (column) in
the dictionary. This will give us the results directly analogous
to the TDL modelling. However, this is hard to do for the
following reason: the size of the dictionary could be very large
and there are frequently insufficient samples for a number of
coefficients due to limited measured datasets. The fluctuation
of atomic indexes can largely reduce the reliability of obtained
sparse statistics. Some dictionaries do not have clear physical
meanings, which also makes direct processing not necessary.
On the other hand, organizing the non-zero taps in a proper
order is found to be able to better reveal the statistics of sparse
signals [23]. Therefore in this paper, we organize the obtained
sparse channel coefficients in a descending order according
to their magnitudes, and conduct MDP and fading analysis
based on the ordered coefficients. At the same time, we collect
the atomic indexes for these coefficients, and propose an
atom-index-division method, which will be detailed in Section
IV-C, to get the statistical distribution for the indexes of these
ordered coefficients.

A. Sparsity

We characterize the channel sparsity and investigate its
dependency on accuracy and types of channels. We will
demonstrate in Section IV-A1 that the sparsity and recon-
struction accuracy are bonded, and their relationship can be
well characterized by an exponential function. We will show
in Section IV-A2 that the sparsity also varies from channel
to channel as expected, and is dependent of statistical fading
distributions.



6

2 4 6 8 10 12 14 16 18 20

Sparsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

e
la

ti
v
e
 E

n
e
rg

y

Energy of Original CIR

Energy of Recovered CIR

Fit by a*exp(-b*x)+c, a=-0.68 b=0.29 c=0.92

Energy of Coefficients

Residual  Energy

Fit by a*exp(-b*x)+c, a=0.68 b=0.29 c=0.08

Fit by a*x
-b

+c, a=0.79 b=0.42 c=-0.17

Fig. 6: Relative energy of reconstructed and residual signals
for measured BAN Dis CIR subset using wavelet dictionary
and OMP algorithm.

TABLE I: Parameters of exponential fitting function for resid-
ual energy for different dictionaries and algorithms.

Cases Dictionary Algorithm a b c
BAN Parts Wavelet ℓ1-Min 0.51 0.11 0.12
BAN Hei Wavelet ℓ1-Min 0.58 0.14 0.15

BAN Dis
Wavelet ℓ1-Min 0.49 0.12 0.12
Wavelet OMP 0.68 0.29 0.08
Exponent OMP 0.43 0.25 0.08

Sim Rayl
Wavelet ℓ1-Min 0.39 0.20 0.05
Wavelet OMP 0.76 0.45 0.07
Exponent OMP 0.35 0.50 0.06

Sim Rice Exponent OMP 0.27 0.65 0.08
Sim Naka Exponent OMP 0.28 0.61 0.06

1) Dependency of Sparsity on Reconstruction Accuracy:
The required sparsity in channel modelling has a direct impact
on the accuracy, and vice verse. In [21], it is theoretically
proved that the residual energy for any sparse approximation
is linearly bounded by the residual of the best sparse approx-
imation. Such a boundary constraint, however, is often very
loose for practical sparse reconstruction algorithms, and is also
dependent on the actual dataset. In our work, to understand this
relationship and its impact on sparse channel modelling, we
conducted various signal recovery experiments using different
sparsity constraints, different datasets, dictionaries and recov-
ery algorithms. Next, we present some exemplified results.

Fig. 6 shows the relative energy of reconstructed signal
and the residual (error) between the reconstructed and original
signals, normalized to the original signal power. The dataset
includes 400 measured BAN Dis CIRs. The sparse signal is
reconstructed using the symlet 3 level 5 wavelet dictionary
and the OMP algorithm. Due to the unit energy constraint
and the Restrict Isometric Property (RIP) property of wavelet
dictionary, the energy of reconstructed signal, represented by
the sparse coefficients, increases with the sparsity increasing
steadily, while the residual error steadily declines.

Plotted together in the figure are the exponential and poly-
nomial curve fitting functions. Using the Akaike Information

Criteria (AIC) [24], it is found that the relative signal and
residual energy can both be well fitted by the exponential
function given by

δRes = ae−bk + c, (3)

where δRes is the residual energy and k is the desired sparsity.
The polynomial (or power) function δRes = ak−b+c, which is
widely used to bound residuals [21], is also found to provide
good fitness here.

