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Abstract. In this work, we study the tradeoffs between the error probabilities of classical-quantum chan-
nels and the blocklength n when the transmission rates approach the channel capacity at a rate slower than
1/

√
n, a research topic known as moderate deviation analysis. We show that the optimal error probability

vanishes under this rate convergence. Our main technical contributions are a tight quantum sphere-packing
bound, obtained via Chaganty and Sethuraman’s concentration inequality in strong large deviation theory,
and asymptotic expansions of error-exponent functions. Moderate deviation analysis for quantum hypoth-
esis testing is also established. The converse directly follows from our channel coding result, while the
achievability relies on a martingale inequality.

1. Introduction

Investigating the interplay between the transmission rate, blocklength and error probability is one of
the core problems in information theory. Based on different ranges of the error probability, the analysis
of communication performance roughly falls into the following three categories: (i) large error probability
or non-vanishing error probability regime; (ii) medium error probability regime; and (iii) small error
probability regime. In the non-vanishing error probability regime, the largest transmission rate, given a
coding length n and an error probability no more than ǫ, is one of the main research focuses. Strassen
[1] first demonstrated that the maximum size of an n-blocklength code through a discrete memoryless
channel (DMC) W, denoted by M∗(Wn, ǫ), yields an asymptotic expansion to the order

√
n, and hence

this is called second-order analysis:

logM∗(W n, ǫ) = nC +
√
nV Φ−1(ǫ) +O(log n), (1.1)

where the quantities C and V denote the capacity [2] and the dispersion [3] of the channel, and Φ is the
cumulative distribution function of a standard normal random variable. Equivalently, Eq. (1.1) yields the
following relationship between the optimal decoding error with blocklength n and rate C−A/

√
n for any

constant A:

lim
n→+∞

ǫ∗
(
n,C −A/

√
n
)

= Φ

(
A√
V

)
. (1.2)

Strassen’s result relied on the Gaussian approximation or the central limit theorem (CLT). His work was
latter refined by Hayashi [4], Polyanskiy et al. [3], and extended to quantum channels [5, 6, 7, 8]. The
results for higher-order asymptotics are referred to Refs. [9, 10, 11].

In the small error probability regime, Shannon [12] introduced the reliability function E(R) as the
optimal error exponent:

lim
n→+∞

− 1

n
log ǫ∗ (n,R) = E(R), (1.3)
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for rate R below the channel capacity1 C. This seminal work entails the error exponent analysis of a
broad class of channels [14, 13, 15, 16, 17, 18]. The exponential decay of the error probability in Eq. (1.3)
is a consequence of the large deviation principle (LDP) [19]. In summary, the errors in Eqs. (1.2) and
(1.3), respectively, fall into the CLT regime and large-deviation regime.

Altuğ and Wagner [20, 21] pioneered the study of the medium error probability regime, and investigated
the asymptotic behaviour of the optimal decoding error when the coding rate converges to capacity
sufficiently slowly. Specifically, they studied under which conditions the error is asymptotically equal to2

ǫ∗ (n,C − an) ∼ Φ

(√
nan√
v

)
∼ e

−na2n
2v , (1.4)

where the sequence (an)n∈N satisfies

(i) lim
n→+∞

an = 0;

(ii) lim
n→+∞

an
√
n = +∞.

(1.5)

Evidently, the transmission rate in Eq. (1.4) approaches capacity slower than 1/
√
n. A DMC with errors

satisfying Eq. (1.4) possesses a moderate deviation property (MDP) [19, Section 3.7]. The constant v in
Eq. (1.4) equals the channel dispersion V when both the limit in Eq. (1.2) and MDP hold [22, Theorem 1].
We refer the interested readers to Refs. [22, 24, 21] for further results in classical channel coding. These
three approaches—(i), (ii), and (iii)—all have theoretical significance and practical value, and this paper
will focus on the medium error probability regime, which is rarely explored in the quantum scenario.

Our main contribution is, for any classical-quantum (c-q) channel with a non-zero dispersion V > 0,

lim
n→+∞

log ǫ∗(n,C − an)

na2n
= − 1

2V
, (1.6)

where (an)n∈N is any sequence satisfying Eq. (1.5). The result in Eq. (1.6) shows that reliable communi-
cation over a c-q channel is possible when the transmission rate approaches capacity at the scale slower
than 1/

√
n. Our proof employs techniques from the error exponent analysis (the LDP regime). For the

achievability part, we start from Hayashi’s upper bound of the average error for c-q channels [27] followed
by an asymptotic expansion of the error-exponent function. For the converse, we employ a sharp converse
bound based on a strong large deviation inequality (Proposition 7). This bound is more general than
the previous result in Ref. [18, Proposition 14], since it allows the transmission rates to depend on the
blocklength instead of being fixed. We remark that Altuğ and Wagner’s converse proof [21, Theorem 2.2]
is not sufficient for proving Eq. (1.6) because their sphere-packing bound is of a weaker form in general
c-q channels [18, Theorem 6] (see also [29]). Thus, naively following their converse approach will result
in a gap between the achievability and converse results (see Remark 3.1).

As a special case of c-q channel coding, we obtain the moderate deviations for binary quantum hypoth-
esis testing (see Theorems 9 and 10):

lim
n→+∞

1

na2n
log α̂exp{−n[D(ρ‖σ)−an]}

(
ρ⊗n‖σ⊗n

)
= − 1

2V (ρ‖σ)
, (1.7)

where α̂µ denotes the smallest type-I error when the type-II error does not exceed µ; D(ρ‖σ) and V (ρ‖σ)
denote the relative entropy and relative variance of ρ and σ, respectively. The converse part directly
follows from the channel coding, and we provide two proofs for the achievability part. The first one comes
from Audeneart et al.’s error exponent analysis [30], while the second one employs a martingale inequality
[24]. We remark that the moderate deviation analysis for classical hypothesis testing was studied by Sason
[24], and by Watanabe and Hayashi [25]. Moreover, a recent work by Rouzé and Datta [26] formulated
the quantum hypothesis problem into a martingale, which is similar to our approach for proving the
achievability.

1To the best of our knowledge, the reliability function E(R) is only known in the high rate regime, i.e. at rates above a
critical rate (see e.g. [13, p. 160]).
2We denote fn ∼ gn if and only if limn→+∞

fn
gn

= 1.
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Unlike our proof techniques relying on error exponent analysis (the LDP regime), a recent and in-
dependent paper [31] obtained the same result, but proceeds from the second-order analysis (the CLT
regime). Their achievability proof follows from the one-shot capacity by Wang and Renner [32]; while the
converse part generalizes Polyanskiy and Verdú’s result [22] (which in turn relies on Strassen’s Gaussian
approximation [1]) and a powerful inequality in probability [33] to the quantum scenario. We summarize
the error behaviors in these three regimes in Table 1.

This paper is organized as follows. We introduce notation and preliminaries in Section 2. Section 3
contains our main result—the moderate deviation analysis for c-q channel coding. In Section 4, we present
the moderate deviations for quantum hypothesis testing. Lastly, we conclude this paper in Section 5.

Error Regimes Concentration Phenomena Hypothesis Testing Channel Coding

Large Error CLT: Pr (Sn ≥ √
nx) → 1 − Φ

(
x√
v

)
α̂
exp

{
−n

[
D− A√

n

]} → Φ
(

A√
V

)
ǫ∗
(
n,C − A√

n

)
→ Φ

(
A√
V

)

Medium Error MDP: Pr (Sn ≥ nanx) = e−
na2n
2v

x+o(na2n) α̂exp{−n[D−an]} = e−
na2n
2V

+o(na2n) ǫ∗(n,C − an) = e−
na2n
2V

+o(na2n)

Small Error LDP: Pr (Sn ≥ nx) = e−nΛ∗(x)+o(n) α̂exp{−nr} = e−nφ(r)+o(n) ǫ∗(n,R) = e−nE(R)+o(n)

Table 1. This table compares the asymptotic error behaviors of quantum hypothesis testing and
classical-quantum channel coding in three error probability regimes: (i) large error (central limit
theorem), (ii) medium error (moderate deviation principle), and (iii) small error (large deviation
principle). The quantity Sn denotes the sum of n independent and identically distributed random
variables with zero mean and variance v. The exponent Λ∗ is the Legendre-Fenchel transform of
the normalized cumulant generating function of Sn [19]. The error α̂exp{−nr} is defined as the
minimum type-I error with the type-II error smaller than exp{−nr}. The quantities D and V
in the hypothesis testing column denote the quantum relative entropy and the relative entropy
variance, respectively. The optimal error probability with blocklength n and rate R is denoted by
ǫ∗(n,R). The quantities C and V in the channel coding column indicate the channel capacity and
the channel dispersion, respectively. The sequence (an)n∈N satisfies Eq. (1.5). The quantity E(R)
is the reliability function of the channel.

2. Preliminaries and Notation

We first introduce necessary notation. Throughout this paper, we consider a Hilbert space H with
finite dimension d. The set of density operators (i.e. positive semi-definite operators with unit trace) and
non-singular density operators on H are defined by S(H) and S>0(H), respectively. The identity operator
on H is denoted by 1H, or simply 1 if there is no possibility of confusion. We use Tr [ · ] as the trace
function. Let N, R, and R≥0 denote the set of integers, real numbers, and non-negative real numbers,
respectively. Define [n] := {1, 2, . . . , n} for n ∈ N.

The power of a positive semi-definite operator A is defined as: Ap =
∑

i:ai 6=0 a
p
iPi, where (ai)i and

(Pi)i are the eigenvalues and eigenprojections of A =
∑

i aiPi. We use supp(A) to denote support of the
operator A. We write A≪ B if supp(A) ⊂ supp(B).

2.1. Quantum Hypothesis Testing and Channel Coding. Consider a binary hypothesis testing
problem whose null and alternative hypotheses are ρ ∈ S(H) and σ ∈ S(H), respectively. The type-I
error and type-II error of the hypothesis testing, for an operator 0 ≤ Q ≤ 1, are defined as follows:

α (Q; ρ) := Tr [(1−Q)ρ] , (2.1)

β (Q;σ) := Tr [Qσ] . (2.2)

There is a trade-off relation between these two errors. Thus we can define the minimum type-I error when
the type-II error is below µ ∈ (0, 1) as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (2.3)
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Denote by X a finite input alphabet, and let P(X ) be the set of probability distributions on X . For a
sequence xn ∈ X n, we denote by

Px
n(x) :=

1

n

n∑

i=1

1 {x = xi} , (2.4)

where xi is the i-th element of xn.
A c-q channel W maps elements of X to the density operators in S(H), i.e. W : x 7→ Wx. We denote

the image of the channel W by

im (W) := {ρ ∈ S(H)| ∃x ∈ X : ρ = Wx} , (2.5)

and its closure by im(W). Without loss of generality, we assume that im (W) has full support on the
Hilbert space H throughout this paper.

Let M be a finite alphabetical set with size M = |M|. An (n-block) encoder is a map fn : M → X n

that encodes each message m ∈ M to a codeword xn(m) := x1(m) . . . xn(m) ∈ X n. The c-q channel then
produces an output state W⊗n

x
n(m) with the input codeword xn(m), where

W⊗n
x
n(m) = Wx1(m) ⊗ · · · ⊗Wxn(m) ∈ S(H⊗n). (2.6)

The decoder is described by a positive operator-valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M} on

H⊗n, where Πn,i ≥ 0 and
∑M

i=1 Πn,i = 1. The pair (fn,Πn) =: Cn is called a code with rate R = 1
n log |M|.

The error probability of sending a message m with the code Cn is ǫm(W, Cn) := 1−Tr
(
Πn,mWx

n(m)

)
. We

use ǫmax(W, Cn) = maxm∈M ǫm(W, Cn) and ǭ(W, Cn) = 1
M

∑
m∈M ǫm(W, Cn) to denote the maximal error

probability and the average error probability, respectively. Denote by ǫ∗ (n,R) the smallest average error
probability among all codes Cn with message size |M| = exp{nR}.

