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Estimation of Power Plant Emissions with
Unscented Kalman Filter

S. Metia, Q. P. Ha, H. N. Duc and M. Azzi

Abstract—Emissions from power plants constitute a major part
of air pollution and should be adequately estimated. In this study,
we consider the problem of estimating NOX emissions of power
plants by developing an inverse method to integrate satellite
observations of atmospheric pollutant column concentrations
with specie concentrations and direct sensitivities predicted by
a regional air quality model in order to discern biases in the
emissions of the pollutant precursors. Using this method, the
emission fields are analyzed using a “bottom-up” approach with
an inversion performed by an Unscented Kalman Filter (UKF)
to improve estimation profiles from emissions inventories data
for the Sydney Metropolitan area. The idea is to integrate
information from the original inventory with tropospheric NO2

emissions estimated during one month from The Air Pollution
Model-Chemical Transport Model (TAPM-CTM), and then, for
validation, to compare the resulting model with satellite retrievals
from the Ozone Monitoring Instrument (OMI) above the region.
The UKF-based estimation of NO2 emissions shows better agree-
ment with OMI observations, implying a significant improvement
in accuracy as compared with the original inventories. Therefore,
the proposed model is a promising tool for estimation of air
emissions in urban areas.

Index Terms—Satellite data, UKF, Emissions inventories,
Power plant, Nitrogen dioxide.

I. INTRODUCTION

N ITROGEN OXIDES (NOX=NO+NO2) are key precur-
sors to tropospheric ambient ozone (O3), which are

closely associated with adverse health effects, including res-
piratory diseases such as wheezing, coughing, colds, flu and
bronchitis [1], [2]. It is therefore important to quantify and
monitor NOX emissions for air quality control in large cities.
In this regard, point sources of this air pollutant can be
identified by using satellite data retrieved from the Ozone
Monitoring Instrument (OMI) [3], [4]. Emissions from power
plants and large diffuse area sources have been estimated by
using satellite record of atmospheric parameters, see, e.g.,
Krueger et al. [5], to extract sulfur dioxide emitted by volca-
noes, combustion of fossil fuels or smelting of ores. Top-down
nitrogen dioxide (NO2) column profiles can also be extracted
from OMI data, see e.g., Bucsela et al. [6] and Mijling &
van der A [7]. Validation on these estimations would however
require a thorough comparison with other methods. For this,
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satellite retrievals together with air quality models have been
used to assess global and regional emissions, [8], [9].

Inverse modelling of ground level ozone concentrations has
been the topic of many investigators such as [10], [11], but
not much effort has been devoted to the development of a
suitable model for prediction of spatio-temporal distributions
of nitrogen oxides NOX from emissions inventories. A similar
work is reported in [12] to predict spatio-temporal distribu-
tion of columns of atmospheric carbon dioxide (CO2) using
a gap-filling technique. There is a wide range of interest
(both geochemical and geopolitical) in geographically explicit
inventories of the sources and sinks of the greenhouse gas
CO2. It is a challenge to estimate sources and sinks in a
spatially explicit context, and to best characterize the location
and magnitude of emissions and sinks on regional scales [12],
[13]. Most emissions inventories are developed by using the
bottom-up approach, which is based on a combination of
industrial, energy-consuming activities and source-specific or
region-specific emissions factors [14]. Due to large uncer-
tainties associated with the statistics, temporal profiles, grid
allocations, natural sources, and human factors [15], [16],
these emissions inventories require further improvements and
refinements by using additional information such as station
data, satellite data or other computational models, e.g. The
Air Pollution Model with Chemical Transport Model (TAPM-
CTM) [17].

