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ABSTRACT 

In the human-machine collaboration context, understanding the 

reason behind each human decision is critical for interpreting the 

performance of the human-machine team. Via an experimental 

study of a system with varied levels of accuracy, we describe how 

human trust interplays with system performance, human 

perception and decisions. It is revealed that humans are able to 

perceive the performance of automatic systems and themselves, 

and adjust their trust levels according to the accuracy of systems. 

The 70% system accuracy suggests to be a threshold between 

increasing and decreasing human trust and system usage. We have 

also shown that trust can be derived from a series of users’ 

decisions rather than from a single one, and relates to the 

perceptions of users. A general framework depicting how trust 

and perception affect human decision making is proposed, which 

can be used as future guidelines for human-machine collaboration 

design. 
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1 Introduction 

Trust has been considered a critical factor affecting the decision, 

performance, experience and overall capability of humans when 

they interact with machines. According to Lee and Moray [1], the 

predictability of a system plays a fundamental role in a human’s 

trust formation. However, due to the sophisticated technologies 

and increased levels of automation provided by machines today, 

humans are no longer able to know every technical detail or 

working mechanism of their machine teammate, and hence 

determining the system performance based on full system 

understanding becomes increasingly difficult. As a consequence, 

in many situations humans actually base their trust on limited 

perceptions of the machine partner, and make decisions 

accordingly [2].  

Perception can be considered as the processed outcome of 

different sensory information, which is critical for human decision 

making. However, due to various reasons, the human mind is not 

always able to perceive the status and performance of a system 

accurately: a perception bias may occur which may ultimately 

compromise the quality of human decision making [3]. One of the 

most well-known forms of perception bias is the attribution bias 

as examined by Woods et al., in which people tend to neglect their 

own faults but attribute them to others, especially machines [4]. 

This has led to some typical collaboration issues in a human-

machine team, such as algorithm aversion [5], when humans are 

much less tolerant to mistakes made by machines than by 

themselves. However, very little is known about the cause of the 

perception bias, or the methods to accurately quantify and 

mitigate it. 

The limited, sometimes incorrect perception of the machine 

performance can lead to improper trust in the machine. The study 

of Lee and Moray [6] suggested that in many human-machine 

teams, for example, in the scenario of supervising an automatic 

system, human is the final decision maker, which grants them the 

right to reject suggestion of the system partner or totally abandon 

the automation. In Muir’s works [7,8] it was explained that 

humans would override the machine if they had a higher 

confidence in themselves than their trust in the machine. However 

this is arguable as confidence is another subjective mental 

construct that can be even more difficult to measure, or to 

compare with trust. Actually so far there has been very limited 

knowledge of the quantitative relationship between perception, 

trust and decision. 

The primary aim of this paper is to investigate the three key 

elements of human-machine teamwork: trust, perception and 

deception. Specifically, via manipulating the performance of a 
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simple decision support system, we seek answers to three 

questions with the findings as follows: 

(i) When do people trust a machine teammate, and what is 

the dynamics of trust? We have found that users’ trust, 

although initially different, approximates the system 

accuracy after a series of interactions. Furthermore, 

incremental trust is observed during the interactions 

with systems of over 70% accuracy, but decreased trust 

is observed for systems with lower accuracies. 

(ii) How do users perceive the performance of the 

automatic systems and themselves in the human-

machine collaboration context? Overall users are well 

able to perceive and estimate the system performance 

and discriminate their relative accuracies within limited 

trials. For the less accurate systems, users demonstrate 

a better estimation on their own performance than the 

system performance.  

(iii) What is the implication of perception on user’s trust, 

and further on decision making? Their mutual 

dependency is proposed as our understanding of 

decision making process, and we have also shown that 

trust can be inferred from a series of decisions rather 

than one or several single decisions. 

