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S U M M A R Y
Automatic differentiation (AD) is the technique whereby output variables of a computer code
evaluating any complicated function (e.g. the solution to a differential equation) can be differ-
entiated with respect to the input variables. Often AD tools take the form of source to source
translators and produce computer code without the need for deriving and hand coding of ex-
plicit mathematical formulae by the user. The power of AD lies in the fact that it combines the
generality of finite difference techniques and the accuracy and efficiency of analytical deriva-
tives, while at the same time eliminating ‘human’ coding errors. It also provides the possibility
of accurate, efficient derivative calculation from complex ‘forward’ codes where no analytical
derivatives are possible and finite difference techniques are too cumbersome. AD is already
having a major impact in areas such as optimization, meteorology and oceanography. Simi-
larly it has considerable potential for use in non-linear inverse problems in geophysics where
linearization is desirable, or for sensitivity analysis of large numerical simulation codes, for
example, wave propagation and geodynamic modelling. At present, however, AD tools appear
to be little used in the geosciences. Here we report on experiments using a state of the art AD
tool to perform source to source code translation in a range of geoscience problems. These
include calculating derivatives for Gibbs free energy minimization, seismic receiver function
inversion, and seismic ray tracing. Issues of accuracy and efficiency are discussed.
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1 I N T RO D U C T I O N

Over the past 20 yr numerical simulation of geophysical processes

has become widespread. The availability of high performance com-

puting and advanced numerical techniques has led researchers to

develop increasingly sophisticated numerical algorithms for mod-

elling physical processes such as deformation within the Earth’s

lithosphere (Moresi et al. 2003), convection within the deep inte-

rior (Moresi et al. 2000) and propagation of seismic waves through

fully 3-D models of the whole Earth (Komatitsch et al. 2005). The

primary use of such tools is to make predictions that can be com-

pared to observations. An issue of much concern is to determine the

sensitivity of these predictions to the input parameters upon which

they are based, for example, how a synthetic seismogram calculated

for a particular earthquake at a particular point on the surface varies

with parameters controlling the source, or the assumed earth model

between source and receiver. Here sensitivity means the derivatives,

or Jacobian, of the output variables with respect to input variables.

Many areas of the sciences have need of derivatives and indeed one

could argue that there is often little point in knowing what a math-

ematical model predicts if one doesn’t know the sensitivity of that

prediction to the parameters controlling the model.

Another area where derivatives are much used is inversion of geo-

physical data (Aster et al. 2005; Tarantola 2005). In this case one fits

models of the Earth to observations, often in an automated manner

making use of optimization techniques, which themselves depend

on derivatives. Not all inversion techniques are based on derivatives

(see Sambridge & Mosegaard 2002), but if the number of unknowns

is large, say in the 100 s or greater, and the mathematical relation-

ship between data and the unknowns is non-linear, then derivative

calculations are unavoidable. In non-linear inverse problems such

as seismic tomography of the Earth’s mantle and lithosphere (see

Rawlinson & Sambridge 2003, for a recent review), iterative algo-

rithms making use of derivative information have become the norm

over the past 10 yr.

The calculation of derivatives can be problematic in many cases.

If analytical expressions are available then these can be hand coded.

This has the (potential) advantage of efficiency in the final code,

but at the cost of much development time (in debugging hand coded

expressions) and a certain amount of inflexibility. For example, in

an inverse problem, if the misfit function, or parametrization, is

changed then derivatives must be recoded. If no analytical formu-

lae are available then one often resorts to numerical estimates of

derivatives, for example, using finite difference techniques. In this

case one would typically perturb each input variable one at a time

by a specified amount and recalculate the output variables with the

‘source’ code. This has the advantage of flexibility since there is no

dependence on the details of the source code, however, the accuracy

will depend on the size of the perturbation and may require tuning.

Furthermore, the overall computational cost scales with the number
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of input variables. For computationally intensive source codes with

large numbers of input variables (e.g. 102–106) this can become

prohibitive.

With these issues in mind, one might define an ‘ideal’ derivative

method as having the following properties.

(i) Calculates exact derivatives (i.e. to within machine preci-

sion).

(ii) Computational cost independent of the number of input vari-

ables.