Generally, there are many techniques to improve emissions
inventories and predict severe air pollution in a region. In [18],
an algorithm was developed to retrieve the haze aerosol optical
thickness (HAOT) by using Moderate Resolution Imaging
Spectrometer (MODIS) data to supplement the estimation with
a global 3-D atmospheric chemical transport model (GEOS-
Chem). In [19], a Kalman filter (KF) fusion algorithm has
been applied to satellite data retrieved from the Total Ozone
Mapping Spectrometer (TOMS)-Ozone Monitoring Instrument
(OMI) combined with ground observations to estimate the
error corelation region for UV-B monitoring. The Kalman filter
inverse modelling technique was implemented on a Commu-
nity Multiscale Air Quality (CMAQ)-based model to estimate
NH3 emissions for the eastern United States [20]. Recently,
an extended fractional Kalman filter has been proposed to
the inverse problem for air pollutant emissions estimation and
prediction for the Sydney basin in Australia [21].

The Global Ozone Monitoring Experiment-2 (GOME-2)
is one of the new-generation European instruments carried
on MetOp (a series of three polar orbiting meteorological
satellites) and will continue the long-term monitoring of atmo-
spheric ozone started by GOME on ERS-2 (European Remote
Sensing) and SCIAMACHY (SCanning Imaging Absorption
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SpectroMeter for Atmospheric CHartographY) on Envisat.
The more advanced GOME-2 is set to make a significant
contribution towards climate and atmospheric research, whilst
providing near real-time data for use in air quality forecasting.
Different gases in the atmosphere absorb different wavelengths
of light. The GOME-2 scanning spectrometer is designed
to exploit this fact by capturing light reflected from the
Earth’s surface and atmosphere and splitting it into different
wavelengths to reveal absorption lines, which correspond to
certain gases present in the observed sample. GOME-2 will
map concentrations of atmospheric ozone as well as nitrogen
dioxide, sulphur dioxide, other trace gases and ultraviolet
radiation. These profiles are representative of the lowermost
50 km of the Earth’s atmosphere. These data are crucial for
monitoring stratospheric ozone and atmospheric pollutants to
keep a check on the health of the Earth’s atmosphere.

In this paper, the problem of estimating power plant
emissions is considered. The ultimate goal is to understand
the environmental impact of isolated power plants towards
achieving sustainable energy usage [22]. Since emissions data,
considered as time series, are highly nonlinear, linearized
estimators such as the extended Kalman filter do not yield
reliable performance. Here, by formulating the emissions pre-
diction as the state estimation problem for a multi-dimensional
continuous-time Gaussian process, an Unscented Kalman filter
(UKF) for the air-pollutant emissions model can be used to
deal with nonlinearities [23]. The filter is also coupled with
a Matérn class of covariance functions to take into account
spatio-temporal distributions and smoothing of the correlation
[24]. As such, the proposed approach can deal with cases of
missing or non-uniformly sampled data, towards solving the
inversion problem of air pollutant emissions.

The remainder of this paper is organised as follows. Fol-
lowing the introduction, Section II presents the emissions
data management system and UKF estimation scheme. Sec-
tion III provides the estimation results for NO2 emissions
using the proposed UKF method with TAPM-CTM. Section
IV presents the estimated emissions and the satellite-based
retrievals from OMI data over the power plant region of the
Greater Metropolitan Region (GMR) in the New South Wales
(NSW) state. The proposed model is validated through com-
parison to confirm its accuracy in prediction of air pollutant
emissions, here coming predominantly from power plants.
Finally, a conclusion is drawn in Section V.

II. EMISSIONS INVENTORIES AND UNSCENTED KALMAN
FILTER

Inverse pollution estimation involves the identification of
the emissions sources and the amount of their emissions in
environment. Air quality plans are nowadays being developed
in urban and regional areas where air quality does not comply
with the limit values established by authorities. Air quality
models are essential tools to support policy formulation by
evaluating the possible impact of local and regional emission
abatement options on air quality and human health. There-
fore, there is a need for better understanding the air quality
model uncertainties and ensure they are fit-for-purposes. The

uncertainties mostly relay on the input data, such as mete-
orology, boundary conditions and, emissions. This identifi-
cation process is typically carried out by using the bottom-
up approach [25], resulting in databases called emissions
inventories. For estimation of air pollutant distributions in
a region, the reliability of emissions inventories is crucially
important in air quality management. This section presents the
UKF and Matérn covariance function based approach to deal
with nonlinearities and uncertainties associated with emissions
inventories.