To summarize, it is found that the exponential function
can fit well the residual energy for almost all measured and
simulated datasets, for different channel fading distributions,
dictionaries or algorithms. Table I presents the parameters of
the exponential fitting function for the residual energy for
different dictionaries and algorithms. In our experiments, we
observed that for simulated channels, the fitting accuracy is
low when the sparsity is large, when larger decaying exponents
(parameters b in (3)) are obtained, especially for Rician
or Nakagami fading channels. This indicates that simulated
channels with simpler multipath structures such as a dominat-
ing LOS component usually lead to smaller residual-sparsity
product and hence better recovery performance.

According to the MSE metric EMSE = ERes/M , EMSE =
10−4 is equivalent to a residual energy of 5% with the number
of measurements M = 500 in most cases. Fig. 6 indicates
that the 5% residual error corresponds to an average sparsity
between 18 and 20, or 4% sparsity ratio. We use 4% sparsity
ratio (EMSE = 10−4) as a baseline for distribution analysis in
this paper. The CIR modelling for all pairs of residual error
and sparsity can be implemented as long as they are above the
asymptotic line indicated by (3).

2) Dependency of Sparsity on Channels: Fig. 7 presents
the Cumulative Probability Distributions (CDFs) of reaching
a desired sparsity for different algorithms. Results for using
all the measured data sets and for using specific data sets
(waist only and ankle only) are presented for comparison.
Each curve is obtained from over 4000 sparse reconstruction
experiments. When all the measured datasets are used, the
curves for algorithms ℓ1-Min, ℓ1-Min IT1 and ℓ1-Min IT5
using the same wavelet 3-5 dictionary can be well fitted by
Gaussian functions with decreasing mean and variance values.
We can also see that using recovery algorithms with more
iterations can effectively reduce the mean sparsity and reduce
the fluctuation of sparsity. Generally the smaller the sparsity
fluctuation is, the smaller the modeling error will be. Thus for
a selected dataset, there is a tradeoff between the complexity
of the recovery algorithm and the accuracy of the modeling.
For waist only and ankle only dataset, the CDF follows distinct
distributions due to reduced variation of the sparsity. For
example, the CDF for waist and ankle datasets follows Weibull
and Log-Normal distributions respectively. Compared to the
full datasets results, the sparsity is reduced as can be seen
from the CDF curves.

Fig. 8 compares the CDFs for simulated Rayleigh, Rice and
Nakagami fading channels using the same wavelet dictionary
and OMP algorithm. The sparsity of Rayleigh fading channels
has a maximum mean value of 17 taps and the largest sparsity
variation. The mean sparsity for Rician fading CIRs gradually
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Fig. 7: CDFs of the recovered sparsity for different recon-
struction algorithms and measured channel data using Symlet
3-5 dictionary. For the first three curves (ordered according
to the legends), all measured datasets are used; while for the
rest two, only specific datasets for waist and ankle are used
respectively.
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Fig. 8: CDF of the sparsity for simulated fading channels with
different parameters.

decreases from 17 taps (nearly the same with Rayleigh fading
channel) to only 7 taps, with the Rician K-factor changing
from 0.1 to 50. Under the same LOS condition, Nakagami
fading channel is less sparser than similar Rician channels
(curves marked in black triangles). It seems that the channel
condition has a notable effect on sparsity distributions, and
channels with larger LOS components demonstrates lower
sparsity.

As a summary for the sparsity of studied channels, it is
found that an average sparsity of 25 for the measured CIRs
and 20 for simulated cases are the least values for most cases
with different dictionaries, algorithms and channel conditions.
The maximum sparsity is 38, which correspond to the sparsity
ratio of 7.6%, for a total of M = 500 samples. This reflects
the great advantage of compressed channel sampling over
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Fig. 9: Exponential fitting for sorted sparse coefficients in
different datasets and algorithms using symlet 3-5 wavelet
dictionary.

traditional Nyquist sampling method.