(iii) Minimal human effort to generate and update a Jacobian.

Computer scientists have grappled with these issues for many years

and the field of automatic differentiation (AD) has emerged as a

result. To date these developments seem to have made little impact

on the Geosciences. The purpose of this paper is to help bring AD

tools to the attention of the wider geoscience community, provide

some useful references and illustrate its potential through a series

of numerical experiments on common geoscience problems. We

begin with a brief outline of how current AD methods work. We

then present results of our experiments applying current state-of-

the art AD tools to particular geoscience problems. Performance is

evaluated in terms of the three ideals above, with particular attention

given to issues of accuracy and efficiency.

2 E L E M E N T S O F AU T O M AT I C

D I F F E R E N T I AT I O N

The origins of AD date back to the 1950s and 1960s, and in particular

to the works of Beda et al. (1959),Wengert (1964). Modern devel-

opments can be traced to a resurgence in activity in the 1970s and

1980s. Reviews can be found in Rall (1981), Griewank (1991), Rall

& Corliss (1996), Griewank (2000) and Cusdin & Müller (2003),

while a recent work containing many applications of AD to engi-

neering and optimization, as well as an extensive bibliography, is

Corliss et al. (2002). A comprehensive online resource has also

emerged and may be found at http://www.autodiff.org.

The underlying principle of AD is that computer programs can

be decomposed into a finite set of instructions (usually executed

serially). The source code then represents a (composite) function

which takes a set of n input variables and produces a set of m out-

put variables thorough application of a set of elementary functions.

The Jacobian of each elementary function can be obtained using

simple rules, for example, from tables of differentiation (see Tala-

grand 1991; Giering & Kaminski 1998). Repeated application of the

chain rule of differentiation yields the desired Jacobian of the com-

posite function. An important issue here is that at the elementary

level differentiation can be carried out exactly, that is, without the

need to introduce numerical approximations like finite difference

operators, (an example is given below). From the user’s perspective

modern AD tools act the same way as a compiler, but rather than

producing object or executable code, they create a second source

code which evaluates the derivatives of the original function for

any values of the input variables. In this sense ‘source to source’

translator AD tools directly replace the hand coding of derivatives

(see Fig. 1).

2.1 Forward mode

AD methods are divided into two types depending on the order in

which they evaluate the elementary functions and their Jacobians.

The forward or ‘Tangent linear’ mode evaluates them in the same

Figure 1. Schematic illustration of how a code-to-code translation is per-

formed by an AD tool.

order as the source (often called ‘primal’) code. This can be easier

to implement and efficient on storage because once variables are no

longer needed in the source code they can be discarded (overwritten)

which reduces the storage needed to keep track of associated deriva-

tive variables. Fig. 2 shows an example of the elementary operations

(code list) required to evaluate a simple trigonometrical function

f = (x + y) sin x . (1)

As can be seen this is decomposed into five steps involving five

separate variables (t i , i = 1, . . ., 5). (Note that t 1 = x , t 2 = y and

t 5 = f ). The corresponding tangent code for each step is shown

in the central column and the equivalent mathematical expression

for the derivative ∂ti
∂x is shown in the fourth column. For the input

variable x the tangent code list is initialized with

∇t1 = 1, ∇t2 = 0. (2)

As each step proceeds a new intermediate variable ti is determined

and the corresponding derivatives with respect to the input variable

are found by evaluating the expression in the third column. By the

time the fifth line is completed the required derivative of f has

been assembled. The whole process is repeated for the second input

variable y by changing the initial values to

∇t1 = 0, ∇t2 = 1. (3)

Figure 2. Example of AD of a simple function in forward mode. The first

column shows the evaluation of the expression in eq. (1) broken down into

five steps each defining a new variable t i (i = 1. . . , 5). The second column

shows corresponding expressions being evaluated. The third column is the

differentiation of each intermediate variable with respect to input variable

(x or y) using the chain rule expression written at the base of the figure.

The fourth column shows the derivative expression corresponding to each

line of the third column for the case where x is the independent variable.