2.2. Information Quantities. For any ρ, σ ∈ S(H), we define the quantum relative entropy, (Petz’s)
quantum Rényi divergence [43], and the log-Euclidean Rényi divergence [48, 18], respectively, as follows:

D(ρ‖σ) := Tr [ρ (log ρ− log σ)] , (2.7)

Dα(ρ‖σ) :=
1

α− 1
log Tr[ρασ1−α], (2.8)

D♭
α(ρ‖σ) :=

1

α− 1
log Tr

[
eα log ρ+(1−α) log σ

]
. (2.9)

We define two types of the quantum relative entropy variances [5, 6] by

V (ρ‖σ) := Tr
[
ρ (log ρ− log σ)2

]
−D(ρ‖σ)2 (2.10)

Ṽ (ρ‖σ) :=

∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2. (2.11)

It is well-known that both quantities are non-negative, and

V (ρ‖σ) > 0 implies D(ρ‖σ) > 0. (2.12)

We define the conditional quantum relative entropy of two channels W̄,W and P ∈ P(X ) to be

D
(
W̄‖W|P

)
:=
∑

x∈X
P (x)D

(
W̄x‖Wx

)
. (2.13)

4



Similarly, we define the following conditional entropic quantities for σ ∈ S(H) and P ∈ P(X ):

D (W‖σ|P ) :=
∑

x∈X
P (x)D (Wx‖σ) , (2.14)

Dα (W‖σ|P ) :=
∑

x∈X
P (x)Dα (Wx‖σ) , (2.15)

V (W‖σ|P ) :=
∑

x∈X
P (x)V (Wx‖σ) , (2.16)

Ṽ (W‖σ|P ) :=
∑

x∈X
P (x)Ṽ (Wx‖σ) . (2.17)

The mutual information of the channel W : X → S(H) with a prior distribution P ∈ P(X ) is defined by

I(P,W) := D (P ◦W‖P ⊗ PW) = D (W‖PW|P ) , (2.18)

where P ◦W :=
∑

x∈X P (x)|x〉〈x| ⊗Wx and PW :=
∑

x∈X P (x)Wx. Hence, the (classical) information
capacity of the channel W is

CW := max
P∈P(X )

I(P,W). (2.19)

The conditional information variance and the unconditional information variance of W : X → S(H) with
a prior distribution P ∈ P(X ) are defined, respectively, by

V (P,W) := V (W‖PW|P ) ,

U(P,W) := V (P ◦W‖P ⊗ PW) .
(2.20)

It is known that (see e.g. [3, Lemma 62]) that V (P ⋆,W) = U(P ⋆,W) for every capacity-achieving distri-
bution P ⋆ ∈ P(X ), i.e. I(P ⋆,W) = CW. Similarly, we also define the unconditional information variance

in terms of Ṽ (ρ‖σ):

Ṽ (P,W) := Ṽ (W‖PW|P ) . (2.21)

The minimal peripheral information variance and its variant are defined by

VW := min
P∈P(X ): I(P,W)=CW

V (P,W), (2.22)

ṼW := min
P∈P(X ): I(P,W)=CW

Ṽ (P,W). (2.23)

Furthermore, one can verify that

VW > 0 implies CW > 0. (2.24)

2.2.1. Auxiliary functions and their properties. The auxiliary function of a classical-quantum channel is
defined as [35, 36, 37, 38, 39]

E0(s, P ) := − log Tr



(
∑

x∈X
P (x)W 1/(1+s)

x

)1+s

 .

In this paper, we will require three variants of the above auxiliary function: ∀s ≥ 0 and σ ∈ S(H),

Ẽ0(s, P, σ) := sD1−s (P ◦W‖P ⊗ σ) (2.25)

Eh(s, P, σ) := sD 1

1+s
(W‖σ|P ) , (2.26)

Ẽh(s, P, σ) := sD♭
1

1+s

(W‖σ|P ) , (2.27)

where Dα and D♭
α are the (Petz’s) quantum Rényi divergence and the log-Euclidean Rényi divergence,

respectively.
5



The function Ẽ0(s, P, σ) will play a major role in the achievability part of our main result (see Theorem 4
in Section 3). This quantity yields an upper bound to the average error probability (see [27, Eq. (9)]):

ǭ(W, Cn) ≤ 4 exp

{
−n
[

max
0≤s≤1

max
P∈P(X )

{
−sR+ Ẽ0(s, P, PW)

}]}
. (2.28)

Properties of Eh and Ẽh will be crucial in the analysis of the converse part of our main result.

The following proposition summarizes properties of Ẽ0(s, P, σ). We provide the proof in Appendix A.1.

Proposition 1 (Properties of Ẽ0(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx ≪ σ for all x ∈ supp(P ). Then Ẽ0(s, P, σ) defined
in Eq. (2.25) enjoys the following properties.

(a) Ẽ0(s, P, σ) and its partial derivatives ∂Ẽ0(s, P, σ)/∂s, ∂2Ẽ0(s, P, σ)/∂s2, ∂3Ẽ0(s, P, σ)/∂s3 are all
continuous in (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽ0(s, P, σ) is concave in s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (P ◦W‖P ⊗ σ) . (2.29)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽ0(s, P, σ)

∂s
≤ ∂Ẽ0(s, P, σ)

∂s
≤ D (P ◦W‖P ⊗ σ) , ∀s ∈ R≥0. (2.30)

(e) For every P ∈ P(X ),

∂2Ẽ0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −V (P ◦W‖P ⊗ σ) . (2.31)

Properties of Eh(s, P, σ) are collected in the following proposition. The proof can be found in Appen-
dix A.2.

Proposition 2 (Properties of Eh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a
distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx ≪ σ for all x ∈ supp(P ). Then Eh(s, P, σ) defined
in Eq. (2.26) enjoys the following properties.

(a) Eh(s, P, σ) and its partial derivatives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2, ∂3Eh(s, P, σ)/∂s3 are
continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (2.32)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Eh(s, P, σ)

∂s
≤ ∂Eh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (2.33)

(e) For every P ∈ P(X ),

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (2.34)

Proposition 3 below lists the properties of Ẽh, and the proof is provided in Appendix A.3.

Proposition 3 (Properties of Ẽh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx ≪ σ for all x ∈ supp(P ). Then Ẽh(s, P, σ) defined
in Eq. (2.27) enjoys the following properties.

6



(a) Ẽh(s, P, σ) and its partial derivatives ∂Ẽh(s, P, σ)/∂s, ∂2Ẽh(s, P, σ)/∂s2, ∂3Ẽh(s, P, σ)/∂s3 are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (2.35)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽh(s, P, σ)

∂s
≤ ∂Ẽh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (2.36)

(e) For every P ∈ P(X ),

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (2.37)

2.2.2. Error Exponents. Auxiliary functions allow us to concisely define sphere-packing exponent func-
tions of a classical-quantum channel. We will use notation similar to Refs. [40, 28, 18]. Define

Ẽsp(R,P, σ) := min
W̄:X→S◦

{
D
(
W̄‖W|P

)
: D
(
W̄‖σ|P

)
≤ R

}
(2.38)

= sup
s≥0

{
Ẽh(s, P ) − sR

}
, (2.39)

E(2)
sp (R,P, σ) := sup

s≥0
{Eh (s, P ) − sR} , (2.40)

for all R > 0, P ∈ P(X ), and σ ∈ S>0(H). The equality in Eq. (2.39) follows from [18, Theorem 6]. From
the definitions in Eqs. (2.38) and (D.9), it is not hard to see that [30]

Ẽsp(R,P, σ) = 0, ∀R ≥ D (W‖σ|P ) . (2.41)

and

E(2)
sp (R,P, σ) =

{
+∞, R < D0 (W‖σ|P ) ,

0, R ≥ D (W‖σ|P ) .
(2.42)

3. Moderate Deviations for Classical-Quantum Channels

This section presents our main results—the error performance of classical-quantum channels satisfies
the moderate deviation property, Eq. (1.4). The achievability part is stated in Theorem 4, and its proof is
given in Section 3.1. Our proof strategy employs Hayashi’s bound [27] and the properties of the modified
auxiliary function (Proposition 1). Theorem 5 contains the converse part, and is proved in Section 3.2. The
proof involves a weak sphere-packing bound (Proposition 6), a sharp converse lower bound (Proposition 7),
and an approximation of the error-exponent function around capacity (Proposition 8).

Let (an)n∈N be a sequence of real numbers satisfying

(i) an → 0, as n→ +∞,

(ii) an
√
n→ +∞, as n→ +∞.

(3.1)

Theorem 4 (Achievability). For any W : X → S(H) with VW > 0 and any sequence (an)n≥1 satisfying
Eq. (3.1), there exists a sequence of codes {Cn}n≥1 with rates Rn = CW − an so that

lim sup
n→+∞

1

na2n
log ǭ (W, Cn) ≤ − 1

2VW
. (3.2)

The proof is given in Section 3.1.
7



Theorem 5 (Converse). For any W : X → S(H) with VW > 0, any sequence {an}n≥1 satisfying Eq. (3.1),
and any sequence of codes {Cn}n≥1 with rates Rn = CW − an, it holds that

lim inf
n→+∞

1

na2n
log ǭ (W, Cn) ≥ − 1

2VW
. (3.3)

The proof is given in Section 3.2.

Remark 3.1. Altuğ and Wagner [21] proved Theorem 5 for discrete classical channels by a weak sphere-

packing bound with the expression of Ẽsp. Although such a weak sphere-packing bound indeed holds for
c-q channels (see Proposition 6 and Remark B.1 in Appendix B), Proposition 8 in Section 3.2 shows that
it will lead to

lim sup
n→+∞

1

na2n
log ǭ (W, Cn) ≤ − 1

2ṼW
, (3.4)

where ṼW is defined in Eq. (2.23). Since Ṽ (ρ‖σ) ≤ V (ρ‖σ) [42, Theorem 1.2], it holds that ṼW ≤ VW and
the equality happens if and only if the channel reduces to classical. Hence, Altuğ and Wagner’s method
yields a weaker result in quantum regime; namely, a gap between the achievability and the converse. In
Section 3.2, we will employ a sharp converse bound from strong large deviation theory to achieve our
result, Theorem 5.

3.1. Proof of Achievability: Theorem 4. Let W : X → S(H) satisfy VW > 0. Let {an}n≥1 be any
sequence of real numbers satisfying Eq. (3.1). Since VW > 0, Eq. (2.24) shows that CW > 0. Hence, we
have CW − an > 0, for all sufficiently large n. Fix such an integer n onwards, Hayashi’s upper bound,
Eq. (2.28), implies that there exists a code Cn with Rn = CW − an so that

ǭ(W, Cn) ≤ 4 exp

(
−n
[

max
0≤s≤1

{
Ẽ0(s, P, PW) − sRn

}])
, (3.5)

for all P ∈ P(X ). In the following, we denote by Ẽ0(s, P ) := Ẽ0(s, P, PW) for notational convenience.
Simple algebra yields

1

na2n
log ǭ(W, Cn) ≤ log 4

na2n
− 1

a2n
max
0≤s≤1

{
Ẽ0(s, P ) − sRn

}
, (3.6)

for all sufficiently large n and any P ∈ P(X ).

