
Attack and Defence of Ethereum Remote APIs
Xu Wang1,2, Xuan Zha1,2, Guangsheng Yu2, Wei Ni3, Senior Member, IEEE,

Ren Ping Liu2, Senior Member, IEEE, Y. Jay Guo2, Fellow, IEEE, Xinxin Niu1,4, and Kangfeng Zheng1
1School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China

2Global Big Data Technologies Centre, University of Technology Sydney, Australia
3Data61, CSIRO, Sydney, Australia

4State Key Laboratory of Public Big Data, Guizhou, China

Abstract—Ethereum, as the first Turing-complete blockchain
platform, provides various application program interfaces for
developers. Although blockchain has highly improved security,
faulty configuration and usage can result in serious vulnerabili-
ties. In this paper, we focus on the security vulnerabilities of the
official Go-version Ethereum client (geth). The vulnerabilities are
because of the insecure API design and the specific Ethereum
wallet mechanism. We demonstrate attacks exploiting these
vulnerabilities in an Ethereum testbed. The vulnerabilities are
confirmed by the scanning results on the public Internet. Finally,
corresponding countermeasures against attacks are provided to
enhance the security of the Ethereum platform.

Index Terms—Blockchain, Ethereum, Geth, Vulnerability
Analysis and Defence

I. INTRODUCTION

Blockchain technology has proved its real-world value with
the potential in providing tamper-resistant and distributed
ledger service. Bitcoin, proposed by Satoshi Nakamoto in
2008 [1] is the represent blockchain application in the early
stage. Ethereum [2] is the milestone of blockchain 2.0,
which emphasizes the potential of providing programmable
blockchain applications. It targets to provide a decentralized
blockchain platform for applications.

Ethereum is currently the most actively open-source
blockchain project [3]. Ethereum Virtual Machine (EVM) and
smart contract are the core contributions of Ethereum, which
enable developers to program their own applications in an
immune and low-cost manner on the basis of blockchain struc-
ture. There are more than 250 live decentralized applications
based on the Ethereum structure by January 2018 [4]. How-
ever, the programmable feature makes Ethereum an attractive
target for attackers.

Although claimed to be secured with the immune decentral-
ized records, the openness of the Ethereum bring challenges
to the Ethereum security. As Ethereum is open source to the
public, the vulnerabilities are exposed to adversaries as well.
In the recursive calling vulnerability [5] reported on June,
2016, the hacker(s) leveraged a bug in the smart contract and
stole more than 3.5 million ether from the Decentralized Au-
tonomous Organization (DAO), known as the “DAO attack”.
Several other attacks on Ethereum, including but not limited to
state-bloat attack in 2016 [6], and Eclipse attack in 2018 [7],
have been reported.

This work was supported, in part, by Ultimo Digital Technologies Pty Ltd
under UCOT program.

In this paper, we analyze the vulnerabilities in the term
of the Ethereum platform using Go-version Ethereum client
(geth), especially the weakness of the remote Application
Program Interfaces (APIs), i.e., APIs in Remote Procedure
Call (RPC) and Web Socket (WS). Geth provides three API
services, i.e., Inter Process Communication (IPC), RPC and
WS. IPC can only be used by the local operator. RPC and WS
are for remote operators through HTTP and TCP channels,
respectively. Geth APIs are stateless [8] and therefore lack
of access control. Meanwhile, these channels are plain-text
which bring more risks. We demonstrate attacks exploiting
the vulnerabilities in an Ethereum testbed. The vulnerabilities
are confirmed by the scanning results on the public Internet.
We also provide corresponding defence suggestions.

The rest of this paper is organized as follows. Section II
surveys related work, followed by the vulnerability analysis in
Section III. In Section IV, possible attacks are demonstrated,
followed by the scanning results on the public Internet in
Section V. Section VI provides defence suggestions, followed
by conclusions in Section VII.

