
Quantifying resources in general resource theory with catalysts

Anurag Anshu,1 Min-Hsiu Hsieh,2 and Rahul Jain3

1Center for Quantum Technologies, National University of Singapore, Singapore∗
2Centre for Quantum Software and Information, University of Technology Sydney, Australia†

3Center for Quantum Technologies, National University of Singapore and MajuLab, UMI 3654, Singapore‡

A question that is commonly asked in all areas of physics is how a certain property of a physical
system can be used to achieve useful tasks, and how to quantify the amount of such a property
in a meaningful way. We answer this question by showing that in a general resource theoretic
framework that allows the use of free states as catalysts, the amount of “resources” contained in
a given state, in the asymptotic scenario, is equal to the regularized relative entropy of a resource
of that state. While we need to place a few assumptions on our resource theoretical framework, it
is still sufficiently general, and its special cases include quantum resource theories of entanglement,
coherence, asymmetry, athermality, non-uniformity, and purity. As a by-product, our result also
implies that the amount of noise one has to inject locally to erase all the entanglement contained in
an entangled state is equal to the regularized relative entropy of entanglement.

In thermodynamics, the amount of work a system
can do on its surrounding depends on the free energy
of the system, highlighting the role of free energy in
physically meaningful tasks. Various other physical
systems have similar properties, such as the quan-
tum entanglement of a bipartite quantum state [1]
or the quantum coherence in a given quantum state
[2]. While the full power of these resources is not
completely understood, they have been identified as
being crucial for achieving certain communication
and computational tasks [3, 4] and states that pos-
sess these properties are called “resourceful states”.
However, there is no unified framework that oper-
ationally quantifies the amount of useful resources
contained in a given state. We show that the amount
of resources present in a state can be quantified in
an operationally meaningful and unified way. Our
result implies that the relative entropy of a resource
[5] tightly captures the amount of noise required to
change a resourceful state into a free state. The rela-
tive entropy of resource, E(ρM ), of a quantum state
ρM is defined as

E(ρM ) = inf
σM∈F

D(ρM‖σM ),

where F is a collection of free states and D(ρM‖σM )
is the quantum relative entropy [6], and the regular-
ized relative entropy of resource is

E∞(ρM ) = lim
n→∞

1

n
E(ρ⊗nM ).

A geometric illustration of E(ρM ) is depicted in Fig-
ure 1.

The core of a resource theory rests on two system-
dependent requirements: (i) the existence of a set
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FIG. 1. A geometric illustration of the relative entropy
of a resource E(ρM ).

of states that are free and inexpensive; and (ii) al-
lowed/free operations that map the set of free states
only to themselves. A resource theory emerges when
quantum information theory is found to provide a
unified platform for characterizing a resource [7, 8]
because, in a nutshell, all resources can be viewed
as inter-conversions of different system states with
system-dependent constraints. Many resource the-
ories have been developed over the past decade [9–
21] which address a vast diversity of the physically
meaningful properties of the natural world.

It is well known that not every state transforma-
tion is possible, and adding a catalyst could at least
make the transformation possible with a positive



probability [22]. Moreover, even if a transformation
is possible a priori, the addition of a catalyst often
makes the process much more efficient. Therefore,
individual resource theories have begun to include
catalysts in their formalisms [10, 15].
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FIG. 2. Catalytic Resource Framework. (a) A free state
is prepared in registers E and J . (b) Free operations Uj

are performed on registers M and E, controlled by the
classical register J . (c) Upon discarding the register J ,
the final state of registers M and E should be close to
some free state.

We, therefore, consider a general resource theo-
retic framework that allows free states to be used
as catalysts. Our main contribution is a complete
characterization of the amount of resources con-
tained in a given state ρ (relative to the free states)
in the asymptotic scenario, as well as in the one-
shot setting. Prior to our work, Ref. [5] also con-
sidered a general resource-theoretic framework for
state transformation and showed that the asymp-
totic transformation rate from ρ to σ is given by
the ratio E∞(ρ)/E∞(σ). The major differences
are threefolds. In [5], a catalyst was not included
and the allowed free operations became resource-free
only when the number of copies approached infinity.
Moreover, their setting and the corresponding re-
sults do not imply our results regardless of whether
catalysts are involved or not. Finally, their method
cannot be used when only one copy of the resource
state is involved in the transformation (i.e. the one-
shot setting).