B. Statistics of Sorted Sparse Coefficients: Magnitude Decay-
ing Profile and Coefficient Distribution

We now characterize the statistics of sorted sparse channel
coefficients, including the magnitude decaying profile (MDP)
and coefficient distribution (“fading”). There are good analo-
gies between them and the statistics of conventional TDL
model. The MDP and coefficient distribution correspond to
the power delay profile (PDP) and small-scale fading in TDL
models, respectively. The main difference is that the statistics
of sparse coefficients could be dependent on the dictionaries,
and is also slightly related to the reconstruction algorithms.

The MDP of sorted sparse channel coefficients can be well
described by the following exponential function of the index
of these coefficients:

Ci = a eb i + c (4)

where i ∈ [1,K] is the index of the i-th largest sparse
coefficient, and a, b and c are parameters that can be obtained
via curve fitting. Note that (4) is different to (3) in the physical
meaning of these parameters. As have been shown in Fig. 6
in Section IV-A, the energy of the coefficients for different
atoms (i.e., columns in a dictionary) are very unbalanced. The
maximal none-zero coefficient (generally the first output in
the OMP algorithm) contains around 40% of the total energy,
but the 10-th only occupies 0.2%. This is mainly due to the
exponential decaying laws for sorted sparse coefficients as
discussed in Section IV-A. In Fig. 9, we show another example
for sorted sparse coefficients for four typical channel datasets,
using different reconstruction algorithms. The figure shows
that, for all measured and simulated channels, their MDPs can
be well characterized by exponential functions. For the two
measured channels, different reconstruction algorithms have
insignificant impact on the decaying speed.

Since the coefficients in the exponential function are found
to be very similar for different datasets in the same class,
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Fig. 10: MDP of aggregated datasets and the fitting by
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Fig. 11: CDF of the 10-th ordered sparse channel coefficient
for different classes of datasets and algorithms using symlet
3-5 wavelet dictionary. “Norm Fit” is short for fitting with
Normal (Gaussian) distribution.

we aggregate the sparse coefficients in the same class for
analysis, to make the model more general. Fig. 10 shows
the MDP of the sorted sparse coefficients for the aggregated
BAN Dis datasets. They are shown to be well fitted by three
exponential functions with similar parameters. More advanced
algorithms, such as L1 IT5 generally achieves better fitness
with smaller tail.

The sparse coefficients with the same index for the same
class of datasets are also found to have similar CDFs. Hence
we also aggregate all the datasets in each class and analyze
their CDFs. Fig. 11 illustrates the CDF for the 10-th largest
sparse coefficient in different classes of datasets. The figure
shows that for all datasets and all reconstruction algorithms,
the CDF can be well approximated by that of Normal distri-
bution. Similar matching distribution has been observed for
other sparse coefficients. This indicates that the magnitude

Fig. 12: An example for the atom-index-division method using
the symlet level 5 wavelet dictionary. The selected atomic
index is 225 in the whole dictionary with the shape factor
p = 3 and the location factor γi = 0.8.

of sparse channel coefficients experience “Gaussian fading”
- the variation of magnitude can be characterized by a
Gaussian function.

C. Statistics of Atomic Indexes for Sparse Channel Coeffi-
cients

Corresponding to the ordered sparse channel coefficients,
we study the statistical properties of their atomic indexes. Due
to the large size of the sparse vector, there could only be a
small number of samples for each index associated with the
ordered channel coefficients. For example, for a channel of
length 500, the index set for the 3rd sorted sparse coefficients
is found to be concentrated on atom 1 and 6, i.e., father wavelet
and level-1 mother wavelet in (4). Therefore directly looking
into the statistics for each index will lead to inaccurate results.

Instead, inspired by the wavelet structure, we propose an
atom-index-division method which splits any atomic index into
a shape factor and a location ratio factor. This is represented
by

ωi = γi ιp + ιBeg
p (5)

where ωi is the original atomic index corresponding to the
i-th sorted non-zero sparse coefficient, p is the shape factor,
γi is the corresponding location ratio factor, and ιp and ιBeg

p

are the length and the beginning number of Shape p atoms. It
is found that different dictionaries in the same wavelet class
only causes slight changes to the specific values of ιp and
ιBeg
p , without significantly affecting the statistics of the two

factors. Similarly, concatenating another sub-dictionary to the
existing dictionary (such as wavelet 3-5) only adds 1 to the
shape factor, without dramatically changing the ranging and
mean value of the two factors.