II. RELATED WORK

As a key contribution of Ethereum, smart contract enables
developers to release their applications on the blockchain
platform. On the other hand, the smart contract is open to the
public, and vulnerabilities are also exposed to adversaries. A
well-known attack on smart contract is the DAO recursive call
attack [9]. Adversaries leveraged the flaw in splitting function
with a smart contract address, extracted tokens several times
with one single call of smart contract and finally drained the
target DAO into a child DAO.

There are other attackers on the Etheurum. State-bloat
attack aims at the vulnerability in the Ethereum protocol. In
2016, adversaries took underprice EVM instructions to slow
down the processing of blocks [10]. This attack generated
a growing number of accounts with a low balance, which
required more storage to store the current state. The barrage
of small transactions sent by adversaries overwhelmed the
network and led to the distributed denial-of-service attack
(DDoS). Piracy attack reported in March, 2018 leverages
the weakness in authentication progress of Geth/Parity RPC
API [11]. Adversaries transfer tokens from unlocked accounts
in Ethereum by recursively calling eth sendTransaction in the
name of unlocked accounts.



First proposed in peer-to-peer networks, Eclipse attacks
were reported threatening Bitcoin in 2015 [12]. Eclipse attacks
prevent a cryptocurrency user from connecting with honest
peers. Adversaries monopolize all incoming and outgoing
connections to the target node. As a result, the target node
is isolated from honest nodes. In Bitcoin, eclipse adversaries
filter information to the target node [12]. In other words,
the target nodes can only accept the information that the
eclipse adversaries want the target node to believe. Eclipse
adversaries can slow down the block transmission rate to
target nodes, which makes target nodes waste energy to mine
on the old version of blocks. Another attack strategy is that
adversaries induce the target nodes to mine on a non-longest
chain controlled by attackers [13]. Ethereum was recently
reported exposing to Eclipse attacks as well, leveraging the
Kademlia peer-to-peer protocol adopted in Ethereum [7].
Other related researches on blockchain security concentrate
on consensus protocol, data structures, scripting language and
applications [14], [15].

III. VULNERABILITY ANALYSIS ON ETHEREUM

A. Ethereum Account and Key File

An Ethereum account is a private-public key pair. The public
key is equivalent to the Ethereum address, while the private
key is used to sign transactions. The private key is protected
(locked) by a user’s passphrase as the key file in the “keystore”
folder [16]. To be specific, a 128-bits secret key is derived
from the passphrase by using the scrypt algorithm [17]. The
secret key is used to encrypt or decrypt the private key. To
use the private key, the private key should be decrypted with
the passphrase by using the unlockAccount function [18]. The
default unlocking duration is 300 seconds. The unlocking
duration can be specified. The account can also be manually
locked before the unlocking duration expires. In the unlocking
duration, connected users can use sign function on the name
of the unlocked account, even without the passphrase.

B. RPC and WS services

Geth provides RPC and WS services for remote users. The
RPC service can be enabled in two methods, i.e., using the rpc
flag when starting the geth node, or calling the startRPC func-
tion in the admin module [8]. The corresponding instructions
are given as follows:

geth –rpc –rpcaddr –rpcport –rpccorsdomain –rpcapi
or

admin.startRPC(rpcaddr, rpcport, rpccorsdomain, rpcapi)
Both methods require four parameters, i.e., rpcaddr, rpcport,
rpccorsdomain, and rpcapi. Specifically, rpcaddr and rpcport
give the listening IP address and port. The default address and
default port are localhost and 8545, respectively. The rpccors-
domain is used to evade the cross-domain regulation policy,
which is a security mechanism controlling the interaction of
a script from one origin with a resource from another origin.
The rpcapi indicates the enabled API modules.

Remote users can send HTTP POST messages to the geth
node to remotely call the RPC APIs. The WS service can be

started in a similar way. Note that both RPC and WS services
are used in plain-text which increases the risk of information
leakage.

C. Modules and APIs

Geth provides various APIs, enabling users to interact
with Ethereum. APIs are organized in different modules. The
modules are independently enabled and the user can only call
the functions in the enabled modules. The principal modules
include admin, eth, personal, miner, txpool [8].

