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Abstract—To harvest short-lived whitespaces that account for
more than 30% of the cellular bands, it is critical to maintain
a radio environment map with the most updated sensing results
(i.e., with a fine timescale in minutes/seconds or even real-time).
In this work, we develop a novel Real-Time Incentive Solution
(RTIS) that rewards mobile users for contributing their spectrum
sensing data to a real-time radio environment map. In particular,
we first develop a spectrum sensing system including a mobile
application for multiple mobile sensors and a cloud database.
Then, we develop an incentive mechanism for the system by
assessing the sensing results and providing proper incentives to
the participants. Specifically, this mechanism will provide pre-
prices to the crowdsourcing users to guarantee their minimum
payment and encourage them to perform sensing tasks, thereby
forming a spatio-temporal model. The coefficients of this model
are then learned iteratively and the post-prices are adjusted for
the crowdsourcing users according to their contributions to the
model. The experiment results show that our proposed solution
can achieve better user utility and lower overall system cost than
those of some existing works.
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I. INTRODUCTION

Radio Environment Maps (REMs) have been becoming a

promising tool for optimizing radio coverage, interference

management and resource allocation in wireless communica-

tion networks. REMs provide a comprehensive radio resource

usage map for the network providers through utilizing multi-

domain information from geolocation databases, characteris-

tics of spectrum use, geographical terrain models, propagation

environment, and regulations [1]. REMs are also critical

components in the latest spectrum sharing frameworks SAS

and LSA proposed by FCC (in the US) and ETSI in the

Europe, respectively. However, one of the main challenges

for the development of REMs is how to make meaningful

predictions about the current and future occupancy of the

channels or spectrum usage. Most existing REMs are updated

on a coarse time scale (e.g., in days or months like the Google

Spectrum Database).

To achieve a good prediction of spectrum usage, the most

effective way is to involve explicit calculation of diffrac-

tions. However, this method requires prohibitive amounts of

data. Alternatively, we also can deploy a sensor network

to collect data. However, such an approach may incur an

excessive implementation and maintenance cost. Considering

Fig. 1. The implementation system includes (1) the sensors that can be
attached to the mobile devices, (2) a web based service and (3) an APP
developed to process the sensing results.

the dynamic feature of spectrum usage, the periodic sensing

at fixed locations is neither flexible nor efficient. On one

hand, continuous and wide spectrum sensing or regularly

collecting data is not meaningful, particularly when there is no

wireless transmission. Therefore, it is better to hand over the

sensing tasks to the crowdsourcing users who are actually the

customers and users of the spectrum. Smart phones nowadays

are able to act as sensors to provide qualified sensing data for

the REMs. However, they are hardware constrained devices

with limited battery capacities. Thus, how to encourage mobile

users to participate in crowdsourcing tasks is an emerging

challenge.

Considering all aforementioned challenges, in this paper,

we propose a Real-Time Incentive Solution (RTIS) by apply-

ing prediction and aggregation procedures to spectrum data,

including hardware and software, as illustrated in Fig. 1. By

collecting spectrum sensing data from the crowded mobile

users, this model can accommodate complex spatio-temporal

models. The model characterizes the temporal trend at each

location as a combination of empirically derived temporal

basis functions, and embed the spatial domains of coefficients

for the basis functions using separate regression models with



spatially correlated residuals. The proposed approach allows

us to implement a scalable single-stage estimation procedure

that may be informative to see snapshots of spatial events in

real-time.

The rest of the paper is organized as follows. In Section

II, related works and contributions are presented. In Section

III, the preliminaries and problem formulation are provided.

In Section IV, we describe the details of the proposed RTIS.

We then provide simulation results and analysis in Section V.

Finally, conclusions are given in Section VI.

II. RELATED WORKS AND CONTRIBUTIONS

A. Related Works

The recent report [2] has pointed out that the database-

assisted spectrum sharing is a promising approach to improve

the utility of limited spectrum resources. Though significant

progress has been made to address various technical issues of

spectrum database, very few studies looked at the economic

issue of spectrum database [3] [4]. A large-scale spectrum

monitoring by the operator can be very costly and may not

be necessary all the time. Various auctioning models (e.g.,

[5] [6]) have been discussed, the pricing setting and spatio-

temporal based REM have not been adequately addressed.