The rest of the paper is organized as follows: existing 

literatures related to the relationship between perception and 

decisions are introduced in the next section, followed by the 

description of our experimental design, procedure and 

introduction of the data we have collected in the methodology 

section. In the result section, our findings are illustrated, showing 

the patterns of users trust, perception and performance over time 

and their mutual relations. We explained our findings and 

discussed their implications for future human-system interaction 

design in the discussion section before concluding the paper. 

2 Related Work 

The concept of trust roots back to the relationship between 

humans, and reflects the subjective willingness to collaborate with 

others. In the human-machine joint team scenario, trust has been 

considered as an attitude that an agent will help to achieve an 

individual’s goal in a situation characterized by uncertainty and 

vulnerability as defined by Lee & Moray [6]. Existing research 

has revealed different findings regarding trust that is consistent 

with our intuitions: users tend to use machine that they trust but 

abandon those that they do not trust [9,10], different users have 

different trust propensity to the same machine [11,12] , system 

failures negatively affect trust but good performance of system 

helps to improve trust [13,14], and appropriate trust is beneficial 

to human-machine collaboration [8,9]. 

Basically, the work of Bernard [15] and Zuboff  [16] provides 

theoretical foundations for the composition of trust, which 

proposes that human-machine trust is built on four dimensions, 

including natural laws, performance, transparency and design 

purpose. Natural laws provide the context under which the 

trusting relationship is possible, and regulates the basic behaviors 

of humans and machines. For example, fuel or electricity are 

necessary power for a machine to function properly. Performance 

indicates whether a machine will behave as expected, and how 

well it is capable of conducting a task. Transparency refers to 

human’s understanding of the technical process that the machine 

partner is undergoing, or interpretations of the performance of the 

machine. The last dimension, design purpose, reflects the 

designer’s intention for the function of a machine. Most research 

on trust have been conducted on the performance and 

transparency dimensions, as they directly relate to the overall 

human-machine team performance [17–19]. 

System performance is often manipulated via the occurrence of 

failures, which have always been key issues in the research of 

trust dynamics and affect the way people make decisions. Lee & 

Moray have used a simulated pasteurization system to induce 

consecutive system failures [1], and proposed that trust in a 

machine is associated with overall human-machine joint 

performance, system’s fault and user’s prior trust. Moray et al. 

further revealed that reliability of automated fault diagnosis, mode 

of fault management (manual vs. automated), and fault dynamics 

strongly affect subjective trust in the system, and operator self-

confidence [10]. Sauer et al. investigated the effects of automation 

failures in training on trust and found that automation bias (a 

tendency to follow the recommendation of the automation) is high 

when users are trained on a miss-prone automation, which may 

ultimately lead to more user errors [20]. O’Donnovan et al. also 

proposed to elicit trust from system recommendation errors [21]. 

Many more work investigating the implications of system failures 

on trust can be found in the review of Muir [7,8], although very 

few of them provide quantitative interpretations on the 

relationship between trust and system performance. Some recent 

research has shown the implications of system failures on the 

dynamics of trust in a quantitative way [22,23], which paved the 

way towards further refined human-machine trust examination. 

Along with the study of system failures and human trust, many 

attempts have been made in trust measurement, amongst which 

surveys and behavior-based methods are most popular [24]. The 

surveys are normally conducted before and after an experiment, 

asking the participants to rate their subjective trust in a given 

system [25,26]. They are helpful in determining the cause of trust 

and the overall subjective attitude towards the system. However, 

the survey-based methods often fail to capture the dynamics of 

trust, as people may not trust a machine exactly at the same level 

all through a thirty-minute experiment. In comparison, behavior-

based trust measurement methods are usually based on the 

decisions of users in several final trials as conducted by Lee & 

Moray [8]. If a human makes decisions consistent with the 

system’s suggestions, it is considered that the machine is trusted, 

otherwise it is not. Evaluating trust based on behaviors in this way 

may not be accurate, due to the fact that trust cannot be assumed 

to be binary, and there can be many intermediate levels between 

trust and distrust [27]. Furthermore, the mapping between 

decision consistent with a machine and trust in a machine is 

questionable: human may make decisions opposite to their actual 
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trust, in the case that the cost of incorrect decision is low as 

revealed in the study of Sutherland et al. [28]. 