The admin module includes geth management APIs. The
eth module includes blockchain related APIs. The personal
module includes wallet related APIs. The miner module in-
cludes block mining related APIs. The txpool module includes
the transaction pool related APIs.

Note that most APIs are used without access control, which
is a vulnerability for adversaries to exploit.

IV. ATTACK DEMONSTRATIONS

A. Testbed

The final purpose of adversaries is gaining financial benefit,
via transferring digital currency directly or deploying smart
contracts to invade property indirectly. We focus on specific
vulnerabilities in the Ethereum. Attacks on the Internet and
other blockchains are out of scope in this paper.

Fig. 1 illustrates our testbed. We set up a private Ethereum
network for a testing purpose. The private Ethereum network
has the same APIs with the public Ethereum network. There-
fore, the analyzed vulnerabilities and attacks in this paper
are also applicable to the public Ethereum network. The
vulnerabilities are the same in RPC and WS services. We use
the RPC service for demonstration.

Fig. 1. The topology of the testbed.
The adversary uses cURL [19] to access RPC services and

uses Wireshark [20] to capture traffic. In the case that an
adversary and a user connect to the same geth node via the
same AP, the adversary is able to capture the traffic between
the user and the geth node. In the case of a public network,
adversaries may not be able to capture the traffic but still can
exploit the vulnerabilities of the RPC service.

In the testbed, the geth node running geth 1.8.0 [21]
connects to the private Ethereum network. Meanwhile, the geth
node provides RPC services for remote users. A user connects
to the geth node by employing the RPC service via an access
point (AP). The user’s key file is saved in the geth node. The
geth node is a trusted node without malwares.

In this section, we exploit vulnerabilities in Section III to
launch attacks on RCP and WS. Attacks on the target geth
node are executed and attack results are demonstrated. The



figures with the black background in this section are the
geth consoles of the geth node. The figures with the white
background show commands that the adversary send to the
geth node and corresponding results.

Fig. 2. An example of RPC call using cURL tool.

Fig. 2 is an example of commands used in this section. curl
starts the cURL tool. method indicates the specific module
and function of the remote call. params gives the parameters
of the called function. id is used to identify this RPC call.
172.20.10.3:8545 illustrates the target host and port. Other
commands in this section can be similarly explained and will
be omitted in the rest of the paper.

B. Module-enabling Attack
Geth does not provide APIs to dynamically enable modules

while providing the RPC/WS service. Modules can be enabled
by stopping and then restarting RPC/WS, on condition that
the geth provides RPC/WS service with the admin module
enabled. Without identity authentication, anyone including the
adversary can enable any module, once the geth node provides
RPC/WS service and enables the admin module.

Fig. 3 shows that the target node starts RPC on the geth
node. Specifically, the IP address of the RPC service is
172.20.10.3. The RPC port is 8545 as default. The RPC service
enables the admin module only. In this case, adversaries are
not able to call the APIs excludes the APIs in the admin
module nor attach WS service.

Fig. 3. The geth node starts RPC and enables the admin module only.

We demonstrate the case that adversaries target to enable
more modules. Adversaries leverage admin module to enable
other modules. To maintain connection, adversaries need to
start WS service before close and restart the RPC service.
The attack is achieved in three steps:

• Start WS service: The adversary calls the admin startWS
function to start the WS service and enable db, eth and
other modules as shown in Fig. 4. According to the result,
true, the targeted geth has started WS service.

• Attach the WS service: In the demonstration, we bind the
WS service by using geth attach ws:172.20.10.3:3332,
where 3332 is the WS port. As shown in Fig. 4, the WS
service has been opened and attached.

• Restart the RPC service and enable more modules: The
adversary stops the current RPC service by calling ad-
min.stopRPC and then restarts the RPC with all/any re-
quired modules by calling admin.startRPC in the console.