A. Emissions data management system

In this paper, the Emissions Data Management System
(EDMS v2.0) [26] is used to generate data of air pollutant
emissions, i.e. the original or priori emissions inventories,
for GMR NSW, Australia. To determine the spatio-temporal
profiles of emissions in those inventories, map coordinates
are assigned for industrial and commercial controlled point
sources. These coordinates are based on 1-km by 1-km grid
cells for natural (biogenic), domestic, off-road and on-road
area sources as well as industrial and commercial uncon-
trolled fugitive sources. Emissions are then generated for
each month, day of week, and hour of day, taking into
account a variety of emitting activities that occur in transport
and industries. For example, the transport sector comprises
emissions from registered vehicles operating on public roads,
such as cars, motorcycles, trucks and buses, both petrol- and
diesel-fuelled. These emissions are allocated across the road
network according to data of vehicle’s kilometers travelled.
Since uncertainties associated with emission inventories are
hardly avoidable, a good model is required to adequately relate
emissions inventories with air pollution emissions.

B. UKF scheme

Consider the air-pollutant dispersion model and Matérn
covariance function as described in [21]:

dx(t)

dt
=

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

x(t) +
00
1

w(t)
yi =

[
1 0 0

]
x(ti) + εi,

(1)

where x(t) is the state vector, w(t) is white noise, λ is a
coefficient depending on the correlation length and smoothness
of the process, and εi is an independent zero-mean Gaussian
random variable with variance σ2

i for i = 1 to N data
points [27]. The dynamics of air-polluntat are consider as x(t)
and measurement model output are yi. To improve emission
inventories, an UKF will be developed for state estimation in
face of the system nonlinearity. Unlike the extended Kalman
filter (EKF) which uses the first-order approximation of the
nonlinear system, UKF represents a derivative-free alternative
with lesser computational complexity [28]. Generally, an un-
scented transform (UT) can be used to estimate the distribution
of a posteriori state, taking into account nonlinearities of
the process [29], whereby UKF is expected to yield more
accurate estimates compared to EKF owing to the capability
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Fig. 1: Flowchart of the proposed emissions estimation using Matérn function based UKF with comparison of data extracted
by satellite.

of propagating mean and covariance information through the
nonlinear transformations [23].

In our system, a Gaussian approximation of the joint
distribution of random variables x and y is adopted for the
unscented transform:

x ∼ N (m,P )

y = g(x),
(2)

where x ∈ Rn, y ∈ Rm and g : Rn 7→ Rm is a general
nonlinear function. The UT main idea is to form a fixed
number of deterministically-chosen sigma-points to appropri-
ately capture the mean value of x as well as the covariance
of the original random process. These sigma-points are then
propagated through the nonlinear process so that the mean and
covariance of the transformed variables can be estimated in the
presence of nonlinearities. Specifically, the unscented Kalman
filter (UKF) [30] is a discrete-time system represented by the
following equations:

xk = fd(xk−1, k − 1) + qk−1

yk = hd(xk, k) + rk,
(3)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement,
qk−1 ∈ Rn is a Gaussian process noise qk−1 ∼ N (0, Qk−1),
and rk ∈ Rm is a Gaussian measurement noise rk ∼
N (0, Rk). The mean and covariance of the initial state x0 are
m0 and P0, respectively. Using the UT matrix form described
in [28], the prediction and update steps of UKF to enhance
the emission inventory are conducted in the following steps:

• Prediction :

Compute the predicted state mean m−
k and the predicted

covariance P−
k as:[
m−

k , P̃k

]
= UT (fd,mk−1, Pk−1)

P−
k = P̃k +QK−1.

