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In this letter, we present a class of three-dimensional (3D) labyrinthine acoustic metamaterials with 

self-similar fractal technique, which can produce multiple frequency-band sound insulation in 

deep-subwavelength scale. By simultaneously exploiting the multi-frequency bandgaps and the 

low-frequency characteristics, the Hilbert cubes are explored to design the 3D Hilbert fractal acoustic 

metamaterials (HFAMs). The multiple-band features of the HFAMs are examined by the finite 

element method and the effective medium theory, in which the negative bulk modulus and the mass 

density are responsible for the formation of the multi-bandgaps. These multi-frequency properties are 

induced by the Fabry-Perot multi-resonance of 3D HFAMs, which possess an ultra-high refractive 

index. Hence, the multi-band sound insulations of 3D HFAMs with the negative effective property 

are achieved below 500Hz. These properties of the designed 3D HFAMs provide an effective way for 

acoustic metamaterials to achieve multi-band filtering and noise attenuation in the low-frequency 

regime.  
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Low-frequency noise attenuation or insulation has always been a challenging issue and received 

widespread attention in both material science and mechanical engineering due to its high penetrating 

power.1 Given the mass density law, the acoustic metamaterials possessing unique characteristics 

provide a good strategy in low-frequency sound attenuation without requiring excessive heavy 

bulk.2,3 

Acoustic metamaterials are artificial sub-wavelength structures with unconventional dynamic 

properties and remarkable functionalities, such as phononic bandgap,4,5 acoustic focusing,6-8 acoustic 

cloaking,9-11 sound tunneling,11,12 etc. One of the most impressive features is the sound 

forbidden-band ability with Bragg-scattering and/or local resonance to achieve low-frequency sound 

attenuation.5,13 Additionally, sound absorber and attenuator possessing negative dynamic effective 

parameters,14-16 like including membrane-type,17,18 Helmholtz resonators,19,20 and labyrinthine 

structures,21-25 always play a prominent role at the low-frequency sound propagation. However, most 

acoustic metamaterials have only one narrow-band since the resonator in a specific configuration 

usually possesses one resonant mode.20 Furthermore, to certain acoustic systems requiring the 

multiple bandgaps, only a minimal number of bandgaps may not be suitable for some device 

applications. Therefore, to design multiple bandgaps at desired frequency range, an added 

multi-resonator,13,26 stacked/multilayer structure,17,27 parallel28 or multiple configurations29 are 

necessary, while much spaces are occupied and the system complexities are increased. These 

restrictions have seriously hindered their potential applications. Beyond that, when these attributes, 

including multiple bandgaps, subwavelength characteristic, compact size and lightweight 

performance, are simultaneously desirable in engineering practice, the conventional acoustic 

metamaterials maybe become inefficient. 

Inspired by the fractal design in electromagnetic waves,30,31 phononic crystals32 and acoustic 
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metamaterials with hierarchy and/or self-similar fractal recently have been employed as an important 

strategy to explore improved acoustic properties.33-39 For instance, by using the multi-bands 

characteristic of fractal, a broadband acoustic metamaterial absorber with Hilbert-shaped geometry 

was designed to attenuate the low-frequency sound.36 Acoustic attenuators and reflectors with the 

self-similar fractal were further obtained for subwavelength multi-band sound blocking.33,37,39 Newly, 

based on stretched 2D Hilbert fractal, multi-frequency noises caused by a transformer was reduced.35 

Moreover, the path length of sound propagation in labyrinthine structures also determines the 

performance of sound attenuation, especially at low-frequencies.25 These progresses indicate that the 

desired multiple and subwavelength characteristics could be achieved by rationally introducing the 

fractal architectures. Beyond that, the current labyrinthine structures with the self-similar fractal were 

dominated by 2D cases, and designing 3D fractal labyrinthine configurations have been rarely 

explored. In this letter, we present a class of subwavelength 3D Hilbert-shaped metamaterials aimed 

to explore the acoustic property, in which the multi-band bandgaps and the low-frequency 

characteristics are obtained simultaneously. Furthermore, multi-band negative effective bulk modulus 

and mass density are generated to explain multi-band sound attenuation, in which the Fabry-Perot 

resonances occur. The designed 3D novel features beyond capabilities of 2D bio-inspired hierarchical 

structures can be applied to sound insulation of multiple frequency-bands in deep-subwavelength 

scales.33,34  

Figure. 1(a)-(c) show schematic plots of the 3D HFAMs unit cells, which are shaped by Hilbert 

cubes based on a software openSCAD. Note that the difference between Hilbert cubes and proposed 