Perception is another factor that relates closely to trust and 

decision, and a perceptual-motor system in human mind is 

suggested that affects the cognition and subsequent behaviors 

[29]. It is also demonstrated that perceptions contribute to the 

history-based trust, and the former play an important mediating 

role between human and machine [14]. Further evidence can be 

found on user trust and reliance and perception of automated 

decision aids, where perceived reliability is often lower than 

actual system reliability, and false alarms significantly reduce user 

trust in the automation [30]. In contrast, Cosmides & Tooby argue 

that humans can be good intuitive statisticians that are capable of 

making reliable judgements under uncertainty [31].  

As a consequence, this work will revisit the question on how 

trust develops dynamically, and examine the capability of users to 

perceive differences in system performance. Due to the 

disadvantages of existing trust measurement methods, this 

examination also aims to identify new reliable means to measure 

trust. Furthermore, very few studies have disclosed the dynamics 

of trust, decision and perception, while in this study we aim to fill 

the gap. 

3 Methodology 

We consider the decision making process by human to be an 

essential part of human-machine interaction. To keep the potential 

of generalizing our investigation results to real-life systems, we 

adopted binary decision making tasks in our experiment, and 

postulate that any complex decision process can be decomposed 

into a series of atomic binary decisions. Furthermore, the 

simplified binary decision making protocol we implement is 

essentially similar to the micro-worlds discussed by Lee and See 

[32], which makes it convenient to map trust levels to decisions 

without the interference of other factors. 

3.1 Scenario 

This experiment simulated a quality control task in a drinking 

glass making factory. The users were asked to determine the 

condition of glasses, a binary choice between good or faulty. To 

make this decision, they only received the assessment from a 

simulated decision support system we call Automatic Quality 

Monitor (AQM), which alerted the user to potentially faulty 

glasses. However, the AQM did not always function properly and 

occasionally exhibited false positives (suggesting examining a 

good glass) and false negatives (suggesting passing a faulty glass). 

Hence, the trust the user placed into the AQM might fluctuate 

depending on the performance of the AQM, allowing us to 

explore the dynamics of trust. 

3.2 Tasks 

The experiment took place in a laboratory setting through a simple 

graphical user interface and was arranged in blocks of trials. Each 

individual trial started with the AQM providing its 

recommendation about a glass: a red warning light bulb was off 

for a good glass, or illuminated for a faulty glass (Figure 1), 

however the glass image on the top right of the interface was not 

shown. The user then needed to click a Pass button, if considered 

the glass was good, or to click Examine if considered the glass 

might be faulty. It is important to note that this decision is entirely 

up to the user who may comply with the AQM’s recommendation 

or override it. 

After the decisions were made, the users were shown the 

actual condition of the glass, providing them with direct feedback 

on whether their decision was correct, as illustrated in Figure 1, 

where the user correctly decided to examine a glass that proved to 

be faulty. 

In order to increase motivation and attention we gamified the 

interaction by introducing a fictitious $100 reward for each 

correct decision (examining faulty glass, or passing good glass) 

and $100 fine for each incorrect decision. The total earnings were 

updated and displayed after each decision. The users were aware 

that these rewards are only to help them track their score, without 

any actual remuneration offered. 

After each trial the users were asked to input both the accuracy 

of the AQM and their own based on their subjective perceptions, 

using sliders ranging from 0% to 100% as shown in the bottom 

part of Figure 1. The users were informed that the accuracies refer 

to the ratio of correct decisions or AQM recommendations for all 

the prior trials within in a block. The users were also requested to 

indicate their level of trust in the AQM using a 7-point Likert 

scale ranging from 1: distrust, to 7: trust. In the instructions issued 

 

Figure 1: Interface for the experiment: the user is asked to 

make the decision between Examine and Pass, estimate the 

accuracy of AQM and their own, and rate the trust level in 

each trial. Note that the elements in the interface are 

shown stepwise to the users in the experiment. 
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at the outset of the experiment we explained that a rating of 4 

meant neutral, or no disposition in either direction. 