C. Passphrase-extraction Attacks
Because the private key is protected by a passphrase, adver-

saries with the passphrase can use the private key on the behalf
of the account owner, such as sign data, send transactions,.
Two different methods are present to extract the passphrase.

Fig. 4. The adversary attaches the geth node through WS service.

1) Passphrase sniffer: A user can remotely call the per-
sonal unlockAccount function to unlock its account. However,
the function and the parameters, including the passphrase, are
transmitted in plaintext, which provides adversaries opportu-
nities to sniffer the passphrase.

This attack requires two conditions: the adversary has the
ability to capture the traffic between the geth node and the
remote user; and the user calls the personal unlockAccount.

Fig. 5. The account is unlocked by calling personal unlockAccount.

Fig. 5 is the account unlocking process by calling the
personal unlockAccount. Three parameters are required, i.e.,
the account starting with 0x, the passphrase 123456 and the
unlocking duration. According to the result, true, the account
is unlocked with the correct passphrase.

The adversary can sniffer on the network to extract the
account and corresponding passphrase. Fig. 6 is the cor-
responding sniffer result by using Wireshark. The account
and passphrase are highlighted. The adversary can check the
correctness of the passphrase by validating the unlock result.

Fig. 6. The passphrase is sniffed from the captured traffic.

2) Brute force attack: We also note that there is no
limitation on retrying the unlock account calls, because
the RPC and WS services are stateless [8]. The per-
sonal unlockAccount function is realized in the source code of
“/internal/ethapi/api.go”. The code does not record the refused
times nor the last failure time. As a result, the adversaries are
able to keep on trying passphrases to find the correct one.
This attack requires that the geth node provides the RPC/WS
service and enables the personal module.

Fig. 7 compares the time consumption of the brute force
attack on geth nodes running on different machines, where
the time cost of 5, 10, 15 and 20 passphrases are compared.
The labels, i.e., MBP, MBA, Mobile and RP, denote that
geth nodes are run on MacBook Pro, MacBook Air, Mobile
phone and Raspberry Pi, respectively. The figure shows that
the efficiency of the brute force attack depends on the geth
node performance, where the attack with 20 passphrases takes
less than 20 seconds on MBP. The RP, on contrast, requires
more than 120 seconds to fulfill the same task.



Fig. 7. The time consumption of the brute force attack on geth nodes running
on different machines, where 5, 10, 15 and 20 passphrases are considered.

D. Denial-of-Service Attack
The protection mechanism on the private keys provides

adversaries a chance to deploy the Denial-of-Service (DoS)
attack, by extending the brute force attack. The is based on
the fact that the scrypt algorithm, used to protect the private
key, needs massive memory and computation. Adversaries
can continuously and parallelly send unlocking requests to
delay/stop other requests of benign users. This attack requires
that the geth node provides the RPC/WS service and enables
the personal module.

Fig. 7 confirms that unlocking the account needs a long
time. The time consumption linearly grows with the number
of unlocking requests. The MacBook Pro needs about one
second to try a single unlocking request. Fig. 8 presents the
result of the DoS attack, where the adversary keeps calling
the personal unlockAccount function in 40 threads. Before the
DoS attack, shown as the top of Fig. 8, the geth instance only
consumes around 65MB memory and 0.1% CPU. During the
DoS attack, shown as the bottom of Fig. 8, the geth consumes
around 7.8GB memory and 213% CPU (more than two cores).
The time to unlock an account is significantly extended from
less 1s to minutes or longer.

Fig. 8. The memory and CPU usage of the geth node under DoS attack.

E. Piracy Attack
Piracy attack refers to the attack that the adversary signs

data or sends transactions through RPC or WS services in
the name of the target accounts, after the adversary remotely
unlocks accounts or discovers unlocked accounts.

This attack can be fulfilled with three conditions, i.e., the
adversaries have access to unlocked accounts; the geth node
provides RPC/WS service and enables the eth module; geth
node has the target user’s key file. The adversaries obtain the
access to unlocked accounts via two methods.