HFAMs structures is that the ends of the segment are connected with the outside, forming a 3D 

Hilbert cubes channel with width d, as are shown in Fig. 1(d)-(f). At different level n, the cube is now 

partitioned into 8n sub-cubes and the path consists of (8n-1)a0 segments of length 1/2na0, leading to a 
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length of [(8n-1)/2n]a0. a0 is the edge length of Hilbert cubes. Hence, the wave propagation length of 

Hilbert cube channel is elongated by Leff = 4n a0 (n=1,2,3), which is much longer than structures 

formed by 2D Hilbert curve (2na0)33,34 and Wunderlich curve (3na0).37  

  

FIG. 1. The unit cell models of 3D HFAMs. (a)-(c): unit cells of first three-orders HFAMs. Gray area of Hilbert 

cubes is epoxy. (d)-(f): the independent Hilbert cubes channels with width d=5mm. The unit cells are arranged in a 

simple cubic (SC) lattice. The parameters of HFAMs are follows: the edge length of Hilbert cubes a0=70mm, the 

lattice constant a=75mm, the spacings of beams inside Hilbert cells are c1=30mm, c2=12.5mm, c3=3.75mm, 

respectively. The red arrows represent the entrance and exit of sound waves.  

In 3D HFAMs, the acoustic wave propagates along the Hilbert paths, whose effective lengths 

are several times longer than the straight channel extending from the left to right port of Hilbert cube, 

resulting in the propagation is delayed. Hence, the proposed HFAMs have an equivalent high 

refractive index and ultra-slow speed compared to 2D cases. Note that as the order increases, the 

interiors of Hilbert cubes are filled with air channels, showing its lightweight feature. As mentioned 

above, the 3D HFAMs not only possess the features of miniaturization, lightweight and high 

refractive index, but also realize the multi-bands and the low-frequency characteristics 

simultaneously. 

Considering that the solid material's impedance is much larger than that of air, the solid walls 

can be regarded as the sound-hard boundary condition.23 In air domain, the Helmholtz equation of 
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acoustic wave propagation can be written as 

2
2

0 0 0

1 1
- 0p p

c


 
 

    
 

                               (1) 

Where p is the sound pressure, and ω is the angular frequency, and ρ0=1.25kg/m3 and 

c0=343m/s are the mass density and speed of sound, respectively. To capture the periodic feature of 

HFAMs, Floquet-Bloch’s periodic conditions are applied at the boundaries of the unit cells.33 To 

investigate the band structure of HFAMs, acoustic dispersions are performed by eigenfrequency 

analysis using the COMSOL Multiphysics. We then solve the wave equation by scanning the wave 

vectors k in the first irreducible Brillouin zone (IBZ) as shown in the inset of Fig. 2(a).  

Figure. 2(a)-(c) shows the band structures of HFAMs in terms of subwavelength frequency 

range. For the first-order HFAM as shown in Fig. 2(a), it can be observed that only two small full 

bandgaps [629.63Hz, 640.4Hz] and [1200.3Hz,1258.8Hz], respectively. For the second-order HFAM, 

there are more bandgaps appearing, i.e., [164.66Hz, 195.89Hz], [325.28, 329.04Hz], [492.4Hz, 

501.13Hz], [652.13Hz, 659.13Hz], [976.42Hz, 986.98Hz]. For the third-order HFAM, more 

bandgaps are produced than that of the first two ones in lower frequency range [0, 500Hz], i.e., 

[44.36Hz, 72.138Hz], [133.09Hz, 150.12Hz], [221.8Hz, 233.21Hz], [310.49Hz, 319.22Hz], 

[399.2Hz, 405.72Hz], [487.92Hz, 492.41Hz]. We can find that: firstly, as the fractal order increases, 

the higher-order fractals have more bandgaps, and the frequency-bands move to the 

lower-frequencies range. Secondly, their relative bandwidths of the first bandgap are abundantly 

broadened from 1.7% to 8.7%, and then to 23.8%, respectively. Thirdly, for the third-order HFAMs, 

the lower-bound of the first bandgap frequency has an ultra-low-frequency, and its normalized 

frequency is fa/c0=0.0097, which is a deep-subwavelength scale. The lowest bandgap frequency is 

nearly one-order of magnitude lower than that of the first one. In addition, the transmission 

characteristics of HFAMs with 5- and 10-unit cells are evaluated, as shown in the right panels of Fig. 
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2(a)-(c). It is clearly seen that sound waves are strongly attenuated in the frequency bands along the 

ΓX direction, and their locations match well with the bandgaps. 