After a sweep through all five statements the derivative expression for x is

constructed. The third column can then be repeated for y.
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It is clear from this example that in forward mode the computational

cost of evaluating the Jacobian is proportional to the number of in-

put variables n, multiplied by the number of steps in the code list,

the latter often being linear in n also. This is the same as a finite

difference operator, however the accuracy of the resulting deriva-

tives will be at machine precision due to the exact differentiation

at the elemental level. Forward mode then satisfies property 1 and

3 of an idealized method but not property 2 (see Section 1). [Note,

however, very recent developments of AD include a vector mode
which involves simultaneous propagation of all partial derivatives

(see Kaminski et al. 2003, for an example).]

2.2 Reverse mode

The second way of performing AD is to reverse the order in which

the elementary functions and their Jacobians are determined. This

is known as the reverse or ‘Adjoint’ mode. Again at the elemental

level exact derivatives are calculated, but they are combined in the

opposite order to before. Fig. 3 shows how reverse mode is carried

out for the simple expression in (1). In this case the code list in

the first two columns are reversed with respect to the forward case

shown in Fig. 2. However, in the ith line of the third column the

expression for the derivative ∂ f
∂ti

is evaluated using the chain rule. By

the time the fifth line is completed, expressions for the derivatives

of f (= t5) with respect to both x(= t 1) and y(= t 2) have been

determined. Hence with a single reverse sweep through the code

list the derivatives of an output variable with respect to all input

variables are available. The whole procedure must be repeated for

every output variable, and hence a major advantage of the reverse

mode is that the computational cost of evaluating the derivatives is

proportional to the number of output variables m (multiplied by the

length of the code list) rather than the number of input variables.

We see then that unlike forward mode, the reverse mode of AD

is the only one which can satisfy all three properties of an ideal

method.

Implementation of this mode for arbitrary source codes presents

a major challenge because the information flow must be reversed.

In the simple example above this is trivial, however to do it in an

automatic manner for a complicated code can become a challenging

task, and this is a subject of ongoing research (Giering & Kaminski
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Figure 3. Example of AD of a simple function in reverse mode. The first two

columns are the reverse of those in Fig. 2. The third column shows how the

chain rule expression at the base is applied to each line. The fourth column

shows the corresponding evaluation of the third column. Note that after a

single sweep through derivatives of f with respect to both y (fourth line) and

x (fifth line) have been constructed.
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Figure 4. Schematic illustration of strategies for recovering the state of a

computational system required by reverse mode of AD. (a) Recalculate all

strategy, (b) store all strategy and (c) the checkpointing strategy which is a

combination of the two.

2002). The simple example above highlights one of the main diffi-

culties. At each stage of the reverse list, evaluation of the elemental

Jacobians in the third column requires numerical values of the cor-

responding intermediate variables (t i , i = 1, . . . , n). (In general the

entire state of the code including the values of all variables needs

to be known at each time step.) In the forward mode this is not a

problem, because the state of all variables is updated as the source

code proceeds (using the primal code). However, in reverse mode

variables are needed in the reverse order in which they are calcu-

lated, which can be a major obstacle if variables get overwritten.

The situation is illustrated schematically in Fig. 4, where each dot

represents a state of the source code. As time proceeds we move

from the far right of the dotted line, the final state, to the initial state

on the left.

Fig. 4(a) shows the ‘recalculate all’ strategy whereby the source

code is restarted from the beginning each time the state changes.
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This involves a large amount of computation, especially if there are

a large number of states, but it requires relatively little extra storage.

A second strategy is to store the complete values of all interme-

diate variables at every state, illustrated by Fig. 4(b). In this case

there is little extra computation but the amount of storage required

may be prohibitive. A compromise between the two extremes is a

checkpointing strategy, illustrated by Fig. 4(c). Here the state is pre-

served at only selected points and recalculation proceeds from the

last checkpointed position to the current state. Again it can be a

complex task striking the best balance between these approaches.

The main differences between various AD tools lies in whether they

perform forward or reverse mode and if the latter, what type of

strategy they use to recover the program state.

