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Abstract—In this paper, we introduce a cooperative edge
network model which enables edge nodes to cooperate in sharing
computing and radio resources with the aim of minimizing the
total energy consumption for mobile users while meeting their
delay requirements. To find the optimal task offloading decisions
for mobile users, we first formulate the joint task offloading
and resource allocation optimization problem. However, this
optimization problem is a mixed integer non-linear programming
(MINLP) with both binary and real variables, i.e., offloading
decisions and resource allocations, respectively, that is an NP-
hard problem and intractable to find the optimal solution. Thus,
we introduce a relaxing approach which transforms the MINLP
to a relaxed optimization problem with real variables. After
proving that the relaxed problem is a convex problem, we propose
two solutions, namely ROP which is adopted from the interior
point method and IBBA which is developed from the branch
and bound algorithm. Through the numerical results, we show
that our proposed approaches allow minimizing the total energy
consumption and meeting all delay requirements for mobile users.

Keywords- Task offloading, mobile edge computing, re-
source allocation, MINLP, and branch-and-bound algorithm.

I. INTRODUCTION

The development of mobile applications and Internet-of-
Things (IoT) networks has brought a great deal of benefits for
human lives, but it also faces many challenges. In particular,
mobile and IoT applications have been developed recently
often require computations with high complexity, e.g., 3D
rendering and image processing, and/or low delay constraints,
e.g., interactive games and online object recognitions. How-
ever, mobile and IoT devices are usually limited by computing
resources, battery life, and network connections, and thus
advanced applications may not be able to implement on these
devices in practice. Thus, mobile edge computing has been
introduced as an effective solution to address this problem.

Mobile Edge Computing (MEC) is an emerging network ar-
chitecture that “move” the cloud computing capabilities closer
to the mobile users [1]. Specifically, in an MEC network,
powerful computing devices, e.g., servers, are deployed at the
edges of the mobile network to support hardware resource-
constrained devices, e.g., mobile and IoT devices, to perform
high complexity computational tasks. The deployment of MEC
networks can save energy consumption, increase operation
time, and reduce performance delay for smart devices through
utilizing powerful resources of the edge nodes. Furthermore,
this can reduce operation costs for mobile network operators
up to 67% by reducing the total throughput and peak backhaul
bandwidth consumption [2]. As a result, technical standards
for MEC are being developed by the European Telecommu-
nications Standards Institute to promote the development of
MEC in future mobile networks [3].

However, an MEC node does not possess abundant com-
puting resource as that of the public cloud, e.g., Amazon
Web Services and Microsoft Azure. Additionally, although
computation offloading demand from mobile users is usually
high, not all computational tasks benefit by being offloaded to
the edge node. Some tasks even consume more energy when
being offloaded than processed locally due to the commu-
nication overhead, i.e., transmit requests and receive results.
Consequently, joint task offloading and resource allocation to
minimize energy consumption for mobile devices under the
edge’s resource constraints and delay requirements is the most
important challenge in MEC networks [1].

In [4], the authors study an energy efficient computation
offloading scheme in a multi-user MEC system. In particular,
the authors first formulate an energy consumption optimization
problem with explicit consideration of delay performance.
Through analyzing the relationship between mobile users’
demands and edge computing node’s capacity, the authors
then can derive the optimal offloading probability and transmit
power for mobile users. Aiming to minimize the overall cost of
energy, computation, and delay for all users, the authors in [5]
introduce a joint offloading and resource allocation for com-
putation and communication in an MEC network. Due to the
NP-hard problem, the authors proposed a three-step algorithm
including semidefinite relaxation, alternating optimization, and
sequential turning. In addition, there are some other research
works in the literature studying different approaches for jointly
energy efficiency and delay management in MEC networks.
For example, the authors in [6] present a computation of-
floading game model to address the distributed computation
offloading decision problem for mobile users, and the authors
in [7] introduce a computation offloading hierarchical model
in which a task can be offloaded to an MEC node or a cloud
server.