It is clearly noted that the bands along RM and XM directions are completely flat, especially the 

second and third-order HFAMs (Fig. 2(b)-(c)). These flat-bands are located in correspondence of the 

Fabry-Perot resonance,8,40 fp≈nc0/2Leff, with n is a positive integer. These flat-bands indicate that the 

existence of localized modes, that also have zero group velocity, which also present a localized 

pattern. In addition, as shown in Fig. 2(a)-(c), the red dotted lines represent their phase velocities of 

the first dispersion band of HFAMs at high symmetry point Γ are 267.47m/s, 213m/s and 95.92m/s, 

respectively. In particular, the two branches of each band can almost coincide with each other at the 

point Γ along the ΓX and ΓM directions.21,23 This indicates that the proposed 3D HFAMs can be 

considered as an isotropic structure in considered frequency range. 

 

FIG. 2 (a)-(c) Band structures and transmittances of 3D HFAMs. The inset shows the first IBZ in the reciprocal 

space for SC lattices. Full bandgaps are highlighted in light-blue. (d)-(f) Pressure distributions around bandgaps 

boundary Ai-Di (i =1, 2, 3) for 3D Hilbert cells.  
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To further gain a deeper understanding, we plot the acoustic modes of HFAMs at the points Γ, 

M, and K. Here, to observe the sound pressure distributions inside 3D HFAMs, Hilbert 

channels cells (Fig. 1(d)-(f)) are selected instead of HFAMs (Fig. 1(a)-(c)). The pressure profiles of 

Hilbert channels are superimposed in Fig. 2(d)-(f), which are similar to artificial monopole, dipole 

and multipole resonances patterns. For example, the low-bounds of first bandgap Ai are similar to a 

monopole, in which the pressure is concentrated in the central part of Hilbert channel, equally 

radiating along two propagation directions.22,24 Thus, the monopole and multipole resonances in 

folded channels originate from the Fabry-Perot resonances.37 Those resonance features can induce 

negative effective properties, which can generate a high reflection, resulting in the attenuation of 

sound waves.22 

The use of effective medium approach can be used for extracting extreme properties under 

long-wavelength assumption. The transfer-matrix method (TMM) is employed to relate the normal 

sound velocities and sound pressures on both sides of a mono-layer cell extending from x=0 to x=d 

as in Fig. 3(a), 
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Where Pi and Vi (i=l, r) are the complex pressures and normal sound velocities on the left and 

right sides of unit cell.  
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Where keff is a complex wave number, and the complex characteristic impedance can be 

calculated from Zeff=ρeff ω/keff. With the dispersion relation and Eq. (3), the effective mass density 

ρeff and effective bulk modulus Beff normalized to the background air are given by 
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To verify the correctness of the TMM, the S-parameter retrieval method have been also used for 

characterizing 3D HFAMs.41 By using the complex transmission and reflection coefficients of a 

monolayer cell as shown in Fig. 3(b), Beff and ρeff can also be obtained.                        

 

FIG. 3. The transmission characteristics and effective parameters of 3D HFAMs. (a) Schematic diagram of the 

TMM. (b) The transmission (black solid lines) and reflection (red solid lines) of unit cells of HFAMs. (c)-(e) show 

the Beff and ρeff of HFAMs based on TMM (blue circle) and S-parameter method (red solid line), respectively.  

Figure. 3(c)-(e) represent Beff and ρeff of the 3D HFAMs predicted by the TMM and S-parameter 

method, in which their results are consistent. It is clearly observed that Fig. 3(c)-(e) exhibit very rich 

negative behaviors for each Beff and ρeff even at such low-frequencies, and correspond to the 

transmission resonant characteristics in Fig. 3(b). For the first-order HFAMs in Fig. 3(c), there is a 

negative Beff and ρeff in one narrow frequency-band around 639Hz and 1250Hz, respectively. For the 
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second-order HFAMs in Fig. 3(d), Beff first turns to be negative from 164.8Hz to 186.1Hz, then in 

other narrow bands around 492Hz, 820.3Hz, 1151.8Hz, and 1482.3Hz; ρeff become negative around 

328Hz, 657.1Hz, 983Hz, 1301.8Hz, respectively. For the third-order 3D HFAMs in Fig. 3(e), it is 

seen that Beff produces negative values in four narrow bands around 46.3Hz, 138.9Hz, 231.4Hz, and 

323.8Hz; the negative ρeff arises in five narrow bands around 92.6Hz, 185.3Hz, 277.5Hz, 371Hz and 

462.4Hz, respectively. 