Let P̃(X ) be the set of distributions that achieve the minimum in Eq. (2.22), and let P̃ ∈ P̃(X ). Note

that Ref. [9, Lemma 3] implies that P̃(X ) is compact. Applying Taylor’s theorem to Ẽ0(s, P̃ ) at s = 0
together with Proposition 1 gives

Ẽ0

(
s, P̃

)
= sCW − s2

2
VW +

s3

6

∂3Ẽ0

(
s, P̃

)

∂s3

∣∣∣∣∣∣
s=s̄

, (3.7)

for some s̄ ∈ [0, s]. Let sn = an/VW. Then sn ≤ 1 for all sufficiently large n by the assumption in Eq. (3.1)
and VW > 0. For all sn ≤ 1, Eq. (3.7) yields

max
0≤s≤1

{
Ẽ0

(
s, P̃

)
− sRn

}
≥ Ẽ0

(
sn, P̃

)
− snRn (3.8)

=
an
VW

(CW −Rn) − a2n
2VW

+
a3n

6V 3
W

∂3Ẽ0

(
s, P̃

)

∂s3

∣∣∣∣∣∣
s=s̄n

(3.9)

=
a2n

2VW
+

a3n
6V 3

W

∂3Ẽ0

(
s, P̃

)

∂s3

∣∣∣∣∣∣
s=s̄n

, (3.10)

where s̄n ∈ [0, sn] and Eq. (3.10) holds since Rn = CW − an.
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Define

Υ = max
(s,P )∈[0,1]×P̃(X )

∣∣∣∣∣
∂3Ẽ0 (s, P )

∂s3

∣∣∣∣∣ , (3.11)

which is finite due to the compact set [0, 1] × P̃(X ) and item (a) in Proposition 1. Therefore, Eq. (3.10)
implies that

max
0≤s≤1

{
Ẽ0

(
s, P̃

)
− sRn

}
≥ a2n

2VW
+

a3n
6V 3

W

∂3Ẽ0

(
s, P̃

)

∂s3

∣∣∣∣∣∣
s=s̄n

(3.12)

≥ a2n
2VW

− a3n
6V 3

W

∣∣∣∣∣∣

∂3Ẽ0

(
s, P̃

)

∂s3

∣∣∣∣∣∣
s=s̄n

∣∣∣∣∣∣
(3.13)

≥ a2n
2VW

− a3n
6V 3

W

Υ, (3.14)

for all sufficiently large n.
Substituting Eq. (3.14) into Eq. (3.6) gives

1

na2n
log ǭ(W, Cn) ≤ log 4

na2n
− 1

2VW

(
1 − Υ

an
3V 2

W

)
. (3.15)

Recall Eq. (3.1) and let n→ +∞, which completes the proof:

lim sup
n→+∞

1

na2n
log ǭ(W, Cn) ≤ − 1

2VW
. (3.16)

�

3.2. Proof of Converse: Theorem 5. Our strategy consists of the following steps. First, we claim that
it suffices to prove Eq. (3.3) for the maximal error probability of any code Cn, i.e. ǫmax(W, Cn). Recall
the standard expurgation method (see e.g. [41, p. 96], [50, Theorem 20], [15, p. 395]): by removing half
codewords with highest error probability to arrive at ǭ (W, Cn) ≥ 1

2ǫmax (W, C′
n) with |C′

n| = ⌈|Cn|/2⌉ ≥
1
2 exp{nRn} = exp{n(Rn − 1

n log 2)}. Since the induced rate back-off is only 1
n log 2 = o(an), one might

define another sequence a′n := an − 1
n log 2 satisfying Eq. (3.1). Hence, without of loss generality, we only

need to prove the converse part for ǫmax.
Second, we employ the method of Ref. [18, Lemma 16] to relate the error probability ǫmax to the

minimum type-I error:

log ǫmax(W, Cn)

na2n
≥ max

σn∈S(H⊗n)
min

x
n∈Xn

log α̂exp{−nRn}(W
⊗n
x
n ‖σn)

na2n
(3.17)

≥ min
x
n∈Xn

log α̂exp{−nRn}(W⊗n
x
n ‖(P ⋆

W)⊗n)

na2n
, (3.18)

where P ⋆ ∈ P(X ) is an arbitrary capacity-achieving distribution, i.e. I(P ⋆,W) = CW.
Third, we divide the set of codewords into two groups. Fix an arbitrary η ∈ (0, 12 ). Let A :=

maxρ∈S◦ V (ρ‖P ⋆
W) and let ξ =

√
2A/η. Define:

Ωgood := {xn ∈ X n : D(W‖P ⋆
W|Px

n) > Rn} ; (3.19)

Ωbad := X n\Ωgood. (3.20)

For the codes in Ωbad, we employ a weak converse bound in Proposition 6, and apply a sharp converse
bound, Proposition 7, for Ωgood. Furthermore, we can assume an > 0 for all sufficiently large n ∈ N owing
to the assumption limn→+∞ an

√
n = +∞. Subsequently, we will consider such n onwards.
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Proof of Theorem 5. We start the proof with the case Ωbad, and further consider two different cases:

Ω
(1)
bad :=

{
xn ∈ X n : D(W‖P ⋆

W|Px
n) ≤ Rn − 2ξ√

n

}
; (3.21)

Ω
(2)
bad :=

{
xn ∈ X n : Rn − 2ξ√

n
< D(W‖P ⋆

W|Px
n) ≤ Rn

}
. (3.22)

We apply the following weak converse bound with σ = P ⋆
W, whose proof is provided in Appendix B to

further lower bound the right-hand side of Eq. (3.18).

Proposition 6 (A Weak Converse Bound). Consider a classical-quantum channel W : X → S(H) with

S◦ := im(W), an arbitrary rate R ≥ 0, and σ ∈ S>0(H). For any η ∈ (0, 12), let N0 ∈ N such that for all
n ≥ N0,

e−ξ
√
n ≤ η

2
, (3.23)

where ξ =
√

2A/η and A := maxρ∈S◦ V (ρ‖σ). Then, it holds that for all n ≥ N0,

α̂exp{−nR}
(
W⊗n

x
n ‖σ⊗n

)
≥ f(η) exp



−n



Ẽsp

(
R− 2ξ√

n
, Px

n , σ
)

1 − η





 , (3.24)

where f(η) = exp
{
−h(1−η)

1−η

}
and h(p) := −p log p− (1 − p) log(1 − p) is the binary entropy function.

Let η and ξ be defined as above, and let N1 be an integer satisfying Eq. (3.23). Then Eq. (3.24) gives,
for all n ≥ N1,

log α̂exp{−nRn}(W⊗n
x
n ‖(P ⋆

W)⊗n)

na2n
≥ −

Ẽsp

(
Rn − 2ξ√

n
, Px

n , P ⋆
W

)

a2n(1 − η)
+

log f(η)

na2n
. (3.25)

Further, Eq. (2.41) implies that for all xn ∈ Ω
(1)
bad,

Ẽsp

(
Rn − 2ξ√

n
, Px

n , P ⋆
W

)
= 0. (3.26)

Hence, we have for all xn ∈ Ω
(1)
bad,

log α̂exp{−nRn}(W
⊗n
x
n ‖(P ⋆W)⊗n)

na2n
≥ log f(η)

na2n
(3.27)

≥ − 1

2VW
+

log f(η)

na2n
, (3.28)

where the last inequality follows from VW > 0. Since f(η) < +∞, taking the infimum limit of n → +∞
and using Eq. (3.1) give, for all xn ∈ Ω

(1)
bad,

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗n

x
n ‖(P ⋆

W)⊗n)
)

na2n
≥ − 1

2VW
. (3.29)

Next, we move on to xn ∈ Ω
(2)
bad. In this case, Ẽsp in Eq. (3.25) is not equal to zero for any finite n, we

employ Eq. (3.47) in Proposition 8 below with δn = an + 2ξ/
√
n and bn = an to arrive at

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗n

x
n ‖(P ⋆

W)⊗n)
)

na2n
≥ − lim

n→+∞
4ξ2

n
(
an + 2ξ√

n

)2 · 1

2ṼW(1 − η)
(3.30)

= 0 (3.31)

≥ − 1

2VW
, (3.32)

where the equality follows since limn→+∞ na2n = +∞.
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In the last case of xn ∈ Ωgood, we employ a tighter bound, Proposition 7, to lower bound the right-hand
side of Eq. (3.18). The proof is delayed to Appendix C.

Proposition 7 (A Sharp Converse Bound). Consider a classical-quantum channel W : X → S(H) and a
state σ ∈ S(H). Suppose the sequence xn ∈ X n satisfies

ν ≤ V (W‖σ|Px
n) < +∞ (3.33)

for some ν > 0, and suppose the sequence of rates (Rn)n∈N satisfies3 D0(W‖σ|Px
n ) < Rn < D(W‖σ|Px

n).
Then, there exists an N0 ∈ N such that, for all n ≥ N0,

α̂exp{−nRn}(W⊗n
x
n ‖σ⊗n) ≥ A

s⋆n
√
n

exp
{
−nE(2)

sp (Rn − cn, Px
n , σ)

}
, (3.34)

where cn = K logn
n and A,K > 0 are finite constants independent of the sequence xn, and

s⋆n := arg max
s≥0

{Eh(s, Px
n , σ) − sRn} . (3.35)

Before applying Proposition 7, we verify that the condition, Eq. (3.33), is satisfied. Define

v(δ) := min
P∈P(X )

{V (W‖P ⋆
W|P ) : D(W‖P ⋆

W|P ) ≥ CW − δ} . (3.36)

Note that the map δ 7→ v(δ) is monotone decreasing and continuous at 0 from above, i.e. limδ↓0 v(δ) =
v(0) = VW [7, Lemma 22]. For any κ ∈ (0, 1), we can choose a sufficiently small γ > 0 independent of the
sequence xn such that v(γ) ≥ (1 − κ)VW =: ν > 0. Further, let N2 ∈ N such that an ≤ γ for all n ≥ N2.
Then, one finds, for all xn ∈ Ωgood and n ≥ N2,

V (W‖P ⋆
W|Px

n) ≥ v(γ) ≥ ν > 0. (3.37)

Moreover, since VW > 0 implies that CW = maxP∈P(X )D(W‖P ⋆W|P ) > maxP∈PD0(W‖P ⋆W|P ), one can
choose a sufficiently large n, say N3 ∈ N, such that Rn > D0(W‖P ⋆W|Px

n) for all n ≥ N3. Now, we have
for all xn ∈ Ωgood and n ≥ max{N2, N3} that

max
P∈P(X )

D0(W‖P ⋆
W|P ) < Rn < D(W‖P ⋆

W|Px
n); (3.38)

0 < ν ≤ V (W‖P ⋆
W|Px

n). (3.39)

Together with Eqs. (3.18) and (3.37) and letting σ = P ⋆
W, Proposition 7 yields, for all xn ∈ Ωgood and

all sufficiently large n, say n ≥ N4 ∈ N,

log α̂exp{−nRn}
(
W⊗n

x
n ‖(P ⋆

W)⊗n
)

na2n
≥ −E

(2)
sp (Rn − cn, Px

n , P ⋆W)

a2n
− log s⋆n

√
n

na2n
+

logA

na2n
. (3.40)

Recall Eq. (3.48) in Proposition 8 below with bn = 0 and δn = an + cn that lim supn→+∞
s⋆n

an+cn
≤ 1

VW
.

Hence, one can fix an arbitrary ζ > 0 and there exists an N5 ∈ N such that s⋆n
√
n

(an+cn)
√
n
≤ 1

VW
+ ζ for all

n ≥ N5. This then leads to for all sufficiently large n ≥ max{N2, N3, N4, N5} and all xn ∈ Ωgood,

log α̂exp{−nRn}
(
W⊗n

x
n ‖(P ⋆W)⊗n

)

na2n
≥ −E

(2)
sp (Rn − cn, Px

n , P ⋆W)

a2n
− log(an + cn)

√
n

na2n
+

log A
1

V
W

+ζ

na2n
. (3.41)

Taking n → +∞, the second and the third terms on the right-hand side of Eq. (3.41) vanish since

cn = K logn
n = o(an) and the assumption limn→+∞ an

√
n = +∞.