In this work, we study a cooperative MEC network in
which edge nodes are deployed in the same area to support
high complexity computation tasks of the mobile users. The
edge nodes have different radio and computing resources,
meanwhile mobile users have distinct computation tasks with
various delay requirements. To minimize the total energy con-
sumption for mobile users in the network and meet all tasks’
delay requirements, we first formulate the joint task offloading
and resource allocation optimization problem for all mobile
users and edge nodes. Since the optimization problem is a
mixed integral non-linear programming (MINLP) which is NP-
hard and intractable to solve, we introduce a relaxing solution
which converts binary decision variables to real values. We
then prove that the relaxed optimization problem is a convex
problem which can be solved by some effective methods,



e.g., the interior point method (IPM). Although the IPM can
find the optimal solution for relaxed problem, the obtained
decision variables are real numbers which may not be practical
in implementing in the MEC network. In addition, when
converting decision variables to real values, the complexity of
optimization problem becomes higher, which is inefficiency to
implement in MEC networks, especially when the number of
variables is large. Therefore, in this paper, we introduce IBBA,
an improvement of branch and bound algorithm to address the
MINLP. The proposed IBBA allows not only finding optimal
binary variables for offloading decisions, but also utilizing the
characteristics of binary variables to reduce the complexity in
finding the optimal solution. The extensive numerical results
are then performed to demonstrate the efficiency of proposed
solutions in terms of minimizing the total energy consump-
tion for mobile devices and meeting delay requirements for
offloading tasks.

II. SYSTEM MODEL

A. Network Model

We consider a mobile edge computing network (MEC) with
N mobile users, M cooperative edge nodes, and one cloud
server as shown in Fig. 1. The set of mobile users and MEC
nodes in the network are denoted by N = {1, 2, . . . , N}
and M = {1, 2, . . . ,M}, respectively. Each mobile user has
computing tasks which can be processed locally or offloaded
to MEC nodes to execute. The time is slotted, and in each
time slot, it is assumed that each mobile user can send one
computing task to one of the edge nodes in the network. If a
task is decided to be executed at an MEC node, the mobile user
will send the requested task to the target edge node. After the
task is performed at the edge node, the result will be sent back
to the user. Note that if the edge node does not have sufficient
computing resources or it cannot meet the delay constraint of
the task, the edge node will send the task to the cloud server
for processing.
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Fig. 1: Cooperative mobile edge computing network.

B. Mobile Devices

At each time slot, mobile user i has a task which needs to be
executed. The task is defined by a tuple Ii

(
Di

i, D
o
i , Ci, T

r
i

)
,

in which Di
i is the input data size (including input data and

execution code), Do
i is the output data size, Ci is the number

of CPU cycles that is required to execute the task, and T r
i

is the delay requirement of task Ii. In this paper, we set T r
i

as the maximum delay requirement of the task. Each mobile
device has a processing rate defined by f li which expresses
the hardware capability of the mobile device.

C. MEC Nodes

We assume that each MEC node j has a resource capability
denoted by a tuple (Ru

j , R
d
j , F

f
j ) in which Ru

j , Rd
j and F f

j

are total uplink rate, total downlink rate, and CPU cycle
rate, respectively. These resources can be allocated partially
to perform mobile users’ offloading tasks.

D. Cloud Server

All MEC nodes are assumed to be able to connect with a
public cloud server. If a task is sent to an MEC node, but
the MEC node cannot perform due to the resource or delay
constraint, the edge node will forward the task to the cloud
server for processing. We denote the data rate between an
MEC node and the cloud server as rfc, and the the processing
rate assigned to each task on the cloud server as f c.