Note that as the order increases, the number of negative frequency-bands of Beff and ρeff 

increases gradually, and the negative bands move to the lower-frequencies. Moreover, the negative 

Beff and ρeff take place all around the resonant frequencies. It is also noticed that negative regions of 

Beff and ρeff coincide with the bandgaps range. In particular, to the third-order HFAMs, it appears the 

negative frequency-bands of Beff and ρeff in the ultra-low-frequency range blew 100Hz.  

We perform the sound transmission loss (STL) of 3D HFAMs with one monolayer cell to 

confirm our analysis, as shown in Fig. 4(a)-(c). The STLs are calculated by average sound pressure 

in the cross-section of output of a waveguide, which is show in Fig. 3(a). For the first two-order 

HFAMs, there are two and nine transmission dips at the frequencies range [0, 1500Hz], respectively. 

For comparison, STL (the blue circle) of a rigid cube with the same size by calculating the average 

sound pressure of output is illustrated in Fig. 4(a), in which the rigid cube does not produce sound 

attenuation. For the second-order HFAM, the structure size is almost 1/10 wavelength at resonant 

frequency around 493.5Hz with the wavelength of 700mm. Furthermore, Fig. 4(c) displays that the 

third-order HFAM can produce more frequency-bands of sound attenuation because it possesses 

much higher refractive index. Therefore, the proposed higher-order HFAMs with 

deep-subwavelength scales can produce low-frequency sound attenuation at multiple 

frequency-bands than 2D cases34 and membranes-type insulator.42,43 To analyze the reason of the 
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high sound attenuation, the right panel of Fig. 4 shows 3D sound pressure level (SPL) distributions 

and velocity profiles of 3D Hilbert channels at different resonant frequencies. It is clearly seen that 

most of the acoustic energy is concentrated inside Hilbert channels, leading to the sound attenuation 

through the monolayer structure. Additionally, Fig. 4(d), (f) and (j) show the SPL distributions of 

local velocity profiles of air particles of HFAM at the first attenuation frequencies of 634.5Hz, 

165.1Hz, and 46.3Hz, respectively. A clear inverse velocities flow is observed in the input and output 

ports of HFAM’s SPL, which originates from negative bulk modulus induced by the Fabry-Perot 

fundamental resonance. This similar situation occurs at the third frequency of 493.5Hz and 133.9Hz, 

shown in Fig. 4(h) and (l). In addition, as shown in Fig. 4(e), (g) and (k), while the cases are different 

for the second frequencies of HFAM at 1250Hz, 327.7Hz and 89.1Hz, respectively. The air velocities 

flow in the form of circular patterns, which originate from negative mass densities.  

 

FIG. 4. (a)-(c) STL of a monolayer cell of 3D HFAMs (red solid lines) and the rigid cube block with same size (blue 

circle). (d)-(l) 3D SPL distributions and velocity profiles of Hilbert channels at different resonant frequencies. The 

blue arrows show the direction of the air velocity. The length size of the arrows is normalized into better 

observations.  

In summary, we have proposed and investigated a class of 3D HFAMs inspired by 

Hilbert-shaped fractal architectures, which can be as sound insulations with multi-bands and 
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lightweight characteristics in deep-subwavelength scales. We find that the number of bandgaps 

increase and the bandgaps gradually shift to low-frequencies regime as the order of fractal increases. 

Remarkably, the multi-bands characteristic of 3D HFAMs are attributed to the Fabry-Perot resonance, 

which induce the multi-bands negative effective bulk modulus and mass density, resulting in acoustic 

wave suppression. Therefore, these properties exhibit that proposed 3D HFAMs with the 

deep-subwavelength scales can produce sound insulations of multiple frequency-bands below 500Hz, 

while the airflows are not restricted.  
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