3Note that D0(W‖σ|P ) = D(W‖σ|P ) implies Wx = σ for all x ∈ supp(P ) [46, Collorary 4.1]. This further gives V (W‖σ|P ) =
0. However, the assumption in Eq. (3.33) ensures that lim infn∈N D(W‖σ|Px

n ) − D0(W‖σ|Px
n ) > 0. Hence, the intervals

[D0(W‖σ|Px
n), D(W‖σ|Px

n )] for all xn satisfying Eq. (3.33) are not measure zero.
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Next, we apply Eq. (3.46) in Proposition 8 again to bound the error-exponent function E
(2)
sp in Eq. (3.40):

for all xn ∈ Ω(3)

lim inf
n→+∞

log α̂exp{−nRn}
(
W⊗n

x
n ‖(P ⋆

W)⊗n
)

na2n
≥ − lim sup

n→+∞

E
(2)
sp (CW − δn, Px

n , P ⋆
W)

a2n
(3.42)

= − lim sup
n→+∞

E
(2)
sp (CW − δn, Px

n , P ⋆W)

δ2n
(3.43)

≥ − 1

2VW
. (3.44)

Finally, combining Eqs. (3.18), (3.29), (3.32) and (3.44) concludes the desired Eq. (3.3).

Proposition 8 (Error Exponent around Capacity). Let (bn)n∈N be a sequence of real numbers with
limn→+∞ bn = 0 and let (δn)n∈N be a sequence of positive numbers with limn→+∞ δn = 0. Suppose the
sequence of distributions (Pn)n∈N satisfies

CW − δn < D(W‖P ⋆
W|Pn) ≤ CW − bn. (3.45)

The following hold:

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P

⋆
W)

δ2n
≤ lim sup

n→+∞

(δn − bn)2

2VWδ2n
; (3.46)

lim sup
n→+∞

Ẽsp (CW − δn, Pn, P
⋆
W)

δ2n
≤ lim sup

n→+∞

(δn − bn)2

2ṼWδ2n
; (3.47)

lim sup
n→+∞

s⋆n
δn

≤ 1

VW
, (3.48)

where

s⋆n := arg max
s≥0

{Eh(s, Pn, P
⋆
W) − s (CW − δn)} . (3.49)

The proof of Proposition 8 is provided in Appendix D.
�

4. Moderate Deviations for Quantum Hypothesis Testing

In this section, we show that a special case of channel coding yields the moderate deviation result for
quantum hypothesis testing. The achievability part is given in Theorem 9. In Section 4.1, we provide two
proofs. The first proof follows the idea of asymptotic expansions in Theorem 4; however, we will employ
Audenaet et al.’s quantum Hoeffding bound [30], instead of Hayashi’s inequality [27]. The second proof
relies on a martingale inequality [24]. The converse part and its proof are provided in Theorem 10 and
Section 4.2, respectively.

Theorem 9 (Achievability). Let ρ, σ ∈ S(H) be the density operators with finite relative variance V :=
V (ρ‖σ) > 0. For any sequence of real numbers (an)n∈N satisfying Eq. (3.1), there exists a sequence
rn := D (ρ‖σ) − an such that

lim sup
n→+∞

1

na2n
log α̂exp{−nrn}

(
ρ⊗n‖σ⊗n

)
≤ − 1

2V
. (4.1)

Theorem 10 (Converse). Let ρ, σ ∈ S(H) be the density operators with non-zero and finite relative
variance V := V (ρ‖σ) > 0. For any sequence of real numbers {an}n∈N satisfying Eq. (3.1), there exists
a sequence rn := D (ρ‖σ) − an such that

lim inf
n→+∞

1

na2n
log α̂exp{−nrn}

(
ρ⊗n‖σ⊗n

)
≥ − 1

2V
. (4.2)
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4.1. Proof of Achievability: Theorem 9. In this section, we present two proofs for Theorem 9. The
first one relies on the quantum Hoeffding bound [30] and the Taylor’s expansion of the exponent function
Eh.

The first proof of Theorem 9. Recall the following achievability of the quantum Hoeffding bound:

Lemma 11 (Theorem 5, Section 5.5 of [30]). Let ρ, σ ∈ S(H). For any r ≥ 0 and any n ∈ N, we have

α̂exp{−nr}
(
ρ⊗n‖σ⊗n

)
≤ exp

{
−n
[

sup
0<α≤1

{
α− 1

α
(r −Dα (ρ‖σ))

}]}
. (4.3)

Since D(ρ‖σ) > 0 (due to Eq. (2.12)), we have

rn := D(ρ‖σ) − an > 0 (4.4)

for all sufficiently large n. Choose such n onwards, then Eq. (4.3) implies that:

1

na2n
log α̂exp{−nrn}

(
ρ⊗n‖σ⊗n

)
≤ − 1

a2n
sup

0<α≤1

{
α− 1

α
(rn −Dα (ρ‖σ))

}
(4.5)

= − 1

a2n
sup
s≥0

{Eh(s) − srn} , (4.6)

where we substitute s = 1−α
α and let

Eh(s) := sD 1

1+s
(ρ‖σ) . (4.7)

Taylor’s theorem followed by simple calculation yields

Eh(s) = sD(ρ‖σ) − s2

2
V +

s3

6

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄

(4.8)

for some s̄ ∈ [0, s] and all s ≥ 0. The above equation is also a simple consequence of items (c) and (e) in
Proposition 2. Now let sn = an/V , for all n ∈ N. Then for all sufficiently large n and for some s̄n ∈ [0, sn],
Eq. (4.8) yields

sup
s≥0

{Eh(s) − srn} ≥ Eh(sn) − snrn (4.9)

=
an
V

(D(ρ‖σ) − rn) − a2n
2V

+
a3n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.10)

=
a2n
2V

+
a3n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

, (4.11)

where we substitute rn = D(ρ‖σ) − an in Eq. (4.11).
Define

Υ := max
s∈[0,1]

∣∣∣∣
∂3Eh(s)

∂s3

∣∣∣∣ , (4.12)

which is finite. Therefore, Eq. (4.11) leads to

sup
s≥0

{Eh(s) − srn} ≥ a2n
2V

+
a3n

6V 3

∂3Eh(s)

∂s3

∣∣∣∣
s=s̄n

(4.13)

≥ a2n
2V

− a3n
6V 3

Υ (4.14)

for all sufficiently large n. Substituting Eq. (4.14) into Eq. (4.6) yields

1

na2n
log α̂exp{−nrn} (ρ‖σ) ≤ − 1

2V

(
1 − Υ

an
3V 2

)
, (4.15)

which implies the desired achievability part:

lim sup
n→+∞

1

na2n
log α̂exp{−nrn} (ρ‖σ) ≤ − 1

2V
. (4.16)
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In the following, we give an alternative proof of Theorem 9 by employing a martingale inequality [24].

The second proof of Theorem 9. We follow the idea in Ref. [6] to write the eigendecomposition of ρ⊗n and
σ⊗n, respectively, as

ρ⊗n =
∑

xn

λn(xn)|fnxn〉〈fnxn |; σ⊗n =
∑

yn

γn(yn)|gnyn〉〈gnyn |, (4.17)

where xn := x1x2 . . . xn; yn := y1y2 . . . yn; λn(xn) =
∏n

i=1 λ(xi); µ
n(yn) =

∏n
i=1 µ(yi); |fnxn〉 = |fx1

〉 ⊗
|fx2

〉 ⊗ · · · ⊗ |fxn〉; and |gnyn〉 = |gy1〉 ⊗ |gy2〉 ⊗ · · · ⊗ |gyn〉. Further, we define a pair of random variables

(X,Y ) via the Nussbaum-Szko la mapping [58], i.e. PX,Y (x, y) = λ(x)|γxy|2, where γxy := 〈gy|fx〉 ∈ C. It
is well-known that

D(ρ‖σ) = D(λ(X)‖µ(Y )) = E(X,Y )

[
log

λ(X)

µ(Y )

]
, (4.18)

V (ρ‖σ) = V (λ(X)‖µ(Y )) = Var(X,Y )

[
log

λ(X)

µ(Y )

]
. (4.19)

Let Tn := exp {nrn}. For every sequence xn, we define a sub-normalized vector:

|ξnxn
〉 :=

∑

yn:λn(xn)/µn(yn)≥Tn

γnxnyn |gnyn〉 (4.20)

with γnxnyn =
∏n

i=1 γxiyi and
∑

x |γxy|2 =
∑

y |γxy|2 = 1. Applying the Gram-Schmidt orthonormalization

process on {|ξnxn〉}xn to obtain an orthonormal vectors

|ξ̂nxn〉 =
∑

yn:λn(xn)/µn(yn)≥Tn

tnxnyn |gnyn〉 (4.21)

for some tnxnyn ∈ C and

∑

yn:λn(xn)/µn(yn)≥Tn

|tnxnyn |2 = 1. (4.22)

We define a test of the hypotheses by

Qn :=
∑

xn

|ξ̂nxn〉〈ξ̂nxn |. (4.23)

Then, it suffices to show β (Qn;σ⊗n) ≤ exp{−nrn} and

lim
n→+∞

1

na2n
log α

(
Qn; ρ⊗n

)
≤ − 1

2V
(4.24)

to complete the proof. The former follows Eqs. (4.17), (4.21), and (4.22):

β
(
Qn;σ⊗n

)
=
∑

xn

Tr
[
σ⊗n|ξ̂nxn〉〈ξ̂nxn |

]

=
∑

xn

∑

yn:λn(xn)/µn(yn)≥Tn

|tnxnyn |2µn(yn)

≤
∑

xn

λn(xn)

Tn
=

1

Tn
= exp{−nrn}. (4.25)
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Likewise, since |ξxn〉〈ξxn |
|〈ξxn |ξxn〉|2 ≤ Qn, one can verify that

α
(
Qn; ρ⊗n

)
≤ 1 −

∑

xn

λn(xn)〈ξnxn |ξnxn〉 (4.26)

= Pr

{
λn(Xn)

µn(Y n)
< Tn

}
(4.27)

= Pr

{
log

λn(Xn)

µn(Y n)
< nrn

}
. (4.28)

Next, we adopt Sason’s approach [24] to construct a martingale sequence {Uk,Mk}nk=0, where Mk

denotes the sigma-algebra formed by (Xl, Yl)
k
l=1; M0 ⊆ M1 ⊆ . . . ⊆ Mn is the filtration; and

Uk := E(Xn,Y n)

[
log

λn(Xn)

µn(Y n)

∣∣∣∣Mk

]
(4.29)

=

k∑

i=1

log
λ(Xi)

µ(Yi)
+

n∑

i=k+1

EXn

[
log

λ(Xi)

µ(Yi)

]
(4.30)

=

k∑

i=1

log
λ(Xi)

µ(Yi)
+ (n − k)D(λ(X)‖µ(Y )). (4.31)

In particular, we have

U0 = nD (λ(X)‖µ(Y )) ; Un = log
λ(Xn)

µ(Y n)
=

n∑

i=1

log
λ(Xi)

µ(Yi)
.

Hence, it can be verified that:

Uk − Uk−1 = log
λ(Xk)

µ(Yk)
−D(λ(X)‖µ(Y ));

EXn [Uk − Uk−1|Mk−1] = 0;

EXn

[
(Uk − Uk−1)

2
∣∣∣Mk−1

]
= V (λ(X)‖µ(Y )) = V.

Let

b := max
(x,y):x=y

∣∣∣∣log
λ(x)

µ(y)
−D(λ(X)‖µ(Y ))

∣∣∣∣ , (4.32)

which is a finite number due to the assumption of the finite-dimensional Hilbert space. Then, we have
|Uk − Uk−1| ≤ b almost surely for every k ∈ [n]. Equipped with the notation above, Eq. (4.28) can be
expressed as:

α
(
Qn; ρ⊗n

)
= Pr {Un − U0 ≤ −nan} . (4.33)

In the following, we borrow the idea from Sason [24] to employ a martingale inequality to upper bound
Eq. (4.33).