1) Unlock account using obtained passphrase: Adver-
saries can unlock the target account by calling the per-
sonal unlockAccount as shown in Fig. 5. The passphrase can
be pre-obtained by the passphrase-extraction attack.

After unlocking the account, adversaries are able to use
the identity of the target user. A typical attack is stealing
the balance from the target user by calling the function
eth sendTransactions.

Fig. 9. Adversaries can unlock the account with the sniffed passphrase and
then send transactions from the unlocked account.

2) Swoop on unlocked account: This attack requires that
the target account has been unlocked by others. The ad-
versary can send transactions in the name of the unlocked
account, even without the passphrase [11]. This is because
the eth sendTransactions function only requires an unlocked
account instead of the passphrase.

In this attack, adversaries first obtain the accounts on the
geth node by calling eth accounts. Then, adversaries keeps
calling the function eth sendTransaction. If the account is
locked (unlocked), the function call will be refused (accepted),
as shown in Fig. 10.

Fig. 10. Adversaries can send transactions while the account is unlocked.

Compared with Fig. 9, the adversary in Fig. 10 does not
need the passphrase. This is achieved when the target account
is unlocked.

F. Eclipse Attack

Randomized protocol in Ethereum defines that any node
connects to a certain number of nodes to maintain a peer-to-
peer network. Meanwhile, geth has peer management func-
tions in the admin module which provide adversaries oppor-
tunities to implement the eclipse attack on the randomized
protocol.

Fig. 11. Adversaries check connections of the geth node.

This attack can be fulfilled in the case that geth provides the
RPC/WS service and enables the admin module. This attack
can be achieved in three steps:

• Check the existing connections of the geth node: The
adversaries first call the admin peers function as shown
in Fig. 11. Neighbours are indicated by id.

• Remove the existing connections: Adversaries use ad-
min removePeer to break all the connections. The pa-
rameter is the connection id obtained in the last step.

• Occupy all the connections: In the last step, adversaries
occupy all connections to the targeted node via recur-
sively calling the admin addPeer function. The parame-
ters are the IDs of adversaries’ Ethereum nodes.



G. Steal Mining Reward

In Ethereum a reward is given to the coinbase specified by
the block miner, which can be an arbitrary Ethereum account.
This attack can be fulfilled in the case that the geth provides
RPC/WS service and enables the miner module.

Adversaries call the miner setEtherbase to change the
coinbase to a designated address as shown in Fig. 12. The
designated address is used as the receiver of the mining
reward and does not need the private key. After setting the
coinbase, adversaries can start the block mining by calling the
miner start function on the target node to earn rewards.

Fig. 12. The adversary changes the coinbase.

H. Summary of Attacks

We illustrate six attacks with different attacking effects and
targets in this section. Although ever single attack has limited
influence on Ethereum, adversaries can leverage more than
one attack to launch a complex one. To be specific, Module-
enabling and passphrase-extraction attacks are the basic attacks
providing available module(s) and accesses to target accounts
required by other attacks. Piracy attack is intuitional to transfer
tokens from the target account. Steal mining reward occupies
the mining reward and invades the financial benefits of legal
miners. DoS and Eclipse attacks, on the other hand, target to
degrade the geth node performance.

V. INTERNET SCAN RESULT

Our scanning targets at 4065 nodes in the public Inter-
net providing the RPC service on port 8545. The scan-
ning ran once on 16th June 2018 based on the list from
Shodan [22]. The scanning results can be time-varying because
the blockchain network state keeps on changing. We find 2,165
active nodes consisting of 460 Ethereum blockchain nodes and
1,705 nodes in Ethereum-based third-party blockchains. The
chains are distinguished by comparing their genesis blocks.
Many nodes cannot be connected during our scanning due to
the fact that the node list from Shodan is not real-time.