To better illustrate this concept, in Fig. 12 we provide an
example for the atom-index-division method using the symlet
level 5 wavelet dictionary. The selected atomic index is 225
in the whole dictionary, and it belongs to the Shape 2 atom
types and locates at the 0.8 ratio in all Shape 2 atoms. Thus,
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Fig. 13: Distributions of the shape-factor values of the 10-th
sorted sparse coefficient for different datasets and algorithms
using the symlet 3-5 wavelet dictionary.

the atomic index of 225 is divided to the shape factor p = 3
and the location factor γi = 0.8.

Compared to directly working on the statistics of non-zero
atomic indexes, the proposed atom-index-division method has
three advantages: 1) It needs fewer samples but provides better
distribution fitness; 2) It can provide more stable statistical
results for scalable dictionaries; and 3) It provides deeper
insights into propagation characteristics (e.g., the location ratio
factor can be transformed to tap delay of a specific atom ).

Figs. 13 and 14 depict the statistics of shape factor and lo-
cation ratio factor for wavelet 3-5 dictionary under different s-
cenarios, respectively. The shape values for different scenarios
and recovery algorithms all follow half-Normal distributions.
Compared to the OMP algorithm, the ℓ1-Min and its iterative
methods tend to have a higher probability of selecting shape-
1 wavelet atom (i.e., father wavelet) and lower probability of
selecting high-level wavelets. No significant distinctions are
observed among different scenarios. Similarly, the location
ratio factors for different algorithms and different datasets all
follow the log-Normal distribution very well. Compared to
the OMP algorithm; the iterative algorithms have a higher
probability of generating high ratio values. No significant
statistical difference is observed from the location-ratio-factor
values for different non-zero coefficients.

D. Relationship between Sparse Coefficients and Propagation
Parameters

There are some close correlation between the significant
sparse coefficients and some major propagation parameters,
such as the significant MPCs, mean delay and RMS delay
in the TDL model. The significant MPCs are defined as the
number of multipath in the TDL model with power larger than
a set threshold. The correlation between the channel sparsity
and the mean delay and RMS delay can be mathematically
established below.
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Fig. 14: Distributions of the location-ratio-factor values of
the 10-th sorted sparse coefficient for different datasets and
algorithms using the symlet 3-5 wavelet dictionary.

According to the TDL and sparse channel models, we can
relate the mean delay to the sparse parameters via

τ =

∑
τiP (τi)

P (τi)
=

r0Tr(DM(Ax)(Ax)′)

1− δRes

=
r0Tr(xx

′A′DMA)

1− δRes

≈ r0(x
′DMx)Tr(A′A)

1− δRes

≈ r0Tr(A
′A)

1− δRes

K∑
j=1

ωjx
2
j , (6)

where P (τi) is the power of the i-th tap, r0 is the time
resolution for sampled CIR signals, DM is a diagonal matrix
with the diagonal elements {1, 2, ...M}, x2

j is the non-zero
sparse coefficient and its corresponding atomic index is ωj .

The RMS delay spread can be represented by

τRMS =

√∑
τ2i P (τi)

P (τi)
− τ

=

√
r20Tr(D

2
M(Ax)(Ax)′)

1− δRes
− τ

=

√
r20Tr(xx

′A′D2
MA)− r0Tr(xx′A′DMA)

1− δRes

≈

√
(r20x

′D2
Mx− r0x′DMx)Tr(A′A)

1− δRes

≈

√
Tr(A′A)

1− δRes

√√√√ K∑
j=1

r0ωj(r0ωj − 1)x2
j . (7)

Referring to (6) and (7), the correlation between chan-
nel sparsity and mean delay can be explained intuitively as
follows. According to the RIP in CS [6] and the desired
reconstruction accuracy, the square sum of sparse coefficients
is nearly a constant

∑K
j=1 x

2
j ≈ 1− δRes for a given channel,
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TABLE II: Correlation between Sparsity and Propagation
Parameters.