Theorem 12 (Refined Azuma’s Inequality [24, Theorem 2]). Let (Xk)nk=1 be a martingale with respect to
the filtration (Mk)nk=0 such that the following requirements are satisfied almost surely: (i) E [Xk|Mk−1] =
0; (ii) E

[
X2

k |Mk−1

]
≤ v; (iii) ‖Xk‖∞ ≤ bk. For any x ≥ 0,

Pr

{
n∑

k=1

Xk ≥ xn

}
= Pr

{
n∑

k=1

Xk ≤ −xn
}

≤ 2 exp

{
−nh

(
bx+ v

b2 + v

∥∥∥∥
v

b2 + v

)}
, (4.34)

where h(p‖q) := p log p
q + (1 − p) log 1−p

1−q .
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Apply Theorem 12 to Eq. (4.33) with x = an, Xk = Uk − Uk−1 for ever k ∈ [n]:

α
(
Qn; ρ⊗n

)
≤ 2 exp

{
−nh

(
ban + V

b2 + V

∥∥∥∥
V

b2 + V

)}
. (4.35)

By using a scalar inequality [24, Lemma 1]:

(1 + u) log(1 + u) ≥ u+
u2

2
− u3

6
, u ≥ 0, (4.36)

and the definition of h(·‖·) in Theorem 12, Eq. (4.35) leads to

α
(
Qn; ρ⊗n

)
≤ 2 exp

{
−n
[
a2n
2V

(
1 − anb

3V (1 + V/b2)

)]}
. (4.37)

Finally, recall that limn→+∞ an = 0 in Eq. (3.1), then

lim sup
n→+∞

1

na2n
log αn (ηn) ≤ − 1

2V
.

�

4.2. Proof of Converse: Theorem 10. The converse part is a direct consequence of the sharp converse
Hoeffding bound, Theorem 7.

Let X = {x} and Wx = ρ. We apply Theorem 7 with r = rn to obtain

α̂exp{−nrn}
(
ρ⊗n‖σ⊗n

)
≥ A

s⋆n
√
n

exp

{
−n
[

sup
0<α≤1

α− 1

α
(rn − cn −Dα (ρ‖σ))

]}
, (4.38)

for sufficiently large n ∈ N and some constant A > 0. Here

s⋆n := arg max
s≥0

{
sD 1

1+s
(ρ‖σ) − srn

}
. (4.39)

Now let

δn := an + cn, ∀n ∈ N, (4.40)

and invoke Proposition 8 with Wx = ρ, P (x) = 1, and substitute P ⋆
W with σ to obtain

lim sup
n→+∞

sups≥0

{
−s (D (ρ‖σ) − δn) + sD 1

1+s
(ρ‖σ)

}

δ2n
≤ 1

2V
. (4.41)

Moreover, Eq. (3.48) in Proposition 8 gives that limn→+∞
s⋆n
δn

= 1/V . Combining Eqs. (4.38) and (4.41)
concludes our claim:

lim inf
n→+∞

log α̂exp{−nrn} (ρ⊗n‖σ⊗n)

nδ2n
≥ − 1

2V
. (4.42)

5. Conclusion

A practical question in quantum information theory is that—is it possible for a reliable communication
through a c-q channel when the transmission rate approaches capacity in blocklength? In this paper, we
propose a moderate deviation analysis for c-q channel and thus give an affirmative answer. Moreover, we
also establish the moderate deviations for quantum hypothesis testing.

Our proof strategy is based on a strong large deviation theory [28, 18] and the study of the asymptotic
behaviour of the error exponent function. As a result, we successfully bridge the connection between
small error regime and the medium error regime. On the other hand, the recent work from the authors
[31] also obtains the moderate deviation result via the techniques in the non-vanishing error regime. It is
remarkable that both methods from different regimes arrive at the same place, and hence both this work
along with Ref. [31] illuminate the whole picture of the three regimes in quantum information theory. �
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Vincent Tan for introducing us to Altuğ and Wagner’s work of moderate deviation analysis. We also
thank Christopher Chubb and Marco Tomamichel for the insightful discussions and the useful comments.

Appendix A. Properties of Auxiliary Functions

This section contains proofs of Propositions 1 and 2. Most results follow from properties of Petz
quantum Rényi divergence [43] (see also [44, 45, 46]).

A.1. Proof of Proposition 1.

Proposition 1 (Properties of Ẽ0(s, P, σ)). For any classical-quantum channel W : X → S(H), the

modified auxiliary function Ẽ0(s, P, σ) admits the following properties.

(a) Ẽ0(s, P, σ) and its partial derivatives ∂Ẽ0(s, P, σ)/∂s, ∂2Ẽ0(s, P, σ)/∂s2, ∂3Ẽ0(s, P, σ)/∂s3 are all
continuous in (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽ0(s, P, σ) is concave in s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D(P ◦W‖P ⊗ σ) (A.1)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽ0(s, P )

∂s
≤ ∂Ẽ0(s, P )

∂s
≤ D(P ◦W‖P ⊗ σ), ∀s ∈ R≥0. (A.2)

(e) For every P ∈ P(X ),

∂2Ẽ0(s, P )

∂s2

∣∣∣∣∣
s=0

= −V (P ◦W‖P ⊗ σ). (A.3)

Proof of Proposition 1.

(1-(a)) The continuity can be proved by the standard approach of functional calculus (see e.g. [44, Lemma

III.1] and [45, Section 4.2]). Let F̃ (s) :=
∑

x∈X P (x) Tr
[
W 1−s

x (σ)s
]
. Direct calculation shows that

∂Ẽ0(s, P, σ)

∂s
= − F̃

′(s)

F̃ (s)
, (A.4)

∂2Ẽ0(s, P, σ)

∂s2
= − F̃

′′(s)

F̃ (s)
+

(
∂Ẽ0(s, P, σ)

∂s

)2

, (A.5)

∂3Ẽ0(s, P, σ)

∂s3
= − F̃

′′′(s, P )

F̃ (s, P )
+ 3

∂Ẽ0(s, P, σ)

∂s

∂2Ẽ0(s, P, σ)

∂s2
−
(
∂Ẽ0(s, P, σ)

∂s

)3

, (A.6)
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and

F̃ ′(s) =
∑

x∈X
P (x) Tr

[
−W 1−s

x log(Wx)(σ)s +W 1−s
x (σ)slog(σ)

]
, (A.7)

F̃ ′′(s) =
∑

x∈X
P (x) Tr

[
W 1−s

x log2(Wx)(σ)s −W 1−s
x log(Wx)(σ)slog(σ)

−W 1−s
x log(Wx)(σ)slog(σ) +W 1−s

x (σ)slog2(σ)
]
,

(A.8)

F̃ ′′′(s) =
∑

x∈X
P (x) Tr

[
−W 1−s

x log3(Wx)(σ)s +W 1−s
x log2(Wx)(σ)slog(σ)

+2W 1−s
x log2(Wx)(σ)slog(σ) − 2W 1−s

x log(Wx)(σ)slog2(σ)

−W 1−s
x log(Wx)(σ)slog2(σ) +W 1−s

x (σ)slog3(σ)
]
.

(A.9)

Since the matrix power function is continuous (with respect to the strong topology; see e.g. [47,
Theorem 1.19]), we conclude the continuity of the partial derivatives Eqs. (A.4)-(A.6) in item (a).

(1-(b)) The claim follows from the concavity of the map s 7→ sD1−s( · ‖ · ) (see e.g. [48, Lemma III.11]).
(1-(c)) The results can be derived from evaluating Eqs. (A.4), (A.5), (A.7), and (A.8) at s = 0. We

provide an alternative proof here. One can verify

∂Ẽ0(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D1−s (P ◦W‖P ⊗ σ) − sD′
1−s (P ◦W‖P ⊗ σ)

∣∣
s=0

(A.10)

= D1−s (P ◦W‖P ⊗ σ)|s=0 (A.11)

= D(P ◦W‖P ⊗ σ). (A.12)

(1-(d)) The concavity of the map s 7→ Ẽ(s, P, σ) in item (b) ensures that ∂Ẽ(s, P, σ)/∂s is non-increasing
in s. Along with Eq. (A.12), we conclude Eq. (2.30).

(1-(e)) Following from item (c), one obtain

∂2Ẽ0(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −2D′
1−s (P ◦W‖P ⊗ σ) + sD′′

1−s (P ◦W‖P ⊗ σ)
∣∣
s=0

(A.13)

= −2D′
1−s (P ◦W‖P ⊗ σ)

∣∣
s=0

(A.14)

= −V (P ◦W‖P ⊗ σ), (A.15)

where the last equality (A.15) follows from the fact D′
1/1+s(·‖·)|s=0 = V (·‖·)/2 [45, Theorem 2].

�

A.2. Proof of Proposition 2.

Proposition 2 (Properties of Eh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a
distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx ≪ σ for all x ∈ supp(P ). Then Eh(s, P, σ) defined
in Eq. (2.26) enjoys the following properties.

(a) The partial derivatives ∂Eh(s, P, σ)/∂s, ∂2Eh(s, P, σ)/∂s2, ∂3Eh(s, P, σ)/∂s3, and Eh(s, P ) are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Eh(s, P, σ) is concave in s for all s ∈ R≥0.
(c) For every P ∈ P(X ),

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (A.16)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Eh(s, P, σ)

∂s
≤ ∂Eh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (A.17)
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(e) For every P ∈ P(X ),

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (A.18)

Proof Proposition 2.

(2-(a)) Direct calculation yields that

∂Eh(s, P, σ)

∂s
= D 1

1+s
(W‖σ|P ) − s

(1 + s)2
D′

1

1+s

(W‖σ|P ) (A.19)

∂2Eh(s, P, σ)

∂s2
= − 2

(1 + s)3
D′

1

1+s

(W‖σ|P ) +
s

(1 + s)4
D′′

1

1+s

(W‖σ|P ) (A.20)

∂3Eh(s, P, σ)

∂s3
=

6

(1 + s)4
D′

1

1+s

(W‖σ|P ) +
3 − 3s

(1 + s)5
D′′

1

1+s

(W‖σ|P )

− s

(1 + s)6
D′′′

1

1+s

(W‖σ|P ) . (A.21)

From Eqs. (A.19)-(A.21) and the fact thatD1/(1+s) (W‖σ|P ), D′
1/(1+s) (W‖σ|P ), D′′

1/(1+s) (W‖σ|P ),

and D′′′
1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the continuity property

in item (a).
(2-(b)) The proof strategy follows closely with [48, Appendix B]. Let ψ(α) =

∑
x∈X P (x) log Tr

[
Wα

x σ
1−α
]
.

Since α 7→ ψ(α) is convex for all α ∈ (0, 1] [48, Lemma III.11], it can be written as the supremum
of affine functions, i.e.

ψ(α) = sup
i∈I

{ciα+ di} (A.22)

for some index set I. Hence,

−Eh(s, P, σ) = (1 + s)ψ

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (A.23)

The right-hand side of Eq. (A.23), in turn, implies that the map s 7→ Eh(s, P, σ) is convex for all
s ∈ R≥0.

(2-(c)) From Eqs. (A.19) and (A.20), one finds

∂Eh(s, P, σ)

∂s

∣∣∣∣
s=0

= D (W‖σ|P ) . (A.24)

(2-(d)) The concavity of the map s 7→ Eh(s, P, σ) in item (b) ensures that ∂Eh(s, P, σ)/∂s is non-increasing
in s. Along with Eq. (A.24) in item (c), we conclude Eq. (2.33).

(2-(e)) Applying D′
1/1+s(·‖·)|s=0 = V (·‖·)/2 [45, Theorem 2], it holds that

∂2Eh(s, P, σ)

∂s2

∣∣∣∣
s=0

= −V (W‖σ|P ) . (A.25)

�

A.3. Proof of Proposition 3.

Proposition 3 (Properties of Ẽh(s, P, σ)). Consider a classical-quantum channel W : X → S(H), a

distribution P ∈ P(X ), and a state σ ∈ S(H) with Wx ≪ σ for all x ∈ supp(P ). Then Ẽh(s, P, σ) defined
in Eq. (2.27) enjoys the following properties.

(a) The partial derivatives ∂Ẽh(s, P, σ)/∂s, ∂2Ẽh(s, P, σ)/∂s2, ∂3Ẽh(s, P, σ)/∂s3, and Ẽh(s, P, σ) are
all continuous for (s, P ) ∈ R≥0 × P(X ).