III. PROBLEM FORMULATION

In this paper, we consider a joint offloading and resource
allocation problem in which the total energy consumption
of mobile devices is minimized. We denote the computation
offloading decision variable for task Ii by xi = (xli, x

f
i , x

c
i ),

in which xli, x
f
i and xci respectively indicates whether task Ii

is processed locally at the mobile device, an MEC node, or
the cloud server. Here, the variable xfi = (xfi1, x

f
i2, ..., x

f
iM )

is to determine which MEC node will execute the task Ii.
Similarly, the variable xci = (xci1, x

c
i2, ..., x

c
iM ) is to determine

which MEC node will forward the task to the cloud server.
In this paper, we solve the offloading decision and resource

allocation problem jointly aiming at minimizing the total
consumed energy for mobile devices in the network under
the delay constraints of computation tasks. In the following,
we will present analysis for energy consumption and expected
delay for computing tasks under three scenarios, i.e., local,
MEC node, and cloud server processing.

A. Local Processing

For the local computing approach, the offloading decision
for task Ii is defined by xi = (1, 0, 0). In this case, the
consumed energy El

i of the mobile device is proportional to
the CPU cycles required for task Ii and the expected delay T l

i

is the execution time of the task. We have:

El
i = viCi, (1)

and
T l
i =

Ci

f li
, (2)

where vi denotes the consumed energy per CPU cycle [8].



B. MEC Node Processing

For the MEC node processing approach, the offloading
decision for task Ii is defined by xi = (0, 1, 0). If task
Ii is processed at MEC node j (xfij = 1), the MEC node
will allocate spectrum and computation resources for mobile
device i, defined by a tuple rij = (ruij , r

d
ij , f

f
ij), in which

ruij , rdij respectively are uplink rate, downlink rate for input
and output transmissions, and ffij is CPU cycle rate for the
task being processed at MEC node j. In this case, the energy
consumption at the mobile user is for both transferring data
to and receiving data from the MEC node j, and the delay
includes time for transmitting input data, receiving output data
and task processing at the MEC node.

Let euij and edij denote the energy consumption for transmit-
ting and receiving a unit of data, respectively. The consumed
energy of mobile device Ef

ij and the delay T f
ij are given by:

Ef
ij = Eu

ij + Ed
ij , (3)

and

T f
ij =

Di
i

ruij
+
Do

i

rdij
+
Ci

ffij
, (4)

where Eu
ij = euijD

i
i and Ed

ij = edijD
o
i .

Additionally, task Ii can be processed at only one MEC
node, and thus the consumed energy Ef

i of mobile device and
the delay T f

i since task Ii is processed at MEC node j is
defined as follows:

Ef
i =

M∑
j=1

xfijE
f
ij , (5)

and

T f
i =

M∑
j=1

xfijT
f
ij , (6)

s.t. {
xfi =

∑M
j=1 x

f
ij = 1,

xfij ∈ {0, 1},∀j ∈M.
(7)

C. Cloud Server Processing

For the cloud computing approach, the offloading decision
for task Ii is defined by xi = (0, 0, 1). If MEC node j forwards
task Ii to the cloud server (i.e., xcij = 1), the MEC node will
allocate communication resource for mobile device i, defined
by a tuple rij = (ruij , r

d
ij , f

f
ij), in which ruij , rdij are uplink rate,

downlink rate for input and output transmissions, and ffij = 0.
After receiving the task, the MEC node j sends the input data
to the cloud server for processing, then receives and sends
the result back to the mobile device. In this case, the total
consumed energy Ec

ij at the mobile user is the same as in the
case of the MEC processing, while the delay T c

ij includes the
time for transmitting the input from mobile user to the MEC
node, time from the MEC node to the cloud server, time for
receiving the output from the cloud server to mobile user via
the edge node, and task-execution time at the cloud server.
These performance metrics are as follows:

Ec
ij = Ef

ij = Eu
ij + Ed

ij , (8)

and

T c
ij =

Di
i

ruij
+
Do

i

rdij
+

(Di
i +Do

i )

rfc
+
Ci

f c
. (9)

Similarly, because only one MEC node can forward task Ii
to the cloud server, the consumed energy Ec

i of mobile device
and the delay T c

i since task Ii is processed at the MEC node
are defined as follows:

Ec
i =

M∑
j=1

xcijE
c
ij , (10)

and

T c
i =

M∑
j=1

xcijT
c
ij , (11)

s.t. {
xci =

∑M
j=1 x

c
ij = 1,

xcij ∈ {0, 1},∀j ∈M.
(12)

Let Ei and Ti, respectively, be the consumed energy of
mobile device and the delay when task Ii is processed. Note
that a task can be executed at either the mobile device, an
MEC node, or the cloud server. Thus, we have:

Ei = xliE
l
i + xfi E

f
i + xciE

c
i , (13)

and
Ti = xliT

l
i + xfi T

f
i + xciT

c
i , (14)

s.t. {
xli + xfi + xci = 1,

xli, x
f
i , x

c
i ∈ {0, 1}.

(15)

From (7), (12) and (15), we derive the following offloading
constraints:


xli + xfi + xci = xli +

∑M
j=1 x

f
ij +

∑M
j=1 x

c
ij = 1,

xli, x
f
i , x

c
i ∈ {0, 1},

xfij , x
c
ij ∈ {0, 1},∀(i, j) ∈ N×M.

(16)

The expressions (13) and (14) can be rewritten as follows:

Ei = xliE
l
i +

M∑
j=1

xfijE
f
ij +

M∑
j=1

xcijE
c
ij

= xliviCi +
M∑
j=1

xfij
(
euijD

i
i + edijD

o
i

)
+

M∑
j=1

xcij
(
euijD

i
i + edijD

o
i

)
,

(17)

and

Ti = xliT
l
i +

M∑
j=1

xfijT
f
ij +

M∑
j=1

xcijT
c
ij

= xli
Ci

f li
+

M∑
j=1

xfij

(
Di

i

ruij
+
Do

i

rdij
+
Ci

ffij

)

+

M∑
j=1

xcij

(
Di

i

ruij
+
Do

i

rdij
+

(Di
i +Do

i )

rfc
+
Ci

f c

)
,

(18)



s.t. {
xli +

∑M
j=1 x

f
ij +

∑M
j=1 x

c
ij = 1,

xli, x
f
ij , x

c
ij ∈ {0, 1},∀(i, j) ∈ N×M.

(19)

In this paper, we address the joint offloading decision {xi}
and resource allocation {ri} problem in which the objective is
to minimize the total energy consumption of all mobile devices
and all delay constraints must be satisfied, i.e.,

(P1) min
{xi},{ri}

N∑
i=1

Ei, (20)

s.t. 

xli +
∑M

j=1 x
f
ij +

∑M
j=1 x

c
ij = 1,

xli, x
f
ij , x

c
ij ∈ {0, 1},∀(i, j) ∈ N×M,

Ti ≤ T r
i ,∀i ∈ N,∑N

i=1 f
f
ij ≤ F

f
j ,∀j ∈M,∑N

i=1 r
u
ij ≤ Ru

j ,∀j ∈M,∑N
i=1 r

d
ij ≤ Rd

j ,∀j ∈M,

ruij , r
d
ij , r

f
ij ≥ 0,∀(i, j) ∈ N×M.

(21)

The optimization problem (P1) is an NP-hard. Hence,
standard optimization techniques cannot be applied directly
and the globally optimal solution is unfeasible. Thus, in the
following, we introduce two effective approaches to address
this problem.