To achieve such a characterization, we begin by
considering a task that provides a metric for “count-
ing” the amount of resources present in ρ. This task,
motivated by the work in Ref. [23], requires an ex-
perimenter to “destroy” all the resources present in

ρ by converting them into a free state with the help
of noise. The amount of randomness required to
generate the noise serves as the desired measure. To
further illustrate this task, we discuss the problem
considered in Ref. [23], which transforms a bipartite
quantum state ρ⊗nAB into a product state ρAn ⊗ ρBn
with the aid of shared randomness and local uni-
taries. It was shown that the number of bits of ran-
domness required (in other words, the randomness
cost) is ≈ n · I(A : B)ρ, where I(A : B)ρ is the
quantum mutual information. Thus, it was observed
that the total correlation contained in the state ρAB
is equal to the amount of noise used to erase this
correlation. This seminal result gave the first oper-
ational meaning to this entropic quantity and sig-
nificantly advanced our understanding of entangle-
ment theory. Being able to find the optimal ran-
domness cost required to bring entangled states to
separable states, thus, bears equivalent significance,
if not more, since the existence of entanglement is
believed to make quantum systems superior to their
classical counterparts and the amount of entangle-
ment is generally linked to its computational power
[4]. Likewise, the crucial question as to the amount
of valuable resources possessed by a state relative to
its free states is found in every resource theory, be it
quantum coherence, quantum thermodynamics, etc.

Our setting for quantifying the amount of re-
sources is along the lines of the framework consid-
ered in the above work, but with the further freedom
of allowing the use of additional free states that can
aid in the transformation of the desired quantum
state (Figure 2). We denote the set of all free states
as F and the set of free operations as U , where their
formal definitions can be found in Supplemental In-
formation. Assume that the resource state is ρM ,
defined on the register M . The experimenter can
prepare a free classical-quantum state µEJ , where J
corresponds to a classical register, and E denotes the
corresponding quantum registers, and can perform a
unitary UJME =

∑
j Uj ⊗ |j〉〈j|J where Uj acts on

registers ME and belongs to the set of free oper-
ations (operations that map a free state to a free
state). The resulting quantum state ΘMEJ must
have the property that ΘME is close to a free state
from F (by a distance of ε according to a suitably
chosen distance measure). We call such a task an
(ε, log |J |)-transformation of ρM to F , where log |J |
is the randomness cost. If ΘME is close to ωM ⊗µE
(where ωM ∈ F is a free state), then the quantum
state µE is almost unaltered and, hence, serves as a
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catalyst. We call such a task an (ε, log |J |)- catalytic
transformation of ρM to F (see the Supplementary
Information for a formal definition of these tasks).

We can also define the asymptotic randomness
rate of the catalytic transformation, as the per copy
amount of the randomness required to transform
ρ⊗nM to F , when n is large (as formally defined in
the Supplementary Information). The main result
of this work is as follows, which is a consequence
of Theorem B (stated in the ‘Proof Techniques’ sec-
tion).

Theorem A. [Informal Statement] For a quantum
state ρM , the asymptotic randomness rate of cat-
alytic transformation of ρM is given by E∞(ρM ).

The achievability part of this theorem uses a sim-
ple ‘controlled swap’ unitary which is allowed in a
large family of resource theories. However for our
converse argument we also allow for quantum mea-
surements which can be implemented via adding free
ancilla followed by a free unitary followed by tracing
out of ancilla subsystem. The resource cost of such
protocols is counted as the total number of qubits
discarded in the implementation.

Proof Techniques. It is apparent that if no lim-
its are set on the allowed operations and free states,
then it is almost impossible to obtain a useful char-
acterization, as also noted in Ref. [5]. The postu-
lates of the set of free states F in our framework are
very natural. They are as follows. (i) The set of free
states is a convex and closed set. (ii) If two quantum
states are free states, then their tensor product is a
free states as well. (iii) If a quantum state on more
than one register is a free states, then we obtain a
free states with a partial trace over a subset of these
registers. The set of all free operations U is the set
of unitaries that take a free state to a free state.