(b) For every P ∈ P(X ), the function Ẽh(s, P, σ) is concave in s for all s ∈ R≥0.
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(c) For every P ∈ P(X ),

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (A.26)

(d) For every P ∈ P(X ),

lim
s→+∞

∂Ẽh(s, P, σ)

∂s
≤ ∂Ẽh(s, P, σ)

∂s
≤ D (W‖σ|P ) , ∀s ∈ R≥0. (A.27)

(e) For every P ∈ P(X ),

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (A.28)

Proof of Proposition 3. This proof follows similarly from Proposition 2.

(3-(a)) Direct calculation yields that

∂Ẽh(s, P, σ)

∂s
= D̃ 1

1+s
(W‖σ|P ) − s

(1 + s)2
D̃′

1

1+s

(W‖σ|P ) (A.29)

∂2Ẽh(s, P, σ)

∂s2
= − 2

(1 + s)3
D̃′

1

1+s

(W‖σ|P ) +
s

(1 + s)4
D̃′′

1

1+s

(W‖σ|P ) (A.30)

∂3Ẽh(s, P, σ)

∂s3
=

6

(1 + s)4
D̃′

1

1+s

(W‖σ|P ) +
3 − 3s

(1 + s)5
D̃′′

1

1+s

(W‖σ|P )

− s

(1 + s)6
D̃′′′

1

1+s

(W‖σ|P ) . (A.31)

From Eqs. (A.29)-(A.31) and the fact that D̃1/(1+s) (W‖σ|P ), D̃′
1/(1+s) (W‖σ|P ), D̃′′

1/(1+s) (W‖σ|P ),

and D′′′
1/(1+s) (W‖σ|P ) are continuous for (s, P ) ∈ R≥0×P(X ), we deduce the continuity property

in item (a).
(3-(b)) The proof strategy follows closely with [48, Appendix B]. Let

ψ̃(α) =
∑

x∈X
P (x) log Tr

[
eα logWx+(1−α) log σ

]
. (A.32)

Since α 7→ ψ̃(α) is convex for all α ∈ (0, 1] [48, Lemma III.11], it can be written as the supremum
of affine functions, i.e.

ψ̃(α) = sup
i∈I

{ciα+ di} (A.33)

for some index set I. Hence,

−Ẽh(s, P, σ) = (1 + s)ψ̃

(
1

1 + s

)
= sup

i∈I
{ci + di(1 + s)} . (A.34)

The right-hand side of Eq. (A.34), in turn, implies that the map s 7→ Ẽh(s, P, σ) is convex for all
s ∈ R≥0.

(3-(c)) From Eqs. (A.29) and (A.30) and recalling [48, Lemma III.4], one finds

∂Ẽh(s, P, σ)

∂s

∣∣∣∣∣
s=0

= D (W‖σ|P ) . (A.35)

(3-(d)) The concavity of the map s 7→ Eh(s, P ) in item (b) ensures that ∂Eh(s, P )/∂s is non-increasing
in s. Along with Eq. (A.35) in item (c), we conclude Eq. (2.36).
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(3-(e)) Following similar steps in [45, Proposition 4], it can be verifies that

D̃′
α(ρ‖σ)

∣∣∣
α=1

= lim
α↑1

1

2

d2

dα2
log f(α) =

f(1)f ′′(1) − (f ′(1))2

2(f(1))2
, (A.36)

where f(α) := Tr
[
eα log ρ+(1−α)σ

]
. Further, the Fréchet derivative of the exponential (see e.g. [49,

Example X.4.2]) gives

f ′(α) = Tr
[
eα log ρ+(1−α)σ (log ρ− log σ)

]
, (A.37)

f ′′(α) =

∫ 1

0
dtTr

[
et(α log ρ+(1−α)σ) (log ρ− log σ) e(1−t)(α log ρ+(1−α)σ) (log ρ− log σ)

]
, (A.38)

Therefore, Eq. (A.36) equals

D̃′
α(ρ‖σ)

∣∣∣
α=1

=
1

2

(∫ 1

0
dtTr

[
ρ1−t(log ρ− log σ)ρt(log ρ− log σ)

]
−D(ρ‖σ)2

)
(A.39)

=
1

2
Ṽ (ρ‖σ). (A.40)

Finally, combining with Eq. (A.30) yields

∂2Ẽh(s, P, σ)

∂s2

∣∣∣∣∣
s=0

= −Ṽ (W‖σ|P ) . (A.41)

�

Appendix B. A Weak Converse Bound: Proof of Proposition 6

Proposition 6 (Weak Converse Bound with Polynomial Prefactors). Consider a classical-quantum chan-

nel W : X → S(H) with S◦ := im(W), an arbitrary rate R ≥ 0, and σ ∈ S>0(H). For any η ∈ (0, 12 ) and
c > 0, let N0 ∈ N such that for all n ≥ N0,

c · e−ξ
√
n ≤ η

2
, (B.1)

where ξ =
√

2A/η and A := maxρ∈S◦ V (ρ‖σ). Then, it holds that for all n ≥ N0,

α̂c exp{−nR}
(
W⊗n

x
n ‖σ⊗n

)
≥ f(η) exp



−n



Ẽsp

(
R− 2ξ√

n
, Px

n , σ
)

1 − η





 , (B.2)

where f(η) = exp
{
−h(1−η)

1−η

}
and h(p) := −p log p− (1 − p) log(1 − p) is the binary entropy function.

Remark B.1. Consider a constant composition code with common type Px
n on a finite input alphabet X .

Recall the definition of the weak sphere-packing exponent [40, 18]:

Ẽsp(R,Px
n) := min

W̄:X→S(H)

{
D
(
W̄‖W|Px

n

)
: I(Px

n , W̄) ≤ R
}
. (B.3)

Proposition 6, along with [18, Lemma 11], establishes a weak sphere-packing bound with polynomial
prefactors, which generalizes Altuğ and Wagner’s result [21, Lemma 3] to c-q channels: for any η ∈ (0, 12)
and for all sufficiently large n such that Eq. (B.1) holds, we have

ǫmax(W, Px
n) ≥ max

σ∈S(H)
α̂exp{−nR}

(
W⊗n

x
n ‖σ⊗n

)
(B.4)

≥ α̂exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
(B.5)

≥ f(η) exp



−n



Ẽsp

(
R− 2ξ√

n
, Px

n

)

1 − η





 , (B.6)

where σ⋆ := Px
nW̄

⋆ and W̄
⋆ is an arbitrary minimizer in Eq. (B.3). Moreover, Eq. (B.6) improves the

prefactor of Winter’s weak sphere-packing bound [40] from the order of subexponential to polynomial.
21



Proof of Proposition 6. Consider an arbitrary sequence xn ∈ X n and a test Qn on H⊗n. For two c-q
channels W̄,W : X → S◦, the data-processing inequality implies that

D
(
W̄⊗n

x
n ‖W⊗n

x
n

)
≥
[
1 − α(Qn; W̄⊗n

x
n )
]

log
1 − α(Qn; W̄⊗n

x
n )

1 − α(Qn;W⊗n
x
n )

+ α(Qn; W̄⊗n
x
n ) log

α(Qn; W̄⊗n
x
n )

α(Qn;W⊗n
x
n )

(B.7)

= −h
(
α(Qn; W̄⊗n

x
n )
)
− α(Qn; W̄⊗n

x
n ) log α(Qn;W⊗n

x
n )

−
[
1 − α(Qn; W̄⊗n

x
n )
]

log
(
1 − α(Qn;W⊗n

x
n )
)

(B.8)

≥ −α(Qn; W̄⊗n
x
n ) log α(Qn;W⊗n

x
n ) − h

(
α(Qn; W̄⊗n

x
n )
)
, (B.9)

where the last inequality (B.9) follows since the third term in (B.8) is non-negative. Continuing from
Eq. (B.9), we have

α(Qn;W⊗n
x
n ) ≥ exp

{
−D

(
W̄⊗n

x
n

∥∥W⊗n
x
n

)
+ h

(
α(Qn; W̄⊗n

x
n )
)

α(Qn; W̄⊗n
x
n )

}
(B.10)

= exp

{
−nD

(
W̄
∥∥W

∣∣Px
n

)
+ h

(
α(Qn; W̄⊗n

x
n )
)

α(Qn; W̄⊗n
x
n )

}
, (B.11)

where Eq. (B.11) follows from the additivity of the relative entropy and the empirical distribution Px
n .

The next step is to replace α(Qn;W⊗n
x
n ) with a lower bound that does not depend on the dummy channel

W̄ , provided that W̄ satisfies certain conditions. This can be done using Proposition 13, Wolfowitz’s strong
converse bound. We delay its proof in Appendix B.1.

Proposition 13 (Wolfowitz’s Strong Converse). Let S◦ ⊆ S(H) be closed and let W̄ : X → S◦ be an
arbitrary classical-quantum channel. Consider the binary hypothesis testing:

H0 : W̄⊗n
x
n , (B.12)

H1 : σ⊗n, (B.13)

where xn ∈ X n and σ ∈ S>0(H). For any test Qn such that β(Qn;σ⊗n) ≤ e−nR and D
(
W̄x

n‖σ|Px
n

)
≤

R− 2κ, it holds that

α
(
Qn; W̄⊗n

x
n

)
> 1 − A

nκ2
− e−nκ, (B.14)

where A := maxρ∈S◦ V (ρ‖σ).

Fix 0 < η < 1
2 , and let ξ2 := 2A

η . Note that ξ2 is finite because A < +∞. For all n ≥ N0, we have

c · e−ξ
√
n ≤ η

2
(B.15)

by assumption in Proposition 6. Choose κ = ξ/
√
n. For any W̄ : X → S◦ with D

(
W̄‖σ|Px

n

)
≤ R − 2ξ√

n

and any test Qn such that β(Qn;σ⊗n) ≤ e−nR, Proposition 13 gives a lower bound to the type-I error:

α(Qn; W̄⊗n
x
n ) ≥ 1 − A

nκ2
− e−nκ ≥ 1 − η. (B.16)

Hence, combining Eqs. (B.11) and (B.16) yields that, for any β(Qn;σ⊗n) ≤ ce−nR,

α(Qn;W⊗n
x
n ) ≥ max

W̄:D(W̄‖σ|P
x
n)≤R− 2ξ√

n

exp

{
−nD

(
W̄
∥∥W

∣∣Px
n

)
+ h (1 − η)

1 − η

}
, (B.17)

= exp

{
−h (1 − η)

1 − η

}
exp



−

n Ẽsp

(
R− 2ξ√

n
, Px

n , σ
)

1 − η



 , (B.18)

which concludes Proposition 6.
�
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B.1. Proof of Wolfowitz’s Strong Converse: Proposition 13. To prove our claim, we first introduce
notation for generalized divergences. For any ρ, σ ∈ S(H), and γ > 0, define the hockey-stick divergence
by

Dγ(ρ‖σ) := Tr
[
(ρ− γσ)+

]
, (B.19)

where A+ := A{A ≥ 0} denotes the self-adjoint matrix contributed only by its positive part. This
divergence satisfies the data-processing inequality (DPI):

Tr
[
(ρ− γ̺)+

]
≥ Tr

[
(N (ρ) − γN (̺))+

]
, (B.20)

for any completely positive and trace-preserving map N : S(Hin) → S(Hout) [51, Lemma 4]. Let

ρp := p|0〉〈0| + (1 − p)|1〉〈1|, and σq := q|0〉〈0| + (1 − q)|1〉〈1|, (B.21)

for 0 ≤ p, q ≤ 1 and some orthonormal basis {|0〉, |1〉}, and define

dγ (p‖q) := Dγ (ρp‖σq) . (B.22)

Note that the quantity dγ (p‖q) is independent of the choice of the basis {|0〉, |1〉}. Now we are ready to
prove Proposition 13.