(4)

• Updating :
Compute the predicted mean µk and covariance of the
measurement Sk, and the cross-covariance of the state
and measurement Ck:[

µk, S̃k, Ck

]
= UT (hd,m

−
k , P

−
k )

Sk = S̃k +Rk.
(5)

The filter gain Kk, state mean mk and covariance Pk,
conditional to the measurement yk, are then computed
as:

Kk = CkS
−1
k

mk = m−
k +Kk

[
yk − µk

]
Pk = P−

k −KkSkK
T
k .

(6)

The unscented transform is used for forming the Gaus-
sian approximation using 2n + 1 sigma points from the
columns of the n × n matix [30]. The parameter λ is a
scaling parameter defined as

β = α2(n+ κ)− n. (7)

The positive constants α and κ are used as parameters of
the method.

III. ENHANCED EMISSIONS ESTIMATION USING UKF

This section describes the proposed model for estimation
of air pollutant emissions and compares the results of the
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Fig. 2: NO2 level at Liverpool station (latitude -33°55’58”,
longitude 150°54’21” and altitude 22) from 2nd-7th January,
2008.

estimation from using UKF and EKF. Here, after using a suit-
able Matérn covariance function for smoothing the correlation
of the spatio-temporal emissions distributions, the inventories
are incorporated into chemical transport models to take into
account information of the terrain and data of the synoptic
distributions of meteorological conditions over the region.

A. Air quality model

The proposed model for emission estimation using the
Matérn function-based UKF is shown in the flowchart of
Fig. 1 with two loops: the first loop corresponds to the inverse
pollutant estimation and the second one is for emissions
estimation. Station data are used to determine the order for
the Matérn covariance function. Here, a 3rd order of the
covariance function is obtained by using a genetic algorithm
[21]. After filtering emissions data with the Matérn function-
based UKF, the air pollutant profiles are obtained, consid-
ering the chemical transport, synoptic data and terrain data.
For this, we use the TAPM-CTM [17] as the grid model,
applied for the whole Australian continent with nested 3/1
km resolution grids, from the earth’s surface upward to a
height of approximately 4 km (vertical grid structure). The
model solves the momentum equations for wind velocity
components in the horizontal direction. Its meteorological
component predicts the flow of sea breezes and terrain-induced
circulations, given the larger scale synoptic fields data. In this
work, inventory data of air pollutants emitting from areas,
points and motor vehicles are generated by EMDS v2.0 and
organised into area emissions (aems), point emissions (pems),
and vehicle emissions (mvems) [21]. These files contain 16
species including NO and NO2. These data are filtered by
using the proposed Matérn function-based UKF, then, together
with synoptic and terrain data, they form the input to the
TAPM-CTM to obtain air pollutant profiles. The output is
then compared with data extracted from satellite retrievals for
model validation after using scaling factors.

B. Station measurements

Measurements collected at monitoring stations serve as the
ground’s benchmarking data for evaluation of the TAPM-
CTM output data to measure the accuracy of output data.
Observation data for O3, NO2, CO, SO2, PM10 and PM2.5

obtained from 20 sites in the GMR are integrated to form the
basis for comparison of spatio-temporal profiles of these air
pollutants. Hourly pollutant concentration measurements are
collected at monitoring stations and made available online by
The Office of Environment and Heritage in New South Wales
(NSW) [31], providing a basis for air quality control for the
Sydney metropolis. In Fig. 2, a recorded profile of NO2 in
real-time is shown together estimated profiles using UKF and
EKF.