IV. PROPOSED OPTIMAL SOLUTIONS

A. Relaxing Optimization Solution

In this section, we introduce a relaxing approach which
allows to find the optimal solution through converting binary
decision variables, i.e., {xi}, to real variables. By relaxing
binary variables to real numbers, we then can reformulate the
optimization problem (P1) as follows:

(P2) min
{xi},{ri}

N∑
i=1

Ei, (22)

s.t. 

xli +
∑M

j=1 x
f
ij +

∑M
j=1 x

c
ij = 1,

xli, x
f
ij , x

c
ij ∈ [0, 1],∀(i, j) ∈ N×M,

Ti ≤ T r
i ,∀i ∈ N,∑N

i=1 f
f
ij ≤ F

f
j ,∀j ∈M,∑N

i=1 r
u
ij ≤ Ru

j ,∀j ∈M,∑N
i=1 r

d
ij ≤ Rd

j ,∀j ∈M,

ruij , r
d
ij , r

f
ij ≥ 0,∀(i, j) ∈ N×M,

(23)

To find the optimal solution for (P2), we will prove that
the relaxed problem is a convex optimization problem.

THEOREM 1. The relaxed problem (P2) is a convex opti-
mization problem.

Proof. From (17), the energy consumption of task i, Ei, is
a linear function of decision variable xi. Consequently, the
objective function

∑N
1 Ei is a linear function with respect to

real decision variables {xi}.
From (18), the delay Ti is the sum of linear and linear-

fractional functions: xli,
xf
ij

ruij
,

xf
ij

rdij
,

xf
ij

ff
ij

, xcij ,
xc
ij

ruij
and

xc
ij

rdij
for all

j in M, These functions have positive coefficients: Ci, Di
i , D

o
i ,(

Di
i+Do

i

ffc + Ci

fc

)
, Di

i and Do
i , respectively. Thus, Ti(xi, ri) is

a concave function with respect to xi and ri [9].
Since the objective function in (22) is a linear function,

and the constraints in (23) are concave functions, the relaxed
problem is a convex optimization problem [9].

To solve the relaxed optimization problem (P2), we can
apply some effective tools as mentioned in [9]. In this paper,
we adopt the interior-point method [9] to find the optimal
solution because this is a very effective tool to address the
convex optimization problem with constraints. We assume
that a central cloud server or an MEC node with powerful
computing capability and energy will solve the optimization
problem (P2). Then, the results will be distributed to all
mobile devices and edge nodes to perform.

B. Improved Branch and Bound Algorithm

Although the relaxing approach can address the join of-
floading and resource allocation (P1), its obtained optimal
decision variables are real numbers which are impractical
to implement in MEC networks. Furthermore, the relaxing
approach cannot utilize the advantage of binary variables in
reducing the complexity and finding the optimal solution.
In particular, binary variables have only two variables, i.e.,
either 0 or 1. In addition, when the value of a variable is
zero, its product will be zero, which allows to reduce the
computational complexity significantly. Thus, we introduce an
improved branch and bound algorithm, namely IBBA, which
allows not only addressing the MINLP, but also utilizing the
characteristics of binary variables to reduce the complexity of
optimization problem (P1).

In this paper, we exploit the following properties of the
optimization problem (P1) to propose the IBBA.
• Branching task dictates that a task can be executed at

only one place, i.e, at the mobile device, one of edge
nodes, or the cloud server via an MEC node. Thus, for the
offloading decisions xi = {xli, x

f
i1, ...x

f
iM , x

c
i1, ...x

c
iM}

there is only one variable that is equal to 1, and all
others are equal to 0. Thus, at a node in the IBBA tree,
we choose to branch the decisions of a task, forming a
(2M+1)-tree with height N . Here, (2M+1) is the number
of offloading decision variables of a task, and N is the
number of tasks.

• Simplifying problem dictates that when a task is ex-
ecuted at mobile device, an edge node, or the cloud
server via an edge node, all other MEC nodes do not
need to allocate resources toward that task. Thus, when
xfij = 0 or xcij = 0, we can eliminate all sub-expressions
of the forms xfijA and xcijB, these decision variables,
and related resource allocation variables ffij , ruij and rdij
in (P1). Consequently, we have sub-problems with the
reduced number of variables.

• Preserving convexity dictates that after fixing some
binary variables, sub-problems are convex optimization
problems. In particular, based on Theorem 1, it can be
observed that if we fix one or multiple binary variables



in (P1) and set all other variable to be real variables, the
corresponding relaxed sub-problems are always convex.