As has been noted previously (e.g. Griewank 1989) adjoint or

reverse mode of AD is closely related to the determination of sensi-

tivity kernels through adjoint differential equations. The latter has

been used to determine partial derivatives in a range of areas where

numerical simulation of complicated phenomena are involved. Ex-

amples include applications in nuclear reactor design for deriva-

tives of temperature with respect to thousands of design parameters

(Cacuci 1981a,b); in meteorology and oceanography for gradients

of residual norms with respect to initial conditions (Talagrand &

Courtier 1987; Thacker & Long 1988); in seismology for deriva-

tives of seismic waveform residuals with respect to Earth structure

parameters (Tarantola 1984, 1988; Tromp et al. 2005; Sieminski

et al. 2007), and also in geodynamic calculations of mantle convec-

tion (Bunge et al. 2003). In each case the adjoint of the governing

partial differential equation (PDE) is solved numerically and com-

bined with the numerical solution of the original PDE to yield the

required partial derivatives. For this reason the approach is often re-

ferred to as the continuous adjoint method, whereas the reverse mode

of AD is often called the discrete adjoint method, since it is a line by

line application of the chain rule. In principal, the discrete adjoint

method has an advantage over the continuous approach in that it

can avoid the build up of numerical error associated with solving of

the differential equations. (With the discrete adjoint all calculations

are essentially at machine precision). However, the continuous ad-

joint can be relatively straightforward to implement involving only

a few repeat runs of the primal code. More importantly however,

both have the property that the computational cost scales directly

with the number of output parameters and not with the number of

input parameters.

At present awareness of AD tools seems to be rather limited in the

Earth Sciences. To our knowledge the first application in this field

was in a PhD thesis by Sommacal (2004) for calculating derivatives

in a Gibbs free energy minimization problem. (This is one of the test

cases presented below.) More recently, applications have appeared

in inverse problems in groundwater flow (Rath et al. 2006), and

geodynamic modelling (Iaffaldano et al. 2007). Below we present

results of some experiments with one of the most advanced AD

tools available. This is known as Transformation of Algorithms in

Fortran (TAF, available from http://www.fastopt.de) see Giering &

Kaminski (2003). In all cases we compare performance to finite

difference estimates, since this is a comparably general approach,

requiring little human intervention.

3 N U M E R I C A L E X P E R I M E N T S

3.1 Gibbs free energy minimization

A common problem in igneous and metamorphic petrology is the

calculation of equilibrium phase assemblages as a function of tem-

perature, pressure and composition. Differing formulations of this

problem have been proposed together with algorithms for their solu-

tion (e.g. Storey & van Zeggeren 1964; De Capitani & Brown 1987;

Harvie et al. 1987). All of these use optimization techniques based

on gradients for minimizing the Gibbs free energy. In this example

we follow the formulation of Sommacal (2004) and write the Gibbs

free energy of a single phase φ as a sum of three terms,

Gφ = Gend−members + G ideal + Gexcess, (4)

where Gend−members is the free energy of its end-member constituents,

Gideal is the free energy due to an idealized configurational entropy

from mixing, and Gexcess is the excess free energy of mixing (see

works cited above for details). Each of the these terms depend on

various thermodynamic variables including the number and type

of phases present in the system. The total Gibbs free energy must

be minimized as a function of the variables X i,j, which are the site

occupancies of cation i on sublattice j. However, only the second

and third terms depend on X i,j. Specifically, we have

G ideal = RT
p∑

j=1

q j

n∑
i=1

Xi, j ln Xi, j (5)

Gexcess =
p∑

j=1

q j

n∑
i=1

n∑
l>i

Xi, j Xl, j

{
Wi,l, j

[
Xl, j + 1/2

n∑
k �=i,k �=l

Xk, j

]

+ Wl,i, j

[
Xi, j + 1/2

n∑
k �=i,k �=l

Xk, j

]}

+
n∑

i=1

n∑
l>i

n∑
k>l

Xi, j Xl, j Xk, j Wi,l,k, j ,
(6)

where R is the gas constant, T is temperature, qj are stoichiometry

factors which have values 1 or 2 depending on the type of phase, and

W l,i,j, W i,l,k,j are the three and four index Margules parameters de-

scribing the various interaction energies between sites. Summation

occurs over sublattices and cations. All parameters other then the

site occupancies X i,j may be treated as constants for our purposes,

as minimization is performed with respect to these parameters only.