C. Comparison between UKF and EKF on emissions estima-
tion

Results from the TAPM-CTM air quality model are com-
pared with air pollutant profiles generated by using the original
and filtered inventories. With uncertainties attributed to air
pollution emissions, the estimation performance is affected if
the dynamic system is subject to high nonlinearities, unknown
external sources or parameter variations. López-Aparicio et al.
[32] show discrepancies in nitrogen oxides (NOX ) and partic-
ulate matter (PM2.5 and PM10) when evaluating both total
and sectorial emissions. These discrepancies are associated
with the assumptions made for the allocation of emissions.
Emission inventories are developed at local, regional and
national scales, with methods that very much depend on the
purpose, emission source intensity and input data availability.
To overcome this problem, the UKF, being derivative-free and
capable of propagating the mean and covariance through an
unscented transform, is considered as a better option than
EKF. For comparison, both filters were used to estimate the
temporal distribution of the same air pollutant at a station
site. The obtained results indicate that the estimation follows
the observations, as shown in Fig. 2. Therein, NO2 is evident
near emission sources such as coal-fire power plant and motor
vehicle exhaust. However, in terms of estimation accuracy. The
mean squared error (MSE) of the NO2 profile using EKF and
UKF are respectively 0.0427 and 0.0012, with the latter being
more accurate, as expected.

The spatial concentration plots of NO2 distributions over
the GMR in New South Wales, as estimated by using the
original and the improved inventories with UKF, are shown
respectively in Figs. 3a and 3b in summer time (January
2008) as well as in Figs. 4a and 4b in winter time (July
2008). By referring to the location and ratings of power
plants across the state, provided in Table I, the impact of
power plant emissions can be judged by looking at the highest
concentration of NO2 in the figures. Fig. 5 shows map of coal
based power stations and monitoring stations across the NSW.
In addition, as it can be seen therein, the overestimation and
underestimation of the spatial distributions of NO2 emissions,
associated with the original inventory in regions affected by
power plants, have been rectified by using the Matérn function
based UKF. To be more specific, Fig. 6a and Fig. 6b show
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Fig. 3: Estimated NO2 concentrations (ppb) over NSW for January 2008 using TAPM-CTM: (a) original inventory, and (b)
with UKF.
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Fig. 4: Estimated NO2 concentrations (ppb) over NSW for July 2008 using TAPM-CTM: (a) original inventory, and (b) with
UKF.

the difference in NO2 concentrations obtained by using the
original inventory and the UKF-based estimation for January
and July months respectively, where it can be observed of
the NO2 emissions concentrations are slightly overestimated
over the ocean in the eastern part of the GMR while they
are inherently underestimated over the interested power plant
regions, even more seriously in the winter (July in the southern
hemisphere).

IV. COMPARISON BETWEEN TAPM-CTM-ESTIMATED
AND OMI-RETRIEVED NO2 COLUMNS

In this section, we compare OMI tropospheric NO2 columns
with ground based TAPM-CTM output of NO2 pollutant
profile. The OMI instrument on board the NASA/EOS-Aura
satellite, a nadir-viewing imaging spectrometer, provides in-

TABLE I: MAJOR POWER STATIONS IN NSW (COAL-
BASED)

Power Location Nearest Installed Latitude Longitude
station monitoring capacity (Degree) (Degree)

station (MW)
Bayswater Hunter Beresfield 2,720 -32.8765◦ 151.2290◦

Eraring Lower Hunter Wallsend 2,640 -33.0664◦ 151.5180◦

Liddell Hunter Muswellbrook 2,080 -32.4028◦ 151.0183◦

Mount Piper Central West Bathurst 1,400 -36.3817◦ 148.4178◦

Vales Point Central Coast Wyong 1,320 -33.1489◦ 151.4884◦

Wallerawang Central West Bathurst 1,000 -33.4113◦ 150.0649◦

formation on the properties of aerosols and clouds as well
as global levels of atmospheric species such as ozone (O3),
Nitrogen dioxide NO2, Sulfur dioxide SO2, Chlorine dioxide
(ClO2), Bromine oxide (BrO), and Formaldehyde (HCHO) on
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Fig. 5: Map of monitoring stations (black) and coal based power stations (blue) across the NSW.
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Fig. 6: Difference between the original inventory and UKF-based estimation of NO2 concentrations (ppb) for (a) January 2008,
and (b) July 2008.

a daily basis.