Based on three aforementioned properties, we introduce
Algorithm 1. This algorithm not only allows to find the optimal
solution for the optimization problem (P1) faster, but also
provides optimal binary offloading decision variables which
can be efficiently implemented in MEC networks in practice.

Algorithm 1: IBBA Algorithm

Input : Set of tasks {Ii
(
Di

i, D
o
i , Ci, T

r
i

)
}

Set of MEC nodes {Nodej(Ru
j , R

d
j , F

f
j )}

Cloud server rfc, f c

Output: Optimal variables of problem (P1)

1 begin
2 Solution← ∅; optV al← +∞
3 Stack.empty(); Stack.push((P1))
4 while Stack.isNotEmpty() do
5 curProb← Stack.pop()
6 tempSol, tempV al← Solve relaxing problem

of curProb
7 if tempV al > optV al or curProb is infeasible

then
8 Prune curProb
9 end

10 if tempV al < optV al then
11 if tempSol satisfies all integer constraints

of {xi} then
12 Solution← tempSol
13 optV al← tempV al
14 Prune curProb
15 end
16 else
17 subProblems← Branch curProb by

fixing the decisions of the first task in
the set {Ii}, which is not fixed so far,
based on Branching task property.

18 for each subProb in subProblems do
19 Simplify subProb based on

Simplifying problem property.
20 Stack.push(subPob)
21 end
22 end
23 end
24 end
25 Return Solution and optV al
26 end

C. Offloading Analysis

Before conducting experiments, we analyze when mobile
users can benefit from offloading. A mobile user is said to be
benefit from offloading if its total energy consumption when
the task is offloaded is lower than processing locally. When the
task is processed at the mobile device, the consumed energy
depends on the required CPU cycles for the task. However,
if the task is offloaded, the consumed energy at the mobile

device is for both transferring input data Di
i to and receiving

output data Do
i from an MEC node, thus the energy depends

only on the input and output data sizes. If an MEC node does
not have sufficient resource, it will forward the task to the
cloud server for processing. In other words, in the offloading
case, the energy required does not depend on whether the
task processed at an MEC node or the cloud server. Thus,
for the task i, offloading will benefit if El

i > Ef
i . While El

i

is a function of required CPU cycles, Ef
i is a function of

input/output data sizes. Therefore, we introduce parameter α
as ratio between the number of required CPU cycles and input
data size in order to quantify the likelihood of offloading tasks.
Let α∗i be the task complexity ratio at which El

i = Ef
i . We

have:

α∗i =
euijD

i
i + edijD

o
i

viDi
i

. (24)

Let αi be the ratio between the number of required CPU
cycles Ci and input data size Di

i . We have Ci = αi × Di
i .

Thus, task i is likely to be offloaded if El
i > Ef

i or αi > α∗i .
This parameter is especially important in evaluating offloaded
tasks as well as analyzing the performance of whole system.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We use the configuration of a Nokia N900 mobile device
described in [10], and set the number of devices as N = 10.
Each mobile device has CPU rate f li = 0.5 Giga cycles/s
and the unit processing energy consumption vi = 1000

730 J/Giga
cycle. We denote U(a, b) as discrete uniform distribution
between a and b. Here, we assume that each device has a
task with the input and output data sizes following uniform
distributions U(10, 20)MB and U(1, 2)MB, respectively. We
also assume that each task has required Ci CPU processing
cycles defined by αi×Di

i Giga cycles, in which the parameter
αi Giga cycles/MB is the complexity ratio of the task. Addi-
tionally, we consider 4 MEC nodes. Both uplink and downlink
transmission rates for each MEC node are 72 Mbps as in the
capacity range of IEEE 802.11n. Besides, each MEC node has
the total processing rate ffj = 10 Giga cycles/s. The uplink
and downlink transmission rates between MEC nodes and the
cloud server are constants set at rfc = 5 Mbps. The cloud
server can allocate a fixed CPU rate f c = 10 Giga cycles/s
for a task. All parameters are given in Table I.