3.3 Block Assignment 

The trials were randomly presented, providing a time-based 

history of interaction with a given AQM, and allowing us to 

explore how trust builds up or degrades over time based on the 

AQM’s performance. The users interacted with a number of 

AQMs, for 30 trials with each AQM, and were told that a different 

AQM was used for each block; indeed, each AQM’s accuracy was 

manipulated by varying the average rate of false positives and 

false negatives for every ten trials. For example, for the 80% 

AQM, two random machine errors occur between the trial 1 and 

trial 10, between trial 11 and trial 20, and between trial 21 and 

trial 30 respectively. This arrangement is made to serve two 

purposes: firstly, the occurrences of system failures do not cluster 

together; secondly, we can have three check points, i.e. trials 10, 

20 and 30, where we can conduct quick checks on how much the 

perceived system accuracy deviates from the actual system 

performance. The experiment session involves seven randomized 

blocks of 30 trials each, and one 100% AQM block of ten trials 

prior to the seven randomized blocks to serve training purpose as 

shown in Table 1. 

We admit that in most realistic scenarios, people rarely interact 

with systems with accuracies as low as 30% or 40%. However, for 

those systems dealing with uncertainty, for example, some 

prototype systems or instable systems, their performance are 

hardly predictable and may be low. The low performance can also 

be encountered when a normal system malfunctions in a given 

period of time, and hence people may need to deal with such 

systems from time to time, and that is the reason we intentionally 

involve low accuracy systems in the research. 

3.4 Participant 

Thirty participants including four females took part in this 45 

minute experiment as users of the AQMs. 23 of them were 

university students and the rest were IT professionals. No specific 

background or preparations were required to complete the 

experiment. Recruitment and participation were conducted in 

accordance with a University-approved ethics plan for this study. 

Snacks were offered for taking part in the experiment, and a gift 

voucher of $50 was offered in a draw after the experiment as a 

means of acknowledgement. 

3.5 Data Collection and Processing 

For each trial we collected: 

• AQM’s suggestion (light on or off); 

• User’s binary decision (pass or examine); 

• Actual glass condition (good or faulty); 

• Perceived system performance (0% to 100%); 

• Estimated self-performance (0% to 100%); 

• Subjective trust rating. 

• We derive the following variables for each trial: 

• Normalized subjective trust rating: For each user, all the inputs 

across all blocks are used to normalize the ratings in the [0, 1] 

range. More specifically, for all the trust ratings of a user, the 

normalized trust value Ti after trial i is calculated as 

   
min

max min

io
i

T T
T

T T





  (1) 

where Tio is the originally provided trust rating of the user for a 

trial, Tmax and Tmin are the maximum and minimum trust ratings 

respectively given by the same user across all seven AQMs. 

• Reliance rate: the proportion of decisions consistent with the 

system suggestions over a set number of consecutive trials, in the 

[0, 1] range. 

4 Results 

The results shown below comprise the decision behaviors and 

subjective ratings of all the users. To demonstrate the dynamic 

changes of trust, perception and decisions, the results will be 

presented along the 30 trial timeline wherever possible. 

4.1 Trust Dynamics 

The normalized trust of all the AQMs averaged across all the 

users is plotted in Figure 2. At the beginning, i.e. the trust rating 

after the first trial, the order of user’s trust in the AQMs is 

randomized for all the AQMs according to an ANOVA 

examination (F(6, 174)=1.28, p>0.05), indicating that the users do 

not differentiate their trust significantly after a single trial, due to 

limited experience with the systems. Although visually, trust in 

the 90% AQM is higher than the rest, a comparison with the 80% 

AQM after the first trial does not show a significant difference (t= 

1.54, p>0.05).  

AQM Accuracy False Neg. + False Pos. 