A. OMI retrievals

The Ozone Monitoring Instrument (OMI) was launched on
NASA’s Aura satellite in July 2004 and has been providing
measurements of ultraviolet and visible radiation with a spatial
resolution of up to 13 by 24 km2 [33]. In this work, data
obtained from the OMI with a maximum resolution of 13 by 24
km2 are used to create NO2 distribution maps over Australia at
0.1◦ resolution. These maps can be further compared with NO2

data from surface concentrations measured at station sites, as
adopted in [34]. The results are used to validate the proposed
UKF-based method for estimation of the total NO2 emissions
in NSW considering particularly locations of the power plants.

B. Satellite data estimation

In this work, data are downloaded from Giovanni
(http://giovanni.gsfc.nasa.gov), which provides an online tool
for visualization, data extraction, exploration, and data analysis
from NASA Earth Science. Spatial plots of NO2 total column
in January 2008 for the NSW region are shown in Fig. 7a.
It can be interpreted that fossil fuel burning and forest fires
have led to high emissions of NO2 across the state during
mid-summer. Moreover, in areas with high NO2 emission
over the state, a good coincidence can be observed between
satellite data and the UKF-based estimation method. Fig. 7b
shows spatial plots of NO2 total column the NSW region in
July 2008. Due to meteorological effects, the NO2 distribution
tended to shift towards the sea. A comparison of the satellite
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Fig. 7: Spatial plots of NO2 emissions (molec/cm2) from satellite data over NSW for (a) January 2008, and (b) July 2008.

(a) (b)

Fig. 8: Scatter plots of TAPM-CTM and the OMI-derived surface NO2 for January 2008, TAPM-CTM retrievals are shown in
red circles: (a) original inventory, and (b) with UKF.

(a) (b)

Fig. 9: Scatter plots of TAPM-CTM and OMI-derived surface of NO2 for July 2008, TAPM-CTM retrievals are shown in red
circles: (a) original inventory, and (b) with UKF.

retrievals with the estimation shown in Fig. 4b indicates that
the UKF-based model has overcome the underestimation of
NO2 concentrations from the original inventory to emphasize
the contribution of power plant sources to emissions, espe-

cially in the winter. However, there still exists a difference
in NO2 concentrations between estimation by the UKF and
remotely sensing from satellite data. This can be explained by
two reasons. First, the UKF-based estimation could not include
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Fig. 10: Difference between TAPM-CTM and OMI of NO2 concentrations (ppb) for January 2008: (a) original inventory, and
(b) with UKF.
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Fig. 11: Difference between TAPM-CTM and OMI of NO2 concentrations (ppb) for July 2008: (a) original inventory, and (b)
with UKF.

all factors influencing NO2 distributions such as emissions
aloft from lightning sources or airplanes. Second, the UKF-
based method estimates pollutant concentrations at the surface
level while satellite data are obtained in the troposphere.
For better comparison, it is essential to use scaling factors
considering emissions at the ground level.

C. Surface concentration comparison

For model-model comparison at the ground level, the
TAPM-CTM hourly forecasts for NO2 concentrations are eval-
uated against OMI NO2 observations. Five power plant sites
(Wallerawang, Vales Point, Eraring, Bayswater and Lindell)
and five monitoring station sites (Muswellbrook, Beresfield,
Wallsend, Bathurst and Wyong) are considered for analysis.
To this end, surface NO2 concentrations are inferred from the

satellite observations by calculating a scaling factor, defined
as the ratio of the average in situ surface NO2 concentrations
to the average OMI column abundance levels [35]. This
ratio varies between seasons due to changes in natural NO2

emissions. Besides, there is a mismatch between TAPM-CTM
grid numbers (57330 grid cells, 1×1 km2 each) and OMI
grid numbers (40 grid cells, 13×24 km2 each). These satellite
observations are not “real” or “true” values, having different
vertical sensitivities at different altitudes in the atmosphere. To
consider this vertical sensitivity of the satellite observations,
the mass balance method should be introduced into com-
parison studies between TAPM-CTM-simulated and satellite
retrieved tropospheric NO2 columns [36]. Han et al. [37]
show scaling factors vary according to seasons. The scaling
factors are calculated according to the mass balance method
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TABLE II: STOCHASTIC GOODNESS-OF-FIT CRITERIA FOR
THE ORIGINAL INVENTORY AND UKF ESTIMATION