Since we are interested in the amount of noise re-
quired to transform a state into a free state, we natu-
rally assume that the experimenter can apply a mix-
ture of unitaries {(pj , Uj) : Uj ∈ U}nj=1. Such a set-

ting is also found in the works [23] and [20] concerned
with randomness cost. The resulting free ensem-
ble becomes {pj , UjσU†j : σ ∈ F}nj=1. Observe that
since F is a convex set and Uj are free operations,

the quantum state
∑
j pjUjσU

†
j belongs to F . With

the help of the “Church of the Larger Hilbert Space”,
we can introduce a ‘classical’ register J and write the
overall unitary operation as U =

∑n
j=1 Uj ⊗ |j〉〈j|J

applied to the state σ⊗∑j pj |j〉〈j|J . We expand our

set of free states F and free operations U to include
such states and unitaries as well.

Now, we are in a position to formally define our
task, that we call an (ε, log |J |)-transformation of ρM
to F . We interpret log |J | as the randomness cost of
the protocol and ε as the allowed error. While we
have identified the register J as classical, we show in
the Supplemental Information that this assumption
can, in fact, be dropped to accommodate a more
general transformation. This only leads to a multi-
plicative loss of a factor of 2 in the randomness cost.
Our task is as follows.

Task 1. An experimenter holds a resourceful quan-
tum state ρM . Using a classical-quantum state
µEJ ∈ F , she applies a unitary U ∈ U to obtain
a joint quantum state ΘMEJ :

ΘMEJ = U(ρM ⊗ µEJ)U†.

It is required that there exists a σME ∈ F such
that Pur(ΘME , σME) ≤ ε, where the chosen dis-
tance measure is the purified distance, defined as
Pur(ω, ω′) =

√
1− F2(ω, ω′) (with F(ω, ω′) being

the fidelity). The randomness cost is log |J |.

Note that in many cases, it is desirable that the
free state µE be returned in as close to its origi-
nal form as possible, that is, act as a catalyst. Our
achievability result shall belong to such a class of
transformations. Hence, Task 1 is said to be an
(ε, log |J |)-catalytic transformation of ρM if µEJ =
µE ⊗ µJ and σME = σM ⊗ µE for some σM ∈ F .

Finally, we say that the asymptotic randomness
rate of the catalytic transformation of ρM is R, if,
for every ε > 0, there exists an integer n0(ε) such
that for all n ≥ n0(ε), there exists a (ε, nR)-catalytic
transformation of ρ⊗nM to F .

We provide a near optimal characterization of the
randomness cost of Task 1 in Theorem B below. We
obtain matching upper and lower bounds of the ran-
domness cost even if one only has a single copy of
a given state, i.e., the one-shot scenario [24]. Our
one-shot bounds are given in terms of the smooth
max-relative entropy [25], which is defined as

Dε
max(ρ‖σ) = min

ρ′:Pur(ρ′,ρ)≤ε
min{λ : ρ′ � 2λσ}.

This is a one-shot analogue of the quantum rel-
ative entropy. Hence, our result also provides a
new operational meaning for this quantity in the
resource theoretic framework. The upper bound,
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or the achievability result, is as follows. The ex-
perimenter possesses the quantum state ρM . Let
σ′M be the free state that minimizes the quantity
minσM∈F Dε

max(ρM‖σM ). Let k be an integer such
that log k = Dε

max(ρM‖σ′M ) + 2 log 1
δ (for an error

parameter δ). The experimenter introduces the free
state σ′M1

⊗ σ′M2
⊗ . . . ⊗ σ′Mk

(as a catalyst, where
M1,M2, . . . ,Mk are registers equivalent to M) and
the maximally mixed state IJ

k in register J of di-
mension k. The registers M1,M2, . . . ,Mk are collec-
tively viewed as the register E introduced in Task 1.
Controlled on the classical value j in register J , the
experimenter swaps the registers M and Mj . The
quantum state in register M is now σ′M . Upon dis-
carding the classical register J , the quantum state
in registers M1,M2, . . . ,Mk is

1

k

k∑
j=1

σ′M1
⊗ . . .⊗ σ′Mj−1

⊗ ρMj
⊗ σ′Mj+1

⊗ . . . σ′Mk
.

From the convex-split lemma [26], this quantum
state is close to the original state σ′M1

⊗ σ′M2
⊗ . . .⊗

σ′Mk
, with purified distance at most ε+ δ. Thus, we

have the following theorem.

Theorem B. Fix ε, δ > 0, and a quantum state ρM .

• Achievability: There exists an (ε + δ, log k)-
catalytic transformation of ρM to F , where
log k := minσM∈F Dε

max(ρM‖σM ) + 2 log 1
δ .