100% (Training) 0% 

90% 10% 

80% 20% 

70% 30% 

60% 40% 

50% 50% 

40% 60% 

30% 70% 

Table 1. AQM accuracies in the experiment with respective 

false positives and false negatives. 
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As the users continue working with the AQMs, after trial 5 all 

the trust levels are well separated and align with the accuracies of 

the respective AQMs. Furthermore, it is found that from trial 5 

onwards, the users have demonstrated different trust for the AQM 

(using ANOVA with repeated measures for the trust levels of 

individual users after trial 5, F(6, 174)=20.88, p<0.05). The trend 

of trust level separation continues towards the end of the trials, 

however examined with a t-test between trial 25 and trial 30, there 

are no more significant trust changes (t= 0.18, p>0.05), suggesting 

that trust levels have become stable. 

4.2 User Decision Affected by Trust 

The implications of users’ trust on their decisions are investigated 

via examining the responses of all the users at different trust 

levels. We calculate the reliance rate Rr of users as the proportion 

of consistent decisions with the system over a set number of 

consecutive trials: 

𝑅𝑟 =
𝑁𝑐

𝑁𝑐+𝑁𝑑
   (2) 

where Nc is the number of user decisions consistent with what the 

AQM light indicates, and Nd is the number of decisions made 

different from the suggestion of the AQM. As shown in Table 2, 

based on the trust score for individual trials, when the users highly 

trust the AQM systems where the trust levels are 6 and 7, they 

rely on the system for decisions and there is no significant 

reliance difference between the early and late sections. In contrast, 

at trust levels 1 to 4, significant trust difference between the 

sections have been identified via repeated measures ANOVA 

examination (F(5, 3)=19.9, p<0.05), indicating that if users do not 

trust the system so much, they will decrease their usage of the 

systems. 

Examining the individual columns of Table 2, a steady trend 

can be observed that the reliance rate decreases with trust ratings. 

An ANOVA test shows the significant difference between trust 

levels in terms of reliance rate (F(6, 5)=53.8, p<0.05), which 

suggests that when users rate low trust, they rely less on the 

suggestions of the system. 

The relation between trust and reliance rate is further depicted 

in Figure 3. The error bars indicates the variance at each trust 

level, and the trust of all users is normalized to the [0,1] range. It 

should be noted that the data from all the users are plotted in this 

figure, however for individual users a similar trend is observed as 

 

Figure 2: The mean trust of all users for all the AQMs. 

 

Figure 3: Trust affects the trend and variance of users’ 

reliance rate (Rr). The error bars in the plot represent 

standard deviations. 

 

Trust level Trial [1,5] Trial [6,10] Trial [11,15] Trial [16,20] Trial [21,25] Trial [26,30] 

7 0.973 0.951 0.972 0.99 0.985 0.983 

6 0.957 0.913 0.932 0.927 0.91 0.927 

5 0.912 0.896 0.866 0.824 0.819 0.827 

4 0.905 0.765 0.745 0.742 0.679 0.717 

3 0.817 0.682 0.669 0.613 0.713 0.523 

2 0.766 0.624 0.53 0.597 0.503 0.509 

1 0.797 0.6 0.527 0.535 0.508 0.465 

Table 2: Reliance rate (Rr) at different trust levels. The trust levels are the original ratings of the users. The 30-trial block is 

segmented into 6 sections, each composing 5 trials in each column. 
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Figure 5: User perceptions of the AQM accuracies. 

well. The reliance rate demonstrates a clear rising trend with trust, 

suggesting that users rely more on systems when they trust them 

which is consistent with existing understanding. On the other 

hand, the decreasing variance of reliance rates reveals another 

interesting finding: at low trust levels, although the overall 

reliance rate are low, users demonstrate high variance in reliance 

rates. This suggests that users rely on the system in different 

ways, sometimes even if they do not trust the system, they may try 

decisions consistent with its recommendation. In comparison, as 

trust level increase, the rate of reliance also converge, implying 

that users tend to follow the system suggestions when they believe 

the system to be highly reliable. 