Proof of Proposition 13. Fix an arbitrary test Qn on H⊗n. For notational convenience, we shorthand
ρn = W̄⊗n

x
n , τn = σ⊗n, α = α(Qn; ρn) and β = β = (Qn; τn). Further, we assume β(Qn; τn) ≤ e−nR.

From the definition of the classical divergence, Eqs. (B.19) and (B.22), and any γ > 0, we find

dγ(1 − α‖β) = (1 − α− γβ)+ + (α− γ [1 − β])+ (B.23)

≥ 1 − α− γβ (B.24)

≥ 1 − α− γe−nR. (B.25)

On the other hand, DPI and the measurement map Tr[Qn(·)]|0〉〈0| + (1 − Tr[Qn(·)])|1〉〈1| imply that

Dγ (ρn‖τn) ≥ dγ (Tr[Qnρ
n]‖Tr[Qnτ

n]) = dγ(1 − α‖β). (B.26)

Hence, Eqs. (B.25) and (B.26) lead to

α ≥ 1 −Dγ (ρn‖τn) − γe−nR. (B.27)

Since

Dγ (ρn‖τn) = Tr [{ρn − γτn ≥ 0} (ρn − γτn)] (B.28)

≤ Tr [{ρn − γτn ≥ 0} ρn] , (B.29)

continuing from Eq. (B.27) gives

α ≥ 1 − Tr [{ρn − γτn ≥ 0} ρn ] − γe−nR. (B.30)

Next, invoking Lemma 14 below, for all log γ > D (ρn‖τn), we have

α ≥ 1 − V (ρn‖τn)

[log γ −D (ρn‖τn)]2
− γe−nR (B.31)

= 1 − V
(
W̄‖σ|Px

n

)

n
[
log γ
n −D

(
W̄‖σ|Px

n

)]2 − γe−nR (B.32)

Finally, recall D
(
W̄‖σ|Px

n

)
≤ R−2κ and A := maxρ∈S◦ V (ρ‖σ) and choose log γ = nD

(
W̄‖σ|Px

n

)
+nκ.

Then, Eq. (B.32) yields, for any test Qn and β(Qn;σ⊗n) ≤ e−nR,

α
(
Qn; W̄⊗n

x
n

)
≥ 1 − V

(
W̄‖σ|Px

n

)

nκ2
− e−nκ (B.33)

≥ 1 − A

nκ2
− e−nκ, (B.34)

which concludes the proof.
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Lemma 14 (Quantum Chebyshev’s Inequality [51, Lemma 6]). Let ρ, σ ∈ S(H) and assume log γ >
D(ρ‖σ). Then

Tr [ρ {ρ− γσ ≥ 0}] ≤ V (ρ‖σ)

[log γ −D(ρ‖σ)]2
. (B.35)

�

Appendix C. A Sharp Converse Bound from Strong Large Deviation

In this section, we provide the proof of Proposition 7. Our technique highly relies on a strong large
deviation inequality.

C.1. A Strong Large Deviation Inequality. Let (Xi)i∈N be a sequence of independent, real-valued

random variables with probability measures (µi)
n
i=1. Let Zn :=

∑n
i=1Xi and let Λn(t) := logE

[
etZn

]
.

Define the Legendre-Fenchel transform of 1
nΛn(·) by:

Λ∗
n(z) := sup

t∈R

{
zt− 1

n
Λn(t)

}
, ∀z ∈ R. (C.1)

Let (Tn)n∈N be a bounded sequence of real numbers and (t⋆n)n∈N be a sequence satisfying for all n ∈ N

t⋆n ∈ (0, 1); (C.2)

Tn =
1

n
Λ′
n(t⋆n); (C.3)

Λ∗
n(Tn) = Tnt

⋆
n − 1

n
Λn(t⋆n). (C.4)

With these definitions, we can now state the following sharp concentration inequality for 1
nZn:

Theorem 15 (Chaganty-Sethuraman’s Concentration Inequality [52, Theorem 3.3] ). For any η ∈ (0, 1),
there exists an N0 ∈ N such that, for all n ≥ N0,

Pr

{
1

n
Zn ≥ Tn,

}
≥ 1 − η

t⋆n
√

2πnm2,n
exp{−nΛ⋆

n(Tn)}, (C.5)

where m2,n := 1
n

∑n
i=1 Varµ̃n,i

[Xi], and the measure µ̃n,i is defined via

dµ̃n,i
dµi

(y) :=
eyt

⋆
n

E [et⋆nXi ]
. (C.6)

Remark C.1. Chaganty and Sethuraman in Ref. [52, Theorem 3.3] considered a more general sequence
of random variables {Zn}n∈N, which are not necessarily the sum of random variables. They proved
Theorem 15 provided that the following condition is satisfied: there exists δ0 > 0 such that for any δ and
λ with 0 < δ < δ0 < λ, supδ<|t|≤λt⋆n

|Λn(t⋆n + it)/Λn(t⋆n)| = o(1/
√
n), where the supremum is defined to be

0 if {t : δ < |t| ≤ λt⋆n} is empty. In the case of Zn being a sum of random variables, Λn(t⋆n + it)/Λn(t⋆n)
is the product of the characteristic functions of {Xi}ni=1. Since the supremum of a characteristic function
on a compact interval not containing 0 is less than 1, this condition is thus satisfied.

We note that the lower bound in Theorem 15 for the general sequence of random variables (Xi)i∈N
suffices to establish the converse, Theorem 5. We do not particularly consider the case of lattice valued
random variables (see e.g. [52, Theorem 3.5]).

C.2. Proof of Proposition 7.

Proposition 7 (A Sharp Converse Bound). Consider a classical-quantum channel W : X → S(H) and a
state σ ∈ S(H). Suppose the sequence xn ∈ X n satisfies

ν ≤ V (W‖σ|Px
n) < +∞ (C.7)
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for some ν > 0, and suppose the sequence of rates (Rn)n∈N satisfies D0(W‖σ|Px
n ) < Rn < D(W‖σ|Px

n).
Then, there exists an N0 ∈ N such that, for all n ≥ N0,

α̂exp{−nRn}(W⊗n
x
n ‖σ⊗n) ≥ A

s⋆n
√
n

exp
{
−nE(2)

sp (Rn − cn, Px
n , σ)

}
, (C.8)

where cn = K logn
n and A,K > 0 are finite constants independent of the sequence xn, and

s⋆n := arg max
s≥0

{Eh(s, Px
n , σ) − sRn} . (C.9)

Proof of Proposition 7. Let ρn := W⊗n
x
n , σn := σ⊗n, pn :=

⊗n
i=1 pxi

, and qn :=
⊗n

i=1 qxi
, where pxi

, qxi

are Nussbaum-Szko la distributions [58] of Wxi
, σ for every i ∈ [n]. Let R̃n := Rn−γn, where γn := logn

2n + x
n

for some x ∈ R. The choice of x and the rate back-off term γn will become evident later. Let N1 ∈ N

such that R̃n ≥ D0(W‖σ|Px
n ) for all n ≥ N1. Subsequently, we choose such n ≥ N1 onwards.

Since Dα(Wxi
‖σ) = Dα(pxi

‖qxi
), for α ∈ (0, 1], we use the notation

φn(R̃n) := E(2)
sp (R̃n, Px

n , σ) = sup
0<α≤1

1 − α

α

(
∑

x∈X
Px

n(x)Dα(pxi
‖qxi

) − R̃n

)
, (C.10)

where Px
n denotes the empirical distribution of xn = x1, . . . xn. Moreover, the condition in Eq. (C.7)

implies that Wx ≪ σ, for all x ∈ supp(Px
n), and thus pn ≪ qn. Without loss of generality, we let

qxi
(ω) = 0, ω 6∈ supp(pxi

) since they won’t contribute to φn(R̃n).

We apply Nagaoka’s argument [59]: for any 0 ≤ Qn ≤ 1, choosing δ = exp{nR̃n − nφn(R̃n)} yields:

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α (U; pn) + enR̃n−nφn(R̃n)β (U; qn)

)
, (C.11)

where

α (U; pn) :=
∑

ω∈Uc

pn(ω); β (U; qn) :=
∑

ω∈U
qn(ω), (C.12)

and

U :=
{
ω : pn(ω)enφn(R̃n) > qn(ω)enR̃n

}
. (C.13)

In the following, we will employ Theorem 15, to further lower bound α (U; pn) and β (U; qn). Before
proceeding, we need to introduce some notation. Define the tilted distributions, for every i ∈ [n] and
t ∈ [0, 1], to be

q̂xi,t(ω) :=
pxi

(ω)1−tqxi
(ω)t∑

ω∈supp(pxi)
pxi

(ω)1−tqxi
(ω)t

, ω ∈ supp(pxi
). (C.14)

Let

Λ0,xi
(t) := logEpxi

[
e
t log

qxi
pxi

]
, Λ1,xi

(t) := logEqxi

[
e
t log

pxi
qxi

]
, (C.15)

Since pn and qn share the same support, it can be verified that the maps t 7→ Λj,xi
(t), j ∈ {0, 1} are

differential for all t ∈ [0, 1]. One can immediately verify the following partial derivatives with respect to t:

Λ′
0,xi

(t) = Eq̂xi,t

[
log

qxi

pxi

]
, Λ′

1,xi
(t) = Eq̂xi,1−t

[
log

pxi

qxi

]
; (C.16)

Λ′′
0,xi

(t) = Varq̂xi,t

[
log

qxi

pxi

]
, Λ′′

1,xi
(t) = Varq̂xi,1−t

[
log

pxi

qxi

]
. (C.17)

Note that Eqs. (C.15), (C.16), and (C.17) ensure that

Λ0,xi
(t) = Λ1,xi

(1 − t), Λ′
0,xi

(t) = −Λ′
1,xi

(1 − t), Λ′′
0,xi

(t) = Λ′′
1,xi

(1 − t). (C.18)
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With Λj,xi
(t) in Eq. (C.15), we can define

Λj,P
x
n (t) :=

∑

x∈X
Px

n(x)Λj,x(t), j ∈ {0, 1}; (C.19)

Λ∗
j,P

x
n (z) := sup

t∈R
{tz − Λj,P

x
n (t)} , j ∈ {0, 1}, (C.20)

where Λ∗
j,P

x
n
(z) in Eq. (C.20) are the Legendre-Fenchel transform of Λj,P

x
n (t). The quantities Λ∗

j,P
x
n

(z)

would appear in the lower bounds of α (U; pn) and β (U; qn) obtained by Theorem 15 as shown later.
In the following, we will relate the Legendre-Fenchel transform Λ∗

j,Pn
(z) to the desired error-exponent

function φn(R̃n). Such a relationship is stated in the following lemma whose proof was presented in [18].

Lemma 16 ([18, Lemma 17]). The following holds for all sequences xn satisfying Eq. (C.7) and all
r ∈ (D0(W‖σ|Px

n),D(W‖σ|Px
n )):

(a) Λ′′
0,P

x
n

(t) > 0 for all t ∈ [0, 1].

(b) Λ∗
0,P

x
n

(φn(r) − r) = φn(r).

(c) Λ∗
1,P

x
n

(r − φn(r)) = r.

(d) Let s⋆ be the optimizer of E
(2)
sp (r, Px

n , σ), c.f. (C.9). The optimizer of Λ∗
0,P

x
n

(z), denoted by t⋆, is

unique and satisfies t⋆ = s⋆

1+s⋆ ∈ (0, 1) and Λ′
0,P

x
n

(t⋆) = φn(r) − r.

Since the item (d) in Lemma 16 shows that the optimizer t in Eq. (C.20) always lies in the compact
set [0, 1], by invoking Eq. (C.18) we define the following quantity:

Vmin(ν) := min
t∈[0,1], P

x
n∈Pν(X )

Λ′′
0,Pn

(t), (C.21)

where Pν(X ) := {Px
n ∈ P(X ) : ν ≤ V (W‖σ|Px

n) < +∞} is a compact set owing to the continuity of the
map P 7→ V (W‖σ|P ); see Eq. (2.16).