The Gibbs free energy over all phases present in a system, G, is a

weighted sum of Gφ terms. The Gibbs free energy has to be min-

imized (subject to certain constraints) and this can be done with

gradient methods. Hence the derivatives ∂G
∂ Xi, j

are required. Since

this is an analytical expression then it may in principal be differen-

tiated analytically and coded by hand into a derivative routine. This

would be both tedious and prone to human coding errors.

We applied the TAF AD tool to generate derivative code in both

forward and reverse mode to this problem (note the source code

was written in Fortran77). In this case we have one output variable,

G, and by varying the number of phases present we can adjust the

number of input variables, X i,j. Fig. 5 shows the relative compute

time for execution of the resulting derivative code as a function of

the number of input variables. In each case the same derivatives

were also computed with finite differences (after some tuning of the

perturbation to achieve accuracy). The total number of derivatives

calculated across all trials was 638. For forward mode we observe

a quadratic dependence of CPU time on number of independent

variables, N , for both the AD generated code and the finite difference

code. This is consistent with theoretical predictions. From (5) and

(6) we see that the compute cost of evaluating the Gibbs free energy

depends linearly on the number of input variables, N . Hence if the

derivative calculation requires of the order of N forward solutions the

overall dependence will be quadratic in N . We note that in all cases

the AD generated code is more efficient than the finite difference

C© 2007 The Authors, GJI, 170, 1–8
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a)

b)

Figure 5. Scaling of CPU time with number of input variables to evaluate the

Jacobian for the Gibbs free energy objective function, (a) in forward mode

and (b) in reverse mode. Note that the observed CPU time for the forward

mode scales approximately linearly with the N while in reverse mode it is

independent of N , as predicted by theory.

derivatives (by up to a factor of 2). Given that the average difference

in derivative values is less than 0.006 per cent, we see that in forward

mode the AD tool has automatically generated code which gives

correct values and is an efficient alternative to finite differences.

In reverse mode Fig. 5 clearly shows the independence between

the CPU time for derivative evaluation, and the number of input

variables. Again this is as predicted by theory, but nevertheless quite

remarkable. As N grows the ratio of compute times varies between

4.1 and 41.2. Differences between derivative values for forward and

reverse mode are within machine precision. In this case the AD tool

has managed to automatically reverse the flow of the code and gen-

erate derivative routines whose computational cost is independent

of the number of input parameters.

3.2 Seismic receiver functions

Our second test problem arises in the inversion of seismic

body waveforms for crustal structure. Receiver function inversion

(Langston 1989; Ammon et al. 1990) is a much used technique for

estimating shear wave speeds in the Earth’s crust as a function of

depth beneath a seismic recorder. Receiver functions are derived

from observed seismograms of distant events and may be compared

to those predicted from a crustal velocity profile. A misfit function

measuring the discrepancy between the two waveforms is specified,

and minimized as a function of the parameters controlling the ve-

locity model (see Fig. 6). Here the profile consists of a series of

six linear segments with depth. Also there is the potential for dis-

continuities in wave speed between layers, which are themselves of

variable thickness (see Shibutani et al. 1996, for full details of the

parametrization).

Receiver function inversion is similar to other waveform fitting

problems in seismology, where the relationship between parameters

describing the Earth model are non-linearly related to the observed

seismograms. Fig. 6 shows a waveform misfit surface (based on the

L2 norm of the waveform discrepancy) as a function of two of the

velocity model parameters. In this case the surfaces are clearly not

quadratic. Their multimodal character means that gradient methods

of optimization require many iterations and hence many derivative

evaluations.