We are interested in the nodes in the Ethereum network
and proceed to scan the enabled modules, Ethereum accounts
and their balances of the 460 Ethereum nodes. Fig. 13 shows
the number of enabled modules of the nodes. We can see
that almost all the nodes enable eth, web3 and net modules.
Although vulnerable, there are 45 and 152 nodes enabling the
admin module and the personal module, respectively.

Fig. 13. Enabled modules of the 460 Ethereum nodes.

We then scan the accounts in the active Ethereum nodes.
Our scanning result indicates that most Ethereum nodes, i.e.,
358 nodes, do not have Ethereum accounts. This is because
they can be just used as Ethereum servers providing blockchain
services, e.g., transactions/blocks forwarding and querying.
We find 10,000 blockchain accounts (9,394 different accounts)
in the rest 102 nodes, where 7 accounts (6 different accounts)
are unlocked and 9,993 accounts (9,388 different accounts)
are locked. The account states can be checked by calling the
personal listWallets or trying to sign arbitrary data with the
eth sign function. The histogram of the number of locked
accounts per node is given in Fig. 14, where every node has
at least one account. We find that a node has up to 5,486
accounts owning 0.18 ETH in total. On the other hand, more
than half of the nodes, i.e., 61 nodes, have less than 6 accounts.
Although these accounts are locked during the scanning, they
are exposed to the piracy attack analyzed in Section IV-E2.

Fig. 14. Histogram of the number of locked accounts per node.

We proceed to count the balances of the accounts. The bal-
ances of the 9,394 accounts are queried from etherscan when
the Ethereum blockchain is at the height of 5,799,041 [23].
Most of the accounts, i.e., 9,277 accounts, do not have any
tokens when they are queried. There is an unlocked Ethereum
account having 599.9 ETH. On the other hand, the node
owning the account enables all the modules. As a result, the
balance can be transferred without permission. The rest of
116 accounts are locked and have 19.88 ETH in total. Fig. 15
shows the histogram of balance per locked account. We can
see that almost all of the accounts have a small amount of
tokens. The richest account has 4.03 ETH.

Fig. 15. Histogram of the balance per locked account.

VI. ATTACK DEFENCE

In this section, we present countermeasures to tackle the
attacks. These defence measures are suggested to be combined
to enhance the security against various attacks.

• Add Access Control and Encrypt The Traffic
The risk of RPC and WS raises from two aspects, i.e., lack

of access control and plaintext-transmission. An easy way to



enhance security is deploying a security agent between geth
and users. The agent can connect users via security-enhanced
protocols, e.g., HTTPS, to hide the sensitive information. The
agent can also add access control to filter illegal calls.

• Separate Key Files and The Geth
A secure way is separating the transaction signing and

transaction forwarding. Specifically, a geth without key files
running in wide area network (WAN) provides blockchain
query and P2P services. Key files are stored in a secured place,
e.g., another geth with IPC only, to sign transactions locally.
The signed transactions are forwarded to the whole network
through the geth in WAN.

• Configure The IP and Port
The IP address and listening port of geth should be carefully

configured to restrict the access. The listening IP address can
be configured, which lets the RPC and WS services can be
accessed by the local machine, LAN or WAN. The geth node
should minimum the user range. The geth can use private port
numbers to reduce the risk of disclosure because scanners have
to go through a large number of private ports to detect the
non-default ports.

• Limit The Used Modules
We find that admin, personal, eth, miner modules are

highly risky. As a result, the geth node should avoid enabling
the unnecessary modules without extra access control mech-
anism. eth module provides basic blockchain services, e.g.,
blockchain querying, which are used in high frequency.

• Lock Accounts Timely
Locking accounts immediately after signing transactions can

shorten the account unlock duration and therefore reduce the
risk of piracy attack. However, this method cannot perfectly
tackle the piracy attack. The adversary can continually call the
transaction sending function to achieve attack. Other measures,
including enhancing access control, can be combined with this
method to secure unlocked accounts.

• Use Multi-signature to Protect Property
The property can be protected by the multi-signature tech-

nology where the currency can only be spent with at least
predefined number of approvals. In other words, the currency
cannot be stolen with a single compromised account.