An economic solution to collect spectrum data is to rely on

crowdsourcing (also referred to as crowdsensing) in which the

sensing tasks are carried on by the mobile users in exchange

for incentives [7] [8] [9].

The authors in [8] consider that the mobile devices tend

to behave differently in the crowdsourcing tasks. They char-

acterize the devices heterogeneity in terms of data quality

(or hardware noise) and sensing costs. In [10], the users

can choose any subset of tasks with pre-defined values and

ask for minimum payments. In [9], the authors define an

empirical quality indicator for each user as the deviation

from the average of its most recent measurements, and focus

on minimizing the total payment for users while meeting a

certain quality of service. In [11], the authors focus on data

quality estimation of uncalibrated devices with an expectation

maximization algorithm, and propose a pricing mechanism

for general sensing purposes. However, they ignore that the

spectrum data is both time-related and space-related. In the

space domain, the subregions are generally performed based

on the spatial dependence [12] and similarly in [13], the

authors produce a land cover map with the maximal spatial

dependence. However, there always exists uncertainty in re-

sultant fine-resolution land cover maps, due to the lack of

information of the terrestrial spatial pattern.

All the above solutions do not consider the willingness of

users to take the sensing tasks and the instant user experience

to contribute real-time sensing data. In this work, we develop a

pricing mechanism that provides users with real-time incentive

and also considers the users’ waiting cost.

B. Novelty and Contributions

Crowdsourcing is a prominent method of measuring REM,

which achieves reasonable assignment and effective coverage

of sensing tasks by taking advantage of the combined knowl-

edge and input of the masses. In comparison with dedicated

spectrum measurements, crowdsourcing could be adaptive to

dynamic REM. Particularly, in the busy hours, users should be

not only the spectrum users, but also the spectrum monitors

(e.g., to detect violators of FCC radio spectrum regulations).

The spatio-temporal models are useful tools for the spec-

trum usage prediction. However, as spatio-temporal kriging

based on the complete database is computationally expensive

[8], it poses a question of how to select the best subset from

the spatio-temporal space. This implies that the crowdsourcing

users have to wait until the decision is made, and thus they

may fail to take the sensing tasks.

Moreover, most existing works aim to optimize the system’s

cost in the perspective of the system instead of the user’s

utility. In this paper, we provide a flexible two-step pricing,

i.e., fixed pricing and variable pricing. The fixed pricing is

pre-pricing, which aims to guarantee the user’s minimum

payment, while the variable pricing is post-pricing, which

helps the system to measure the user’s contribution to the

system.

Our proposed solution focuses on an incentive mechanism

based on the real-time spatio-temporal model. The main

contributions of this paper are as follows.

• Dynamic model: we further develop the spatio-temporal

model which periodically updates the prediction model

to adapt to the spectrum’s dynamics.

• Instant payment: rather than selecting the best set of

crowdsourcing users, we provide a real-time incentive

solution for every user with different payment. This

reduces the risk/cost of users’ waiting and then further

improves the user utility.

• Fixed and variable pricing: we design a two-part

pricing mechanism for the crowdsourcing users, i.e., pre-

price/fixed price and post-price/variable price. The fixed

pricing guarantees the users’ minimum payment, while

the variable pricing helps the system measure the users’

contributions to the prediction model to provide the right

incentive.

III. PROBLEM FORMULATION

A. User Model

The incentive architecture and the interactions between the

users and the system are shown in Fig. 2. In the sequel, we

adopt the basic spatio-temporal model [14].

The spectrum sensing data are contributed by a countable

set of crowdsourcing users, defined by N = {(si, ti) : i =
1, 2, ...}, in which si ∈ R2 is the location and ti ∈ T
is the time. Denoting the sensing result (e.g., received sig-

nal strength) within a band modeled by z(s, t), the spatio-

temporal field can be expressed as follows:

z(s, t) = μ(s, t) + δ(s, t), (1)

where μ(s, t) is the mean and δ(s, t) is the essentially random

space-time residual.