In contrast to the Gibbs free energy example the evaluation of the

synthetic receiver function from a given velocity profile is purely

numerical, that is, no analytical expression is available. Here we

use a standard approach known as the Thomson-Haskell method

(Thomson 1950; Haskell 1953). For this problem we applied the

AD tool in forward mode to generate derivative code; in this ex-

ample there is one output variable (the waveform misfit function)

and 24 input variables (describing the velocity profile). Again the

accuracy was compared to finite differences. With the latter we ex-

perienced some difficulty in tuning the step size to achieve a stable

result. As a consequence the average difference between the two

sets of derivatives was approximately 4 per cent which is greater

than in the first example and probably due to inaccuracy of the finite

difference estimates. In this case the AD generated derivative code

took 2.28 s to evaluate all 24 derivatives compared to 3.03 s with

finite derivatives (all calculations performed on a P4 Linux desktop

workstation with 1Gb RAM). We also calculated gradients ‘element

by element’, where the derivative code was executed once for each

input parameter. This gave the same numerical values to within ma-

chine precision and took 3.67 s. The difference in time reflects the

repeated execution of overhead in the element by element case.

For this problem we were unsuccessful in getting a result in reverse

mode. Although the AD tool successfully generated derivative code,

upon execution it failed to complete. It seems likely that this was due

to some difficulty in efficiently reversing the flow of the synthetic

receiver function algorithm. As noted above this can be a major

problem. We did not investigate the cause in any great detail, nor

employ any of the advanced features of this particular AD tool which

allows users to insert directives in the code to assist in differentiation.

Our results, therefore, reflect the experience of a ‘novice’ or ‘hands

off’ user of AD, who, as noted above, is the intended target of the

idealized AD tool. Nevertheless, for the receiver function problem

forward mode has stably and efficiently generated derivatives in an

automated fashion.

3.3 Seismic ray tracing

Our final test problem is the most numerically intensive of all. The

experimental setup is shown in Fig. 7. Here we apply the AD tool

to calculate the derivatives of seismic traveltimes with respect to

seismic velocities of a laterally varying medium. This is a common

C© 2007 The Authors, GJI, 170, 1–8
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Figure 6. (a) Parametrization of shear wave velocity model used in the receiver function problem. Here, 24 parameters control the profile as a function of

depth using linear segments between variable thickness layers; (b) an ‘observed’ and predicted receiver function. The squared difference between the two traces

corresponds to the data misfit function used in the inversion and (c) two examples of the data misfit surface defined by the difference in receiver functions,

plotted as a function of two pairs of model parameters. The irregular (non-quadratic) shape is due to the high non-linearity in the misfit surface. In the second

example AD generated code is used to calculate derivatives of this misfit surface at any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

Velocity (km/s)

Figure 7. Seismic rays produced by the ray tracer in highly heterogeneous 2-D medium. Here rays are initially shot out at equal angles and their trajectory

depends on the local wave speed variations. The source point is denoted by a yellow dot. In this example AD generated code is used to calculate derivatives of

traveltime with respect to the parameters controlling the seismic velocity field.
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Automatic differentiation 7

problem in seismic tomography with body wave arrival times (see

Rawlinson & Sambridge 2003).

Here we use a simple spline mesh to represent a 2-D laterally

varying Gaussian random field of seismic velocities, and 400 rays

are shot out at equal angles from a source placed in the centre of

the model (see Fig. 7). As in the previous example no analytical

solution exists for finding the path of the ray in a medium of this

complexity. For each ray a set of non-linear initial value ODE’s are

solved using a Runge-Kutta algorithm. The result is the endpoint

of the ray as a function of traveltime (see Rawlinson & Sambridge

2003, for details). All rays are stopped when they meet the edge of

the 2-D medium.

As the spatial scale length of the heterogeneity decreases and the

amplitude increases the rays become highly distorted by the velocity

gradients in the model. In this experiment the amplitude of hetero-

geneity varies by more than a factor of 10 (which is extreme for the

real Earth) and rays soon become chaotic. The spline mesh has 299

coefficients controlling the velocity model giving a Jacobian with

18 338 non-zero entries in a matrix with 119 600 elements. We used

the AD tool to generate derivative code in forward mode. (Note here

the number of output variables is 400 which outnumber the input

variables, 299, and hence forward mode is to be preferred.) Again

to make results comparable to previous examples we also calcu-

lated derivatives with a simple finite difference code (after some

tuning of step size). Note that, in this case, derivatives could also be

determined by integrating the basis function of each spline in the

velocity mesh along each ray which would require some significant

hand coding.