Month Type of inventory MSE R2 p-value

January Original 0.1519 0.6703 1.8×10−4

UKF 0.0384 0.8669 1.2×10−4

July Original 0.1125 0.7335 2.1×10−4

UKF 0.0320 0.8686 1.7×10−4

[36], [37]. As a result, the scaling factors are 2.5700×1016

molec/cm2 for original inventory and 2.5240×1016 molec/cm2

for UKF inventory during January 2008. Similarly, these
values are 1.9458×1016 molec/cm2 for original inventory and
1.8371×1016 molec/cm2 for UKF inventory during July 2008.

The performance of emission estimation with the proposed
UKF model is now evaluated by comparing with satellite data,
as summarized in Table II. From statistical goodness-of-fit
criteria such as the mean-squared error (MSE), the coefficient
of determination R2 between the measurement and prediction,
as well as the p-value, both the original inventory and UKF
correction indicate good estimation results with the UKF-
based prediction outperforming the original inventory for NO2

emissions. As depicted in Fig. 8 and Fig. 9 for the regression
lines between satellite data retrieved from the Giovanni server
and TAPM-CTM data in both summer and winter seasons, the
UKF-based estimation is highly-correlated. For further com-
parison, the difference in NO2 concentrations between OMI-
retrieved data and TAPM-CTM values is considered for both
the UKF-based estimation and original inventory. Fig. 3 shows
the highest concentration of NO2 is 24ppb in scale where as
fig. 6a shows he highest concentration of NO2 is 23ppb in
scale. This difference is due to OMI-retrieved data. Similar
trend shown in fig. 4 has the highest concentration of NO2 is
13ppb in scale and ig. 6b has the highest concentration of NO2

is 12ppb in scale. NO2 emissions produced from combustion
of fossil fuels, biomass burning, soial microbial activity and
lighting. That is the main reason NO2 concentration varies
according to season. These type of variation is applicable to
all seasons.

It should be noted that despite improving the estimation, the
use of UKF and scaling factors could not fully eliminate the
mismatch between TAPM-CTM and satellite-based emission
concentrations. The reasons are likely with the use of constant
scaling factors and conversion of the grid cells. Future work
will therefore aim at finding not only an alternative to the
current scaling approach but also a solution to combine the
prediction model with satellite observations for better inversion
of air-pollutant emissions.

V. CONCLUSION

In this paper, we have presented a method to improve the
emissions inventories using an unscented Kalman filter with
a focus on estimation of power plant emissions in the GMR
of New South Wales. Here, NO2 concentrations estimated by
TAPM-CTM are compared with emission levels retrieved by
satellite. The results show generally a coincidence between the
satellite data and the TAPM-CTM in which the UKF-based

estimation indicates a better match compared to the original
inventory. The enhanced accuracy owing to the proposed UKF
with a Matérn covariance function indicates an underesti-
mation of the original inventory on the impact of power
stations emissions, particularly in the winter. The proposed
method assumes that the discrepancies in the modelled and
observed NO2 are due to the emissions estimated at the
ground level. Nonlinearities and uncertainties associated with
chemical processes, emissions aloft from lighting sources,
air planes, and meteorological factors also contribute to the
difference in NO2 concentrations between the predicted model
and satellite observations. The UKF has a limitation in terms of
computation. A traditional Kalman filter allows retaining the
moments of order 1 (mean) and 2 (covariance matrix). The
Unscented Transform (UT) allows better conserving higher
order moments of the states. In the UKF the sigma point
matrix is recomputed after each propagation or measurement
step from the covariance matrix, which only contains 2nd order
moments,this higher order information is lost.
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