The crowdsourcing users’ payment is not a constant [3]

[8] [5], but a variable, depending on their contributions to



Fig. 2. System model: the price matrix is updated based on the decision
model and released to the crowdsourcing users.

the system’s prediction. For example, if the spectrum sensing

data is very different from the system’s prediction, then the

spectrum sensing data will contribute to modify the system

prediction model. Note that if the spectrum sensing data is

the same as the system’s prediction, this sensing data has no

contribution to the prediction model. Although the spectrum

sensing data has no contribution to the prediction model,

the crowdsourcing user still had spent some energy for this

task. For this reason, the crowdsourcing user should be paid.

Therefore, we define the pricing by two parts, i.e., the pre-

price p(s, t) and the post-price p(s, t). The pre-price p(s, t)
is a fixed reward for the user’s energy, and it is paid to the

user before the task, while the post-price p(s, t) is variable

aiming to help the system to measure the user’s contribution

and happens after the sensing task. Thus, the user’s expected

payment is defined by:

pi(s, t) = pi(s, t) + pi(s, t). (2)

The existing inventive mechanism [8] focuses on selecting

the best subset users and to have an optimal REM with a

lower system cost, which actually ignores the time factor due

to not considering user’s waiting time. For example, in the

existing approaches, the crowdsourcing users have to wait and

have some risk to be rejected until the system’s decision.

Furthermore, they may not be selected in the best subset,

which can cause bad user experiences or reduce the user’s

utility. Hence, we define the user’s utility with the waiting

factor as follows:

ui(t) = pi(s, t)e
−at, a ≥ 0. (3)

where a is non-negative and reflects the tolerance of the

waiting. For example, a small a means that the user still wants

to take the task even though he/she has to wait for a long time.

In our proposed RTIS, we have a = 0, which means that the

crowdsourcing user will have an instant payment.

Then, we further define the cost of the system as the

summation of all the users’ payment as follows:

C =
∑
i∈N

pi(s, t). (4)

For a system, it has a budget B to reward all the crowd-

sourcing users, and the summation of payment should meet

B ≥ C.

Note that the user can immediately execute the sensing tasks

rather than wait for the other participants and compete against

them. This is a significant difference from the existing work

[8] and the auction model [5], which process multiple users at

a certain time and determine the winners and losers. Because

the mobile devices have limited battery capacities, the users

should be the ones to trigger a spectrum transaction rather

than the system.

B. Estimation Model

The system collects the sensing results z(s, t) and updates

them to the spectrum database Z−(s, t), then forms the latest

spectrum database as Z(s, t) = Z−(s, t)∪z(s, t). Since all the

spectrum data is stored, the decision component can estimate

the future spectrum usage pattern by

z+(s′, t′) = Z+(s′, t′)− Z(s, t), for t′ > t.

= EΔt(Z(s, t), s′, t′), for t′ > t.
(5)

where E denotes the estimation algorithm, z+(s′, t′) denotes

the estimated future result at time of t′(t′ > t) and location

s′, Z+(s′, t′) denotes the estimated spectrum database at the

time of t′(t′ > t) and location s′. Δt is the learning interval

(how often the estimation model is updated). Moreover, if

the prediction model is updated at a short period Δt, there

may not be sufficient training data and the model may be

inaccurate. Therefore, a proper Δt should be investigated to

achieve a good trade-off.

IV. PROPOSED PRICING MECHANISM

A. Learning Interval Δt

RTIS is an adaptive model that will be updated at the period

of Δt, called the learning interval. This is due to keeping pace

with the dynamic changes in REM. On the one hand, merging

the new coming data into the training data set contributes

to modifying the existing prediction model. On the other

hand, frequently updating the prediction model is not always

necessary because this may cause more energy cost or when

training a large scale of data, this even can not be completed

within time of Δt. Therefore, the minimum Δt must be longer

than the training time. Note that considering the practice and

our data scale, we only set the learning interval Δt as 1, 2,

5, 10, 15, 20, 30 and 60 minutes.

B. Prediction Model

The spatio-temporal models are often used to represent and

manage the dynamically changing geographic data, such as

weather data and air pollution [14]. Because data is collected

in the manner of discrete sampling in terms of time and

location, interpolation methods are used to rebuild the whole

map at any time and location. However, spectrum data is more

dynamic and it is very difficult to achieve a good prediction

of REM. Therefore, we adopt the feature-based models and

further estimate the model parameters using machine learning

techniques.