Cases Types MPC # RMS τRMS Mean Delay

Simulated
Rayleigh 0.90 0.95 0.93
Rice (K=3) 0.80 0.89 0.91
SV 0.49 0.53 0.71

Measured
Distance 0.43 0.62 0.56
Body Parts 0.54 0.61 0.50
Heights 0.43 0.57 0.50

no matter what the specified sparsity K is. The trace of a
properly selected dictionary is also nearly a constant, i.e.,
trace(A′A) ≈ M , due to the low coherence requirement
between different atoms. Thus, the mean delay in (6) is mainly
determined by the weights ωj . Generally, a dispersive channel
generates more well-spaced multipath taps which result in
more non-zero sparse coefficients. This is why complex NLOS
or fast fading channels tend to show larger mean delay and
larger sparsity compared to LOS or flat fading channels. The
connection between RMS delay and sparsity can be explained
in a similar way.

Table II presents the correlation between sparsity and the
three TDL parameters, which is obtained by averaging over
different datasets and algorithms. The correlation is defined
as

rs,p =
N

∑
sd,ai pi −

∑
sd,ai

∑
pi√

N
∑

(sd,ai )2 − (
∑

sd,ai )2
√
N

∑
pi − (

∑
pi)2

,

(8)
where i represents the i-th selected CIR profile, d and a
are indexes of the dictionary and algorithms used for sparse
analysis, respectively, sd,ai represents the sparsity of the i-th
CIR reconstructed by using the d-th dictionary and the a-th
algorithm, and pi is one of the studied channel statistics for
the i-th CIR.

The average correlation for simulated channels is about 0.8,
while it is about 0.5 for the measured channels. The correlation
coefficients between sparsity and the mean delay and RMS
delay spread are greater than the one between sparsity and
significant MPC numbers. This is because the MPC number is
directly related to the sparsity, while the delay and RMS delay
spread are related to the sparsity indirectly via the matrix DM .

It is worth noting that the first and second-order channel
parameter characteristics in the temporal, frequency and s-
patial domains have similar mathematical forms. Thus, this
relationship can be easily extended to other domains. Such
connections between sparse parameters and traditional TDL-
model-based first- and second-moment parameters can have
valuable applications in sparse processing and performance
evaluation areas. For example, using such correlations, RMS
delay spread can be used to estimate channel sparsity roughly.
On the other hand, the known sparsity can also be used to
evaluate the singular value spread or the ergodic capacity of
MIMO applications.

V. VALIDATION AND SIMULATION

In this section, we use the obtained sparse channel models
to generate simulated channels and compare them with the

originally measured/simulated ones, in order to verify the
effectiveness of the sparse channel models.

A. Generating Simulation Channels Using SCM Results
Using the statistics of sparsity, MDP and the atomic indexes

in the develped sparse models, we can simulate channels
with high accuracy particularly in the cluster structure with
a limited number of parameters. Mathematically, the major
steps for the proposed SCM model can be represented in the
set of equations below,

ŷN =
√
P0/PL Ψω̂x̂,

ω̂ = {ω̂i} = {γ̂i ∗ ιp̂ + ιBeg
p̂ },

γ̂ ∼ LogNorm(µγ , σγ),
p̂ ∼ Round(HalfNorm(0, σp),
x̂ ∼ Norm(µx̂, σx̂),

(9)

In (9), P0 is the transmission power and PL is the predicted
path loss (e.g., (1) in [17]); x̂ is the sorted non-zero coefficient
vector in descending order; ω̂i, p̂ and γ̂ are the randomly
generated atomic index, shape and location ratio factors cor-
responding to (5); Ψω̂ means taking the atoms/columns with
indexes ω̂ from Ψ; Norm(·), LogNorm(·), and HalfNorm(·)
represent Normal, Log-Normal, and half-Normal distributions,
respectively; and Round(·) denotes the rounding operation.