• Traditional Security
Traditional security solutions, e.g., firewall and intrusion

detection system (IDS), also benefit the geth security. For
example, the IDS can monitor the usage of the function
personal unlockAccount and then update the firewall policy
to stop the brute force attack.

VII. CONCLUSION

This paper analyzed existing security vulnerabilities in the
term of Ethereum platform using geth, especially the weakness
of the remote APIs. The stateless APIs lack of access control.
Also, RPC and WS services are used in plain-text which
brings more risks. We demonstrated the attacks exploiting the

vulnerabilities in an Ethereum testbed. The public Ethereum
network was scanned, and the risk was assessed. We also
provided corresponding defence suggestions in Ethereum.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] “Ethereum,” https://www.ethereum.org, 2017-05.
[3] T. K. Sharma, “Will 2018 Be Beneficial For

Ethereum?” 2018-01-11. [Online]. Available: https://www.blockchain-
council.org/blockchain/will-2018-be-beneficial-for-ethereum

[4] J. Liebkind, “How Did Ethereum’s Price Perform In 2017?”
https://www.investopedia.com/news/how-did-ethereums-price-perform-
2017/, 2018-01-2.

[5] “Deconstructing the DAO Attack: A Brief Code Tour,”
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/,
2016-6.

[6] “Long-term gas cost changes for IO-heavy operations to mitigate trans-
action spam attacks,” https://github.com/ethereum/eips/issues/150, 2016.

[7] E. H. Yuval Marcus and S. Goldberg, “Low-resource eclipse attacks on
ethereum’s peer-to-peer network,” p. 15, Jan 2018. [Online]. Available:
https://www.cs.bu.edu/ goldbe/projects/eclipseEth.pdf

[8] “JSON RPC,” https://github.com/ethereum/wiki/wiki/JSON-RPC, 2018.
[9] “Study case: the 2016-06-17 attack,”

https://daowiki.atlassian.net/wiki/spaces/DAO/
pages/7209155/Attack, 2016-7-25.

[10] D. Meegan, “Ethereum Continues to Suffer From DDoS Attacks,”
https://www.ethnews.com/ethereum-continues-to-suffer-from-ddos-
attacks, 2016-10-06.

[11] S. S. Team, “Billions of Tokens Theft Case cause by ETH Ecological
Defects,” https://paper.tuisec.win/detail/eb44c15d3627fe2, 2018-3-20.

[12] E. Heilman et al., “Eclipse attacks on bitcoin’s peer-to-peer network,”
in 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, 2015, pp. 129–144.

[13] K. Nayak et al., “Stubborn mining: Generalizing selfish mining and
combining with an eclipse attack,” in 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), March 2016, pp. 305–320.

[14] A. Gervais et al., “On the security and performance of proof of
work blockchains,” in Proc. 23rd ACM SIGSAC Conf. on Comput. and
Commun. Security. (CCS ’16). ACM, 2016, pp. 3–16.

[15] E. K. Kogias et al., “Enhancing bitcoin security and performance with
strong consistency via collective signing,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 279–296.

[16] “What is an Ethereum keystore file?”
https://medium.com/@julien.m./what-is-an-ethereum-keystore-file-
86c8c5917b97, 2017-12-11.

[17] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” Self-published, pp. 1–16, 2009.

[18] “Managing your accounts,” https://github.com/ethereum/go-
ethereum/wiki/Managing-your-accounts, 2017-12-21.

[19] “curl,” https://curl.haxx.se, 2018-03-14.
[20] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network

protocol analyzer toolkit. Elsevier, 2006.
[21] “go-ethereum,” https://github.com/ethereum/go-ethereum/releases, 2018.
[22] “Ethereum RPC enabled-Shodan Search,” 2018-6-16. [Online]. Avail-

able: https://www.shodan.io/search?query=Ethereum+RPC+enabled
[23] “Etherscan,” 2018-6-16. [Online]. Available: https://etherscan.io