Here, we refer the policy in which all tasks are processed
locally as “Without Offloading” (WOP), and the policy in
which all tasks are offloaded to the MEC nodes or the cloud
server as the “All Offloading” (AOP). The results obtained
by Algorithm 1 (IBBA) will be compared with the relaxing
optimization policy (ROP), WOP, and AOP.

B. Numerical Results

1) Scenario 1 - Vary the Complexity of Tasks: In this
scenario, we investigate the effect of task complexity on the of-
floading decisions and energy consumption of mobile devices
by varying the complexity of all tasks. At first, we choose the
complexity ratio of tasks αi as U(200, 500) cycles/byte, then



TABLE I: Experimental parameters

Parameters Value
Number of mobile devices N 10
Number of MEC nodes M 4
CPU rate of mobile devices f li 0.5 Giga cycles/s
Processing energy consumption rate vi 1000

730
J/Giga cycles

Input data size Di
i U(10, 20) MB

Output data size Do
i U(1, 2) MB

Required CPU cycles Ci αi ×Di
i

Unit transmission energy consumption euij 0.142 J/Mb
Unit receiving energy consumption edij 0.142 J/Mb
Delay requirement T r

i [30, 60]s
Processing rate of each MEC node F f

j 10 Giga cycles/s
Uplink data rate of each MEC node Ru

i 72 Mbps
Downlink data rate of each MEC node Rd

i 72 Mbps
CPU rate of the cloud server fc 10 Giga cycles/s
Data rate between FNs and the cloud rfc 5 Mbps

increase each task 100 cycles/byte for each experiment. The
delay requirement is set at 40s for all tasks. Other parameters
are set as in Table I.
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Fig. 2: Trend of offloading as the task complexity αi increases.

Fig. 2 depicts the trend of offloading tasks when the task
complexity ratio αi is increased. While the trend of offloading
tasks of the WOP and AOP are constants, i.e., 0 and 10,
respectively, the offloading trends of both IBBA and ROP
go up as αi increases. Specifically, the numbers of offloaded
tasks of the IBBA and ROP are equal 0 as the complexity
ratio increases from U(200, 500) to U(600, 900). This is
because αi is less than α∗i , which is equal to 911 cycles/byte
according to Eq. (24) and parameters in Table I. Moreover,
all tasks executed locally still can satisfy the delay constraints
(T r

i = 40s). Then, the numbers of offloading tasks increase
dramatically from 0 to 10 since the task complexity ratio
αi increases from U(600, 900) to U(1000, 1300). This is
because there is an increasing number of tasks with αi > α∗i .
Noticeably, Fig. 2 also shows that all tasks get benefit from
offloading when αi is in the ranges from U(900, 1200) to
U(1000, 1300).

Fig. 3 shows the average energy consumption of mobile
devices for IBBA, ROP, WOP and AOP, when αi increases
from U(200, 500) to U(1000, 1300). Generally, while the
average energy consumption is a constant (18.4J/task) for the
AOP, it increases for other methods. This is because in the

AOP, all tasks are offloaded and the consumed energy at
mobile devices depends only on the data sizes of Di

i and
Do

i . For the WOP, the consumed energy increases linearly
according to the task complexity ratio. Similar to Fig. 2, the
energy consumption trends of the IBBA and ROP are the same
because their offloading decisions are impacted by the energy
efficiency factor without constraints.