4.3 User Performance and Perception 

Performance refers to the proportion of correct decisions amongst 

all the decisions made on one AQM. We have asked users to 

estimate their performance based on their estimation on all prior 

trials. In the meanwhile via comparing the decisions of users with 

the outcome of glasses, we are able to calculate their actual 

performance.  

Figure 4 shows both the actual performance of the users and 

the perceived performance of their own. Interestingly, in the 

initial several trials users are not able to precisely estimate their 

performance, although it is easier compared with situations when 

more trials have been done. It should be noted that if a user is 

good at memorizing the previous trials, he/she should be able to 

increase the accuracy of performance estimation as she/he 

approaches the end of the 30 trials. An interesting finding from 

Figure 4 is that at the end of the trials, for the more accurate 

AQMs (90%, 80% and 70%), users’ estimated accuracies are 

significantly higher than their actual performance; however they 

are still capable of discriminating the order of these AQMs. Table 

3 shows the difference between the perceived and realistic 

performance of users and whether it is statistically significant 

(using repeated measures ANOVA), from which we can see that 

for the less accurate AQMs, users estimated their performance 

better than when they were working with the more accurate 

AQMs. 

4.4  Perception of System Performance 

If the users estimate their own performance differently from their 

real performance, how about their perceptions on the AQMs? 

Figure 5 provides the answer and depicts the dynamics of AQM 

perceptions. The results suggest that the users are capable of 

perceiving the system performance with high accuracy. At the 

fifth trial, the perceived system accuracies for different AQMs 

already differ significantly based on repeated measures ANOVA 

(F(6, 174)=27.69, p<0.05). A paired t-test between trial 25 and 

trial 30 (t=0.46, p>0.05) indicates that towards the end of the 30 

trials, there are no more significant perception changes for all 

AQMs, implying that the perceived system accuracies have 

stabilized. These findings imply that the users are able to adjust 

their perceptions and reach accurate estimations towards the end 

of the trials, especially for the most accurate AQMs (90%, 80% 

and 70%). For the other less accurate AQMs especially the 50%, 

40% and 30% ones, perception bias of over 10% can be observed 

towards the end of the trials, but the order of accuracy is still 

correctly perceived. 

 

 

Figure 4: Perceived vs actual subjective performance, where 

‘A’ denotes actual performance and ‘P’ denotes perceived 

performance of the user. 

 

AQM  90% 80% 70% 60% 50% 40% 30% 

F 13.86 21.22 7.99 0.13 4.42 0.003 0.06 

p <0.01 <0.01 <0.01 0.73 0.04 0.95 0.80 

Table 3: Differences between actual and perceived user 

accuracies at trial 30 with repeated measures ANOVA: users are 

better capable of estimating their own performance when 

working with less accurate AQMs. 
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4.5  System Perception and User Decisions 

Due to the similarity between perceived system accuracy and 

users’ trust in the AQMs, we would like to see how the system 

perceptions affect user decisions. Table 4 illustrates all the user’s 

decisions at different levels of perceived AQM accuracy. It 

suggests that the higher a system’s performance is perceived, the 

more decisions consistent with the system are made. However, 

noting the reliance rate at the top of the table, even if the 

perceived system accuracy is extremely low, the user may still 

take a chance to follow the system’s suggestions now and then, 

although overall a decreasing trend is suggested when the 

perceived system accuracy is below 70%. 

For all the users, the relationship between their perceived 

AQM accuracies and the rate of reliance is illustrated in Figure 6. 

A linear regression is calculated to predict the reliance rate based 

on the perceived accuracy. A significant regression equation is 

found (F(1,99)=187.42, p<0.05) with an r2 of 0.654. The 

predicted trend of reliance rate Rr with perceived accuracy is 

Rr = 0.47 × Pa + 0.521     (3) 

where Pa is the perceived accuracy range from 0% to 100%. This 

finding implies that as the perceived accuracy increases, users rely 

more on the recommendations of the AQMs. It should be noted 

that for the majority of the cases the reliance rate is above the 

chance level of 0.5, even when the perceived accuracy of the 

systems is very low, which is consistent with our finding shown in 

Figure 3. Intuitively, the regression coefficient 0.47 indicates that 

the reliance increase is about two times slower than the system 

perception increase.  