So the process of channel generation mainly includes two
steps: Firstly generating the sorted sparse coefficients x̂ using
Normal distributions and then generating corresponding sparse
coefficient index set ω̂. The atom shape factor set γ̂ and
location ratio factor set p̂ are individually generated by Log-
Normal and half-Normal variables. For a given shape factor,
the beginning index ιBeg

p̂ and the total number ιp̂ of shape
atoms p̂ can be determined. Thus, the index set is generated
and the CIR set is finally synthesized.

The basic method described in (9) can be simplified by using
the prior information on, e.g., the exponential decaying rules
of the sorted sparse coefficients. We present two examples
next.

Firstly, assuming that x̂ can be approximated by a negative
exponential decaying function, the sorted coefficients x̂ can be
generated at a reduced complexity using the following function
instead of the Gaussian function in (9)

x̂ = (a e−bk + c)(1 + σx), (10)

where σx is the shadowing variable of the sorted non-zero s-
parse coefficients, and k is the sparse sequence set {1, 2, ...K}.
By replacing the last equation in (9) with (10), an improved
SCM predicted sparse coefficients (SCM-PSC) model is ob-
tained. It is called “predicted” because these coefficients can
be determined once the exponential function is selected.

Secondly, when modelling any new scenario with exponen-
tial decaying but unknown parameters, we can try estimating
the parameters using any two sorted sparse coefficients. With-
out loss of generality, let them be the first and k-th sparse
coefficients. The parameters for the exponential decaying can
be obtained by solving the following ternary equation set

x1 = a e−b + c,
xk = a e−b k + c ≈ c,∑k

i=1(a e
−b k + c) = 1− δRes.

(11)
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Fig. 15: Graphic user interface for our developed single-
measurement-vector sparse channel simulator that is available
from Github [25].

The solution to (11) is shown in (12). Once the parameters are
obtained, we can then generate all sorted coefficients for x̂.
We call it SCM Fitted Sparse Coefficients (SCM-FSC) scheme
for generating channels when detailed exponential decaying
parameters are unknown.

By exploiting the magnitude decaying rules, the SCM-
PSC and SCM-FSC schemes reduce the coefficients to be
statistically generated from K taps to only 1 or 2 taps. This
can largely simplify channel simulation, particularly for high
dimensional channels such as massive MIMO channels.

B. Sparse Channel Validation

With the three proposed SCM channel generation schemes
in Section V-A, we now generate 1000 Monte Carlo sim-
ulations for each dataset to verify the effectiveness of the
developed sparse channel models. The widely used statistical
TDL (STDL) model is also implemented for comparison [1],
[2].

We developed and shared a channel simulator on Github for
this work [25]. Fig. 15 depicts the Matlab based Graphic User
Interface (GUI) with the corresponding modelling program
can be accessed on Github. By setting up the parameters of
sparse analysis and modelling modules, the statistics for sorted
non-zero coefficients, and shape and location ratio factors are
extracted. An example is shown in the left bottom table in
Fig. 15. The generated CIRs corresponding to the selected
scenario and extracted statistical parameters are shown in the
module of modelling results. By changing the plotting drop-
down menu and channel number slider, one can configure the
desired illustration results. The right upper figure in Fig. 15
shows an example. Three significant clusters which are widely
observed in selected BAN Distance dataset can be seen from
generated CIR in 10, 40 and 70 nanoseconds. Such cluster
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Fig. 16: Model validation for the distributions of the generated
root mean square delay spread of BAN BONBO dataset.

structures are hard to be simulated by traditional modelling
methods with limited parameters.

Three Key Performance Indicators (KPIs), including RMS
delay spread, mean delay and signal levels, can be chosen
on the sparse modelling panel. The right bottom figure in
Fig. 15, which is also enlarged in Fig. 16, shows the CDF
of the RMS delay spread for the generated CIRs using the
standard SCM, SCM-PSC, SCM-FSC and STDL models, for
the measured CIRs in BAN Dis and BAN Parts. The sparsity
is about 20. All RMS delay spreads are best fitted by log-
Normal distributions with parameters µ and σ. Referring to
the measured RMS delay spread, three SCM schemes all
achieve better accuracy than the STDL model. No significant
difference is observed among the three SCM schemes.