• Converse: For every (ε, log |J |)- transforma-
tion of ρM to F , it holds that

log |J | ≥ min
σM∈F

Dε
max(ρM‖σM ).

The proof of this theorem is given in the Supple-
mental Material, which includes the aforementioned
argument for achievability and a converse proof. The
proof of Theorem A follows from an asymptotic and
i.i.d. analysis of this result and the continuity of
relative entropy of resource [27].

Implications and Applications. Our first con-
tribution is a unified resource-theoretic framework
for quantifying the amount of resources contained
in a resourceful state, and connecting this amount
to the regularized relative entropy of a resource.
Our general resource framework includes the re-
source theories of entanglement, coherence, ther-
modynamics, non-uniformity, purity and asymme-
try (The full discussion of these special cases can

be found in Supplemental Information). In partic-
ular, our result implies that the amount of “entan-
glement” contained in ρM is equal to the regularized
relative entropy of entanglement [28, 29] asymptot-
ically, yielding a direct operational meaning for this
quantity. Hence, our work resolves an open question
posted in Ref. [23], where only gapped upper and
lower bounds were provided. In addition, our re-
sult also recovers the symmetrization cost given by
the relative entropy of frameness [20]. While both
Refs. [20, 23] employ resource-destroying maps, our
framework that allows the use of free states as cata-
lysts is more general and results in stronger match-
ing one-shot bounds (Theorem B in the ‘Proof Tech-
niques’ section) that were not possible previously.

Second, our result directly yields that the regular-
ized relative entropy of a resource is an upper bound
for distilling the aforementioned resources, since it
is impossible to distill more of a resource than orig-
inally contained in a state. Interestingly, it is pos-
sible to distill the maximal amount of resources for
the various resources described below.

In the resource theory of entanglement [1, 23, 28–
31], the set of free states is the collection of separa-
ble states and the free operations contain the local
quantum operations and classical communications
(LOCC). The authors of Ref. [30] showed that the
amount of maximally entangled states that one can
distill from infinitely many copies of a given state
is equal to the regularized relative entropy of en-
tanglement when non-entangling maps are allowed
as free operations. When this is combined with
our work, the role of regularized relative entropy
of entanglement is set on a firm footing since the
amount of distillable entanglement should intuitively
be equal to the “amount of entanglement” possessed
by the given bipartite state (if a reversible entan-
glement theory holds true). Note that interpreting
our achievability proof of Theorem A in this con-
text reveals that the resource-destroying controlled
unitaries can be implemented by LOCC. Further-
more, our converse proof shows that the random-
ness cost is optimal even when non-entangling op-
erations (the operations that do not change separa-
ble states to entangled states) are used. Finally, we
emphasize that there are fundamental differences be-
tween our entanglement-erasing framework and that
in Ref. [32]. In the latter, the total correlation (both
classical and quantum correlations) is erased with
the help of catalysts, and the number of qubits that
have to be discarded is given in terms of the smooth
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max-mutual information. However, in our case, the
convex-split lemma allows us to erase just the quan-
tum correlation, and leads to a characterization of
noise in terms of the smooth max-relative entropy.

In the resource theory of coherence [2, 31, 33, 34],
the set of free states is the collection of diagonal
states on a pre-determined basis. It was shown that
the amount of distillable coherence is also maximal
and is equal to the relative entropy of coherence un-
der the set of strictly incoherent operations (SIO)
[34]. This, again, coincides with our result; how-
ever, the unitary operation required in our achiev-
able proof is permutation unitary, which corresponds
to the smaller class of physically incoherent oper-
ations (PIO) [35]. Finally, in the resource theory
of nonuniformity [13] and purity [16], the only free
state is the completely mixed state. The maximally
distillable nonuniformity is again given by relative
entropy of a resource when noisy operations are used
[13].

Before ending this part of discussion, we remark
that in the resource theory of quantum thermody-
namics [9–14], the free states are Gibbs quantum

states, that are states of the form ρβ(H) = e−βH

Tr(e−βH)
,

for an arbitrary Hamiltonian H > 0. It has been
shown that the amount of a pure excited state that
can be distilled is in terms of min-relative entropy in
the one-shot setting [11]. While this quantity yields
the relative entropy of a resource in the asymptotic
setting, it is smaller than our one-shot randomness
cost, given in terms of max-relative entropy.
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