Fig. 3 shows that the optimal values of both IBBA and ROP
are always lower than or equal to the minimum value of the
WOP and AOP. Specifically, as αi increases from U(200, 500)
to U(600, 900), the consumed energy of the IBBA and ROP
are equal to the case of the WOP because all tasks are
processed locally due to no benefit from offloading. Then, the
consumed energy of both IBBA and ROP will be reduced a bit
as αi increases from U(700, 1000) to U(800, 1100) because
some tasks can be offloaded now. When the complexity ratio
increases from U(900, 1200) to U(1000, 1300), all tasks get
benefit from offloading, and thus for the IBBA and ROP, all
the tasks are processed at either MEC nodes or the cloud
server, leading to the equality in consumed energy of the three
methods except WOP.
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Fig. 3: Average energy consumption of mobile devices as the
task complexity αi is increased.
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Fig. 4: Average task processing delay as the task complexity
αi is increased.

Fig. 4 shows the average delay as the task complexity
is increased. Generally, the average delay increases for all



policies. Remarkably, the average delays of the IBBA and ROP
are always lower than the delay requirement T r

i = 40s. From
the average delay of the AOP policy, we can observe that the
offloading computation can support all tasks with less than 10s
of the delay requirement T r

i .
2) Scenario 2 - Vary the Task Delay Requirements: In this

scenario, we study the impact of task delay requirements on
the energy consumption and offloading decisions of mobile
devices. We keep the settings as in Table I, and select a set
of the tasks with complexity αi following U(800, 1100) from
Scenario 1. Specifically, there are 6 tasks receiving benefits
from offloading due to αi > α∗i = 911 cycles/byte. We then
change input/output data sizes of one task so that even it does
not get benefit from offloading, but its local processing delay
T l
i is greater than 60s. The delay requirement T r

i for all tasks
increases from 30s to 60s.
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Fig. 5: Trend of offloading as the delay requirement is looser.

Figs. 5 and 6 illustrate the trend of offloading tasks and
average energy consumption, respectively. As observed in
Fig. 5, at T r

i = 30s, while IBBA has 9 offloaded tasks, ROP
has only 7 offloaded tasks. As mentioned before, there are only
6 beneficial tasks from offloading, and IBBA algorithm always
returns the optimal integer solution. Thus, 9 offloaded tasks in
IBBA including 6 tasks which get benefits from offloading
and 3 tasks with the local processing delay T l

i greater than
T r
i . Besides, ROP is derived directly from the solution by

solving the relax problem (P2). Thus, there is an inaccurate
proportion in the results. With task i which does not get benefit
from offloading and the local delay T l

i > T r
i , the IBBA will

decide to offload it, but ROP will decide to process locally if
xli is greater than all xfij and xcij variables. Similarly, while the
IBBA maintains 7 offloaded tasks including 6 beneficial tasks
and a task with local delay T l

i > 60s as T r
i increases from 40s

to 60s, ROP offloads only 6 beneficial tasks. Consequently, in
Fig. 6, the consumed energy of ROP is always lower than
IBBA, the actual MINLP solution. The ROP has to pay for
this by having a proportion of tasks that will not satisfy
the constraints. In summary, in both IBBA and ROP, when
the delay requirements are looser, tasks without benefit from
offloading, tend to be processed locally aiming at reducing the
consumed energy.

While Scenario 1 exposes the benefit of offloading com-
putation in term of consumed energy at mobile devices, in
Scenario 2, the offloading policy is applied to reduce the delay

of processing tasks satisfying delay constraints.

30 35 40 45 50 55 60

Delay Requirement Ti
r (s)

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4

A
ve

ra
ge

 E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

/ta
sk

)

IBBA
ROP
WOP
AOP

Fig. 6: Average consumed energy at mobile devices when the
delay requirement is looser.

VI. SUMMARY

In this paper, we study the offloading problem for the coop-
erative mobile edge computing network in which mobile edge
nodes cooperate to perform computation requirements of the
mobile users. To minimize the total energy consumption and
meet all delay requirements of mobile users, we formulate the
joint offloading decision and resource allocation optimization
problem, and propose two effective methods, i.e., IBBA based
on the Branch and bound method and ROP based on the
interior point method, to find the optimal solution for both
the mobile users and edge nodes. The numerical results then
verify the efficiency of the proposed solutions.
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