Table III summarizes the parameters of fitting Log-Normal
distribution for extensive Monte Carlo experiments for three
measured and two simulated channel datasets, using the SMV-
Sparse channel simulator tool. All the RMS delay spread of
generated CIRs are found to be better fitted with Log-Normal
distributions. It is interesting to see the SCM-PSC model
performs slightly better than the other two SCM schemes,
with Log-Normal distribution parameters closer to originally
measured/simulated data. This reflects the high accuracy of
the exponential decaying function in modelling the MDP.
The ℓ1-Min recovery algorithm achieves better accuracy than
OMP. These results indicate that the proposed SCM schemes
work well for different channels, dictionaries, and recovery
algorithms.

VI. CONCLUSION

In this paper, we highlighted the trade-off between sparsity,
modelling accuracy and reconstruction complexity in SCM,
and introduced a universal three-stage methodology for SCM.
We also developed comprehensive statistical sparse channel
models, using both measured and simulated channel datasets
representing ultra-wideband channels over the frequency band
from 6 to 8.5 GHz. For both datasets, channels generated from
the developed statistical models match original ones in many
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a = y1−yk

e−b ,

b = −ln
yk(y1−yk)+

√
y2
k(y1−yk)2+(1−σRes−kyk)2(1−σRes−y2

1−(k−1)y2
k)

(1−σRes−ky2
k)

2 ,

c = yk,

(12)

TABLE III: Extracted parameters for the fitting Log-Normal distribution for the CDF of root mean squared delay spread.

Cases dataset Algorithm Measured Data SCM SCM-PSC SCM-FSC STDL [2]

µ σ µ σ µ σ µ σ µ σ

Measured

BAN Parts OMP 3.17 0.38 3.22 0.26 3.13 0.30 3.14 0.27 3.59 0.30
ℓ1-Min 3.17 0.38 3.21 0.26 3.18 0.27 3.14 0.28 3.72 0.23

BAN Dis OMP 3.29 0.22 3.39 0.19 3.35 0.21 3.36 0.19 3.79 0.24
ℓ1-Min 3.29 0.22 3.38 0.20 3.39 0.20 3.26 0.24 3.79 0.17

BAN Hei OMP 3.32 0.51 3.42 0.35 3.34 0.44 3.38 0.39 3.87 0.20
ℓ1-Min 3.32 0.51 3.42 0.37 3.37 0.40 3.18 0.59 3.84 0.20

Simulated
SV model [4] OMP 2.23 0.16 2.66 0.35 2.64 0.38 2.38 0.38 2.97 0.28

ℓ1-Min 2.99 0.20 2.51 0.41 2.57 0.42 2.72 0.42 3.17 0.29

Rayleigh [3] OMP 2.17 0.47 2.45 0.45 2.42 0.51 2.06 0.39 2.79 0.34
ℓ1-Min 3.24 0.36 2.35 0.52 2.46 0.51 2.23 0.53 2.98 0.37

aspects, which demonstrates the robustness of the methodolo-
gy and the developed models. A summary of important SCM
results for the channel datasets in this paper are as follows:

• The sparsity generally conforms to the Normal distri-
bution and can be significantly affected by the channel
fading types and LOS conditions;

• Average sparsity is found to be approximately 20 under
a modelling accuracy of MSE=10−4;

• The sorted non-zero sparse coefficients, the correspond-
ing location ratio factors and shape values follow Normal,
Log-Normal and half-Normal distributions, respectively;

• The magnitudes of sorted non-zero sparse coefficients
(i.e., the MDP) follow exponentially decaying rule and
the decaying speed is mainly affected by channel condi-
tions.

We also established the connection mathematically between
parameters for the sparse and conventional TDL models. The
averaged correlation coefficients are found to be 0.5 and
0.8 for measured and simulated CIRs, respectively, which
demonstrates a high correlation between these parameters.

Based on the developed models, we also proposed three
methods for generating simulated channels. It is found that
these methods are particularly effective in generating clustered
channels, at much lower complexity compared to conventional
channel models. The proposed models and channel simulation
methods have been implemented in Matlab and shared on
Github, which allows open access for promising applications
in channel modelling, sparse channel estimation and system
design.
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