Further, from the definitions in Eqs, (C.17), Λ′′
0,(·)(·) is continuous functions in [0, 1] × P(X ). The

minimization in the above definitions are well-defined and finite. Further, the quantity Vmin(ν) is bounded
away from zero owing to item (a) in Lemma 16.

Now, we are ready to derive the lower bounds to α (U; pn) and β (U; qn). Fix an arbitrary η ∈ (0, 1).

Applying Theorem 15 to Xi = log qi− log pi with probability measure pi, and threshold Tn = R̃n−φn(R̃n)
gives, for all sufficiently large n, say n ≥ N2 ∈ N,

α (U; pn) :=
∑

ω∈Uc

pn(ω) (C.22)

= Pr

{
1

n

n∑

i=1

Zi ≥ R̃n − φn(R̃n)

}
(C.23)

≥ 1 − η

t⋆n
√

2πnVmin(ν)
exp

{
−nΛ∗

0,P
x
n

(
φn(R̃n) − R̃n

)}
, (C.24)

where

t⋆n := arg max
t∈R

{tzn − Λ0,P
x
n (t)} (C.25)
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Similarly, applying again Theorem 15 to Xi = log pi− log qi with probability measure = qi, and threshold
φn(R̃n) − R̃n yields, for all sufficiently large n, say n ≥ N3 ∈ N,

β (U; qn) :=
∑

ω∈U
qn(ω) (C.26)

= Pr

{
1

n

n∑

i=1

Zi ≥ φn(R̃n) − R̃n

}
(C.27)

≥ 1 − η

(1 − t⋆n)
√

2πnVmin(ν)
exp

{
−nΛ∗

1,P
x
n

(
R̃n − φn(R̃n)

)}
(C.28)

≥ 1 − η√
2πnVmin(ν)

exp
{
−nΛ∗

1,P
x
n

(
R̃n − φn(R̃n)

)}
, (C.29)

where the term 1− t⋆n in Eq (C.28) comes from the symmetry in Eq. (C.18), and the last inequality (C.29)
follows from t⋆n ∈ (0, 1) in item (d) of Lemma 16.

Continuing from Eq. (C.24) and item (b) in Lemma 16 gives

α (U; pn) ≥ 1 − η

t⋆n
√

2πnVmin(ν)
exp{−nφn(R̃n)}. (C.30)

Eq. (C.29) together with item (c) in Lemma 16 yields

β (U; qn) ≥ 1 − η√
2πnVmin(ν)

exp{−nR̃n} = 2 exp{−nRn}, (C.31)

where we choose x = log 2
√

2πVmin(ν)− log(1−η) in the rate back-off γn = logn
2n + x

n . Thus we can bound
the left-hand side of Eq. (C.11) from below. If for any test 0 ≤ Qn ≤ 1 such that

β(Qn;σn) ≤ exp{−nRn}, (C.32)

holds, it implies that

α(Qn; ρn) ≥ 1 − η

t⋆n2
√

2πnVmin(ν)
exp{−nφn(R̃n)}. (C.33)

Finally, let A := (1 − η)/(2
√

2πVmin(ν)) and choose a constant K > 0 such that for all n ≥ N0 :=
max{N1, N2, N3},

γn =
log n

2n
+

log 2
√

2πVmin(ν) − log(1 − η)

n
≤ K log n

n
=: cn. (C.34)

Since the map r 7→ φn(r) is monotonically decreasing [30, Section 5], Eqs. (C.32), (C.33), and (C.34)
conclude our result: for all n ≥ N0,

α̂exp{−nR} (ρn‖σn) ≥ A

t⋆n
√
n

exp
{
−nE(2)

sp (Rn − cn, Px
n , σ)

}
(C.35)

≥ A

s⋆n
√
n

exp
{
−nE(2)

sp (Rn − cn, Px
n , σ)

}
, (C.36)

where the last inequality follows from item (d) in Lemma 16: t⋆n = s⋆n/(1 + s⋆n) ∈ (0, 1). �

Appendix D. Proof of Proposition 8

Proposition 8 (Error Exponent around Capacity). Let (bn)n∈N be a sequence of real numbers with
limn→+∞ bn = 0 and let (δn)n∈N be a sequence of positive numbers with limn→+∞ δn = 0. Suppose the
sequence of distributions (Pn)n∈N satisfies

CW − δn < D(W‖P ⋆
W|Pn) ≤ CW − bn. (D.1)
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The following holds:

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P

⋆W)

δ2n
≤ lim sup

n→+∞

(δn − bn)2

2VWδ2n
; (D.2)

lim sup
n→+∞

Ẽsp (CW − δn, Pn, P
⋆W)

δ2n
≤ lim sup

n→+∞

(δn − bn)2

2ṼWδ2n
; (D.3)

lim sup
n→+∞

s⋆n
δn

≤ 1

VW
, (D.4)

where

s⋆n := arg max
s≥0

{Eh(s, Pn, P
⋆
W) − s (CW − δn)} . (D.5)

Proof of Proposition 8. We only prove Eqs. (D.2) and (D.4), since Eq. (D.3) follows from the same argu-
ment and Proposition 3.

Recall the error-exponent function E
(2)
sp :

E(2)
sp (CW − δn, P, P

⋆
W) = sup

s≥0
{−s (CW − δn) + Eh(s, P, P ⋆

W)} . (D.6)

In the following, we fix σ = P ⋆W in the definition of Eh (Eq. (2.26)) and denote by

Eh(s, P ) := Eh(s, P, P ⋆
W) = sD 1

1+s
(W‖P ⋆

W|P ) . (D.7)

for notational convenience. We define a critical rate for a c-q channel W to be

rcr := max
P∈P(X )

∂Eh(s, P )

∂s

∣∣∣∣
s=1

. (D.8)

Let N0 be the smallest integer such that CW − δn > rcr, ∀n ≥ N0. Since the map r 7→ E
(2)
sp (r, ·, ·) is

non-increasing [30, Section 5], the maximization over s in Eq. (D.6) can be restricted to the set [0, 1] for
any rate above rcr, i.e.,

E(2)
sp (CW − δn, Pn, P

⋆
W) = max

0≤s≤1
{−s (CW − δn) + Eh(s, Pn)} . (D.9)

For every n ∈ N, let s⋆n attain the maxima in Eq. (D.9) at a rate of CW− δn ≥ 0. In the following lemma,
we discuss the asymptotic behavior of {s⋆n}n∈N.

Lemma 17. Let s⋆n attain the maxima in Eq. (D.9) and Pn satisfy Eq. (D.1). We have

(a) The limit point of {Pn}n∈N is capacity achieving.
(b) s⋆n > 0 for all n ∈ N and limn→+∞ s⋆n = 0.

Proof of Lemma 17. Let {Pnk
}k≥1 and {s⋆nk

}k≥1 be arbitrary subsequences. Since P(X ) and [0, 1] are
compact, we may assume that

lim
k→+∞

Pnk
= Po, lim

k→∞
s⋆nk

= so, (D.10)

for some Po ∈ P(X ) and so ∈ [0, 1].

(17-(a)) Let k → +∞. Eq. (D.1) implies that

D(W‖P ⋆
W|Po) = CW, (D.11)

which guarantees that Po is capacity-achieving by the dual representation of the information
radius, see e.g. [61], [9, Theorem 2].

(17-(b)) One can observe from Eq. (D.9) that s⋆n = 0 if and only if CW − δn ≥ D(W‖P ⋆W|Pn). However,
this violates the assumption in Eq. (D.1). Hence, we have s⋆n > 0 for all n ∈ N.

Since Po is capacity achieving, the uniqueness of the divergence center implies that PoW = P ⋆W.
Item (c) in Proposition 2 shows that

∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (W‖P ⋆
W|Po) = −V (Po,W) ≤ −VW < 0, (D.12)
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where the last inequality follows since VW > 0. Then, Eq. (D.12) implies that the first-order
derivative ∂Eh (s, Po) /∂s is strictly decreasing around s = 0. Moreover, item (d) in Proposition 2
gives

∂Eh (s, Po)

∂s

∣∣∣∣
s=so

≤ D (W‖P ⋆
W|Po) = CW, (D.13)

This, together with items (b) and (c) in Proposition 2, shows that the first inequality in Eq. (D.13)
becomes an equality if and only if so = 0. Since the subsequence was arbitrary, item (b) is shown.

�

Now we are ready to prove this proposition. We start with proving Eq. (D.4). Since s 7→ Eh(s, ·) is
concave from item (b) in Proposition 2, the maximizer s⋆n must satisfy

∂Eh(s, Pnk
)

∂s

∣∣∣∣
s=s⋆nk

= CW − δnk
. (D.14)

Further, item (c) in Proposition 2 gives

∂Eh

(
s, P ⋆

nk

)

∂s

∣∣∣∣∣
s=0

= D
(
W‖P ⋆

W|P ⋆
nk

)
. (D.15)

The mean value theorem states that there exists a number ŝnk
∈
(
0, s⋆nk

)
, for each k ≥ N, such that

− ∂2Eh (s, Pnk
)

∂s2

∣∣∣∣
s=ŝnk

=
D (W‖P ⋆

W|Pnk
) − CW + δnk

s⋆nk

(D.16)

≤ δnk

s⋆nk

, (D.17)

where the last inequality is again due to D
(
W‖P ⋆W|P ⋆

nk

)
≤ CW. When k approaches infinity, items (a)

and (e) in Proposition 2 give

lim
k→+∞

∂2Eh (s, Pnk
)

∂s2

∣∣∣∣
s=ŝnk

=
∂2Eh (s, Po)

∂s2

∣∣∣∣
s=0

= −V (Po,W) ≤ −VW. (D.18)

Combining Eqs. (D.17) and (D.18) leads to

lim sup
k→+∞

s⋆nk

δnk

≤ 1

VW
. (D.19)

Since the subsequence was arbitrary, the above result establishes Eq. (D.4).
Next, for any sufficiently large n ≥ N0, we apply Taylor’s theorem to the map s⋆n 7→ Eh (s⋆n, Pn) at the

original point to obtain

E(2)
sp (CW − δn, Pn, P

⋆
W)

= −s⋆n (CW − δn) + Eh (s⋆n, Pn) (D.20)

= s⋆n (δn +D(W‖P ⋆W |Pn) − CW) − (s⋆n)2

2
V (Pn,W) +

(s⋆n)3

6

∂3Eh(s, Pn)

∂s3

∣∣∣∣
s=s̄n

(D.21)

for some s̄n ∈ [0, s⋆n]. Let

Υ = max
(s,P )∈[0,1]×P(X )

∣∣∣∣
∂3Eh (s, P )

∂s3

∣∣∣∣ . (D.22)
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Continuing from Eq. (D.21) gives

E(2)
sp (CW − δn, Pn, P

⋆
W) ≤ s⋆n(δn − bn) − (s⋆n)2

2
V (Pn,W) +

(s⋆n)3Υ

6
(D.23)

≤ sup
s≥0

{
s(δn − bn) − s2

2
V (Pn,W)

}
+

(s⋆n)3Υ

6
(D.24)

=
(δn − bn)2

2V (Pn,W)
+

(s⋆n)3Υ

6
, (D.25)

where the first line follows from the assumption D (W‖P ⋆
W|Pn) ≤ CW − bn in Eq. (D.1) and Eq. (D.22).

Finally, Eq. (D.25), along with item (b) in Lemma 17 and Eq. (D.19), implies that

lim sup
n→+∞

E
(2)
sp (CW − δn, Pn, P

⋆W)

δ2n
≤ lim sup

n→+∞

(δn − bn)2

2V (Pn,W)δ2n
(D.26)

≤ lim sup
n→+∞

(δn − bn)2

2VWδ2n
, (D.27)

where the last inequality follows from the continuity of V ( · ,W) on P(X ) (Eq. (2.20)); the fact that
{Pn}n∈N is capacity achieving (item (a) in Lemma 17); and the definition of VW in Eq. (2.22). �
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IEEE Transactions on Information Theory , vol. 41, no. 1, pp. 26–34, 1995.
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