5 Discussion 

The results of this study provide evidence on several important 

findings regarding perception, trust and human decision, and 

reveal their mutual relationship when users interact with machines 

as a collaborative team member. We have shown that users are 

capable of estimating the system accuracies reasonably well and 

gradually adapting their trust levels to the system performance 

within 30 trials. The positive relationship between trust and user 

perception suggests the tight link between the two mental 

constructs. This finding implies that if a user perceives the 

performance of a system, their trust in the system will be affected 

accordingly; furthermore, the increased trust may result in more 

decisions consistent with the recommendation of a decision 

support system. 

Examining the way trust and system perception evolve, it is 

found that after five trials, both trust and user perception are well 

separated, indicating that the users are capable of discriminating 

the performances of the systems very quickly and trust them 

accordingly, although the accuracy of perception can be 

incrementally improved later as more interaction occur and more 

experience gained. After 25 trials, both the trust level and the 

perceived system performance reached a stable level, and we can 

infer that no significant change of them will happen if the user 

System Accuracy 

Perception (%) 
Trial [1,5] Trial [6,10] Trial [11,15] Trial [16,20] Trial [21,25] Trial [26,30] 

0-10 0.729 0.658 0.536 0.603 0.524 0.453 

11-20 0.712 0.604 0.608 0.623 0.512 0.477 

21-30 0.815 0.591 0.483 0.603 0.521 0.544 

31-40 0.744 0.723 0.621 0.531 0.677 0.522 

41-50 0.944 0.734 0.673 0.701 0.586 0.560 

51-60 0.895 0.890 0.785 0.754 0.729 0.753 

61-70 0.861 0.768 0.867 0.771 0.750 0.773 

71-80 0.926 0.925 0.933 0.788 0.860 0.788 

81-90 0.959 0.938 0.911 0.953 0.898 0.940 

91-100 0.975 0.925 0.955 0.959 0.990 0.984 

Table 4: Reliance rate (Rr) at different system perception levels. The perception levels are segmented into 10 intervals 

respectively, e.g. 11-20 means the perception rating interval between 11 and 20. The 30-trial block is segmented into 6 

sections, each composing 5 trials in each column. 

 

Figure 6: Reliance rate (Rr) increases with perceived system 

accuracy for all users. The linear regression result is shown 

in red. 
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continue interacting with the systems. 

These findings reveal two important aspects of interactive 

system design, especially for the decision support systems like the 

AQM used in our experiment. Firstly, the users are capable of 

comparing system performances after a limited number of trials. 

In that sense, we can hypothesize that for a system to function 

properly, special attention should be paid when the user just starts 

to use it, as the outcome of these trials will significantly affect the 

future trend of user trust change. For a system as simple as the 

AQM, the first five trials are of prior importance to shape user’s 

trust. Secondly, as it takes longer for users to perceive the actual 

performance of the system, sufficient interaction should be 

allowed if the designer wants to know how people usually use the 

system. Approximately 25 iterations of interaction have occurred 

before the user’s trust and perception become stable, however we 

can imagine that if working with a more complicated system, 

more interaction time with repeated interactions will be required 

before reaching a reasonable understanding of users’ trust feeling 

about it. 

It can be observed in Table 2 and Figure 3 that even if at the 

same trust level, the users may not always make the same 

decisions. This finding has shed light to the way trust is measured 

using behaviors, while it can be misleading if the outcome of a 

single decision or several limited decisions are considered as 

indicators of trust even after a long period of interaction. In our 

view, behavior-based methods can be improved via using the 

reliance rate as shown in Figure 3, which increases with the 

increment of trust. Another optional choice for trust measurement 

is the variance of decisions, however this measurement may not 

be reliable enough alone especially when trust levels are low, and 

it is possible to combine the reliance rate and decision variance 

for better measurement of trust. 