Based on the basic spatio-temple model (1) in [14] and the

spectrum feature duration the period of Δt, we rewrite:

μ(s, t) =
∑
m

βmTm(s, t) +
∑
n

γn(s)gn(t) (6)

where the Tm(s, t) is time interval effect, and m and n are

the indices of the time and locations’ functions, βm is the

coefficient for the interval effects, γn(s) are spatially varying

coefficients for the temporal functions, and gn(t) are smooth

temporal basis functions.

To learn a good prediction model, one needs to adjust

involved parameters. Following the basic idea of machine

learning, we treat all the input data with different features.

Then, following (5), we rewrite (1) and (6) as follows:

Z+
Δt(s, t) = {z+(s′, t′)|t < t′ ≤ t+Δt}

= {EΔt(Z(s, t), s′, t′)|t < t′ ≤ t+Δt}
= {EΔt(x, y,m, n, β, γ, δ)|t < t′ ≤ t+Δt}
= {

∑
wifi(x, y,m, n, β, γ, δ)|t < t′ ≤ t+Δt}

= {Fw|t < t′ ≤ t+Δt},
(7)

where Z+
Δt is the estimated spectrum data set for the next

duration Δt, fi indicates the features, and wi is the feature’s

weight. Note that (x, y) is a transformation of location s
and represents the geographic coordinates. However, it is not

enough to capture the people’s activities. We add more infor-

mation or covariates to the spectrum data, like the distance to

the nearest main road and the apartment region.

We use the Mean Squared Prediction Error (MSPE) to

evaluate the prediction model.

MSPE(Z,Z+
Δt) =

∑
(Z −Z+

Δt)
2. (8)

C. Pre-pricing Rule

The payment consists of pre-price p(s, t) and post-price

p(s, t). Accordingly, to ensure the budget balanced B ≥ C,

we also separate the budget in two parts as

BΔt = B +B, (9)

where BΔt is the total budget for all crowdsourcing users

in the duration Δt; and B and B are total pre-budget and

post-budget respectively. Furthermore, we also use

η =
B

BΔt
, (10)

to investigate how they affect the final system cost and user

utility, and this is illustrated in Section V. Assume that the

expected number of participating users within time Δt is

k = E(Z(s, t)|Δt) =
∑
Δt

|Z(s, t)|φ(s, t), (11)

where φ(s, t) is the probability that a user takes the sensing

task. So for each user, we have

p(s, t) ≤ B

k
=

B∑
Δt |Z(s, t)|φ(s, t) , (12)

which means that all the crowdsourcing users would equally

share the guaranteed pre-budget.

D. Post-pricing Rule

On the one hand, the post-pricing is designed to reward

the users by measuring how much contribution they made to

the REM prediction model. Let b(s, t) denote the user’s post-

budget and similar to (12), we have

p(s, t) ≤ b(s, t) =
B

k
=

B∑
Δt |Z(s, t)|φ(s, t) . (13)

So b(s, t) is also the maximum payment for the user’s

post-price p(s, t). Specifically, aiming at relating it to how

many contributions the user makes to the prediction model,

we further define the post-price p(s, t) as

p(s, t) = b(s, t)(1− e−α), (14)

where

α = K||z(s, t)−Z+
Δt(s, t)||, (15)

is the contribution factor. Here, the coefficient α is calculated

by the distance function K to measure the goodness of the

estimated value. For example, if the distance is big, which

means the prediction is not accurate, then we treat this sensing

task as a big contribution (i.e., α → ∞) and the user deserves

full post-budget as p(s, t) = b(s, t). Otherwise, if the distance

is close to zero (i.e., α → 0), the user will be paid by p(s, t) →
0.

The distance can be calculated as the straightforward dif-

ference as α =
∑

Z(s, t) − Z+(s, t). However, this may be

incorrect to measure the difference between them, so we use

another method to measure the increment of the information

(or mutual information) that the sensing result brings to the

prediction model, i.e.,

α = I(Z;Z+)

= H(Z)−H(Z|Z+)

= H(Z) +H(Z+)−H(Z,Z+)

=
∑
s

φ(s) log
1

φ(s)
+

∑
t

φ(t) log
1

φ(t)
−

∑
s,t

φ(s, t) log
1

φ(s, t)

=
∑
s,t

φ(s, t) log
φ(s, t)

φ(s), φ(t)
.