The entire Jacobian was determined by both approaches. The

average difference in estimated derivatives was less than 10−5 per

cent, hence the accuracy of the AD generated code is effectively

at machine precision (as theory predicts). The compute time for

the entire Jacobian with finite differences was 2502.6 s. The AD

generated code in an element by element mode took 829.2 s and in an

‘all at once’ mode took 108.9 s. Hence in this case the forward mode

is highly accurate and more than an order of magnitude faster than

the corresponding finite difference algorithm. As with the previous

example we were unable to get reverse mode to work.

4 C O N C L U S I O N

We have presented results of several experiments with a particu-

lar AD tool, TAF of Giering & Kaminski (2003). In all cases effi-

cient and accurate derivative code has been generated using forward

mode, and in the simplest example reverse mode was equally suc-

cessful. The accuracy and computation cost of forward mode was

consistent with theoretical predictions. We observed an indepen-

dence of the reverse mode CPU time on the number of input pa-

rameters. This is an unusual result, given that the cost of the source

code in this case scales linearly with the number of input parameters.

(We can only speculate that there is an underlying linear dependence

which has not reached above the noise level in our experiments.)

Our experiments were conducted in a deliberately ‘hands off’

manner, as our intention was to test whether such tools were truly

‘Automatic’ in this sense. It is clear that AD tools in forward mode

have reached a level of sophistication which makes them reliably

automatic, accurate and stable. In reverse mode this is not yet the

case, although we were impressed that it worked as well as it did. This

is quite unsurprising given the difficulty involved in automatically

reversing the flow of complex source codes. AD is an active field of

research and one can expect AD tools to continue to develop. The

one used here (TAF) is probably the most sophisticated in the world

to date. (During the course of this work we actually tested several

other AD tools, including ADIFOR2.0, TAMC and TAPENADE.

See www.autodiff.org for full details of these packages.) At present

AD is not yet fully automatic in reverse mode, as is acknowledged

by experts in the field (see Griewank 1989; Corliss et al. 2002). It

seems likely that for the foreseeable future human intervention will

be required to get the most out of AD in reverse mode, in much the

same way that directives are used to optimize the performance of

most modern compilers. We expect a careful re-examination of the

cases where reverse mode failed, together with appropriate use of

AD directives would most likely improve performance.

Current directions in AD research include ways of incorporating

parallel libraries such as MPI, extending the range of programming

languages and also allowing a combination of languages such as

Fortran90 and C (see Corliss et al. 2002, for discussions). At the

same time the number of applications are steadily growing. It seems

inevitable that over the next 10 yr AD will become an indispensable

part of numerical modelling and optimization software, used across

the physical sciences. We hope the present paper encourages further

applications in the geosciences.

A C K N O W L E D G M E N T S

We thank Drs Thomas, Kaminski and Ralf Giering of FastOpt the

creators of TAMC and TAF, for their advice and assistance, and also

in providing us access to their software.

R E F E R E N C E S

Ammon, C.J., Randall, G.E. & Zandt, G., 1990. On the nonuniqueness of

receiver function inversions, J. Geophys. Res., 95, 15 303–15 318.

Aster, R., Borchers, B. & Thurber, C.H., 2005. Parameter estimation and

inverse problems, in International Geophysics Series, Vol. 90, Elsevier,

Amsterdam.

Beda, L.M., Korolev, L.N., Sukkikh, N.V. & Frolova, T.S., 1959. Programs

for automatic differentiation for the machine BESM, Technical Report,

Institute for Precise Mechanics and Computation Techniques, Academy

of Science, Moscow, USSR (In Russian).

Bunge, H.-P., Hagelberg, C.R. & Travis, B.J., 2003. Mantle circulation mod-

els with variational data assimilation: inferring past mantle flow and struc-

ture from plate motion histories and seismic tomography, Geophys. J. Int.,
152, 280–301.

Cacuci, D.G., 1981a. Sensitivity theory for nonlinear systems. I. Nonlinear

functional analysis approach, J. Math. Phys., 22, 2794–2802.

Cacuci, D.G., 1981b. Sensitivity theory for nonlinear systems. II. Extension

to additional classes of responses, J. Math. Phys., 22, 2803–2812.

Corliss, G., Faure, C., Griewank, A., Hascoët, L. & Naumann, U., 2002. Au-
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