Another interesting finding is that the users perceive the 

performances of the interaction system and themselves differently. 

Comparing Figure 4 with Figure 5, apparently users have better 

overall estimations on the system performance than themselves. 

Furthermore, when working with the three relatively high 

performance AQMs, the users have significantly overestimated 

their own performance but their perceptions on the system 

performance are reasonably good. When working with the low 

accuracy systems, users’ self-estimations do not differ much from 

their actual performance, but their estimations on the system 

performance are less accurate. Revisiting the question of whether 

humans are good intuitive statisticians, our result is consistent 

with Cosmides & Tooby [31] that humans are good at perceiving 

uncertainties and make judgement accordingly, however to be 

more accurate, it should be further addressed that the capability of 

human to perceive uncertainties is related to the object being 

estimated. 

Based on the dynamics of trust and user perception of the 

system, it can be observed that the 70% accuracy is the threshold 

between the increase and decrease of trust and system perception. 

We can also see that based on the self-estimation of performances, 

the users overestimated their performance when the system 

accuracy is no lower than 70%, suggesting that users’ self-

confidence is higher when working with such systems. Existing 

research has shown that a user’s self-confidence generally 

enhances motivation [33] and relates to the tendency to make 

improvements when interaction with systems [34]. As a 

consequence, it can be inferred that 70% accuracy is a threshold 

that automatic system designers should consider, above which 

users are able to grow trust and achieve good system perceptions 

with better self-confidence. 

Although we endeavor to provide quantitative examinations 

for all the findings, there are three limitations that should be 

highlighted and discussed. Firstly, the AQM system we designed 

is a typical form of the simplest decision support systems, in 

which the recommendation accuracy is the only factor considered. 

The users demonstrated an overall reliance rate over 50% for all 

the AQMs, which implies that for such systems with binary 

decisions, overall more than half of the decisions are made 

consistent with the system’s recommendation, although for the 

least trustworthy systems the final reliance rate dropped below 

50% as shown in the last row of Table 2. However, many realistic 

systems are much more complicated, and the trust and perception 

of them can be much difficult to characterize in a quantitative 

way. As a consequence, it will be necessary to examine every 

single factor involved in other systems, e.g. system transparency, 

complexity and modality of interaction, before generalize the 

current findings to them. Secondly, the findings in this study is 

mainly correlational, which may limit the causal conclusions that 

can be drawn from this study. Finally, in the examinations we do 

not consider the implications of prior trials or the effect of 

consecutive positive or negative system performance, although 

this has been addressed in another study [23]. Combining the 

findings from both investigations will produce a full picture of 

how users perceive and trust a decision-support system. 

The present study, being quantitative, revealed a number of 

findings that should be considered in interaction system design 

and analytics. Furthermore, there are a few directions of interest to 

be examined in the coming research. Currently all the AQMs are 

featured with a fixed accuracy, however for many realistic 

systems their performance may not be stable. We are interested in 

how users perceive, trust and interact with a system of dynamic 

performance, and in which way the dynamics of the system is able 

to affect the users’ attention and perception. Generalization is 

another issue to examine – whether our findings can be used to 

interpret the interaction patterns with other types of design 

support systems will be examined. 

6 Conclusion 

In this study, we investigated user trust, perception and decisions 

in the human-machine interaction context and revealed how they 

interplay with each other. Overall the results indicate that users 

are capable of perceiving the performance of themselves and 

systems, adjusting their trust and decision schemes accordingly. 
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We also propose that trust can be measured via repeated user 

decisions instead of isolated ones, and can be inferred from the 

subjective perceptions of the machine performance. Finally, our 

examinations uncover that 70% is the system accuracy threshold 

that determines whether users will trust and use the system with 

high self-confidence. So, back to the key question: “Do I trust my 

machine teammate?” The answer lies in how the machine is 

designed, perceived and interacted, and can be detected via the 

user decisions and perceptions as revealed in this study. 
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