(16)

where φ(s, t) is the probability at the spatio-temporal space.

This is because the coming sensing result will bring some

certainty to the existing model and help to enhance the

accuracy. Note that the probability φ of the crowdsourcing

users can be derived by the statistical history data Z−(s, t).

E. Overall RTIS Procedure

The overall pricing algorithm is shown in Algorithm 1

where |N | denotes the number of training data, and the

prediction model EΔt is updated at the learning interval of

Δt. First, the probability φ(si) a user takes the task at this



(a) APP screenshot 1: before taking
the task;

(b) APP screenshot 2: after taking
the task.

Fig. 3. A mobile user can monitor the real-time pre-price (0.26) and also
obtain the post-price (0.46) after completing the sensing task.

location of si, probability φ(ti) a user take the task at this

time of ti, and the probability φ(si, ti) can be calculated by

the history database. Second, the pre-price is given to the

user, and the user can choose to accept the task or not. Third,

if the task is accepted and submitted, the post-price will be

calculated by the system and given to the user. Otherwise, the

spectrum database is not updated and the user is paid as zero.

Algorithm 1: Real-time Incentive Procedure

Input: z(s, t) and history Z−(s, t)
Output: payment p(s, t) and Z(s, t)

1 calculate the probabilities:

2 φ(si) ←|Z−(si)|/|N |
3 φ(ti) ←|Z−(ti)|/|N |
4 φ(si, ti) ←|Z−(si, ti)|/|N |
5 present the pre-price p(s, t), following (12)

6 if accepted then
7 update the current sensing result to the history

8 following (14)(16), calculate the post-price p(s, t)
9 Z(s, t) = z(s, t) ∪ Z−(s, t)

10 p(s, t) = p(s, t) + p(s, t)
11 else
12 no update to the history Z(s, t) = Z−(s, t)
13 p(s, t) = 0
14 end

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

RTIS. We first present the screenshots of APP and web

service, which are shown in Fig. 3 and Fig. 4, and then give

the analysis of the prediction model. Here, a in (3) is set at

1.

A. Software and Data Discretization

We feed the collected sensing data which is in the scale of

thousands into the model. One collected data is displayed in

the web service, as shown in Fig. 4. The continuous data may

not be convenient, so we discretize all the submitted sensing

results into 10MHz-channels as

z(s, t) =

{
Q(ci)

∣∣i =
⌊
bandwith

10

⌋}
, (17)

where i is the index of the channel, the bandwidth is the

bandwidth that the sensor can monitor, e.g., bandwidth = 700
MHz, and Q(ci) indicates channel c’s quality, defined as

Q(ci) =

∫
ci
z(s, t)

10
. (18)

B. Gradient Descent Model

Considering the spatio-temporal model is a multi-variable

function, we choose gradient descent as our machine learning

model [15]. Following (7), we treat Z+
Δt as the estimated set

and Z as the test set, to minimize the loss function, which is

defined as

L =
1

2
(Z −Z+

Δt)
T (Z −Z+

Δt), (19)

and we have
∂L

∂w
= FT (Fw − Z). (20)

The model will keep learning iteratively until it reaches

the minimum of (20). We compare two methods of gradient

descent, i.e., fixed learning rate and adaptive learning rate,

known as Adagrad [15]. We compare their efficiency and

MSPE as shown in Fig. 5. The Adagrad method takes less

time and has lower MSPE, so we select it as our machine

learning model in this paper. Note that RTIS can adopt any

learning model to learn the parameters of the spatio-temporal

model.

C. System Cost and User Utility

In Fig. 7 and Fig. 6, the main performance of average user

utility and system cost are shown, and the proposed RTIS and

Ying’s approach [8] are compared. In Fig. 6, the user utility is

always better than that of Ying’s approach. Especially, when

the learning interval Δt becomes longer, RTIS’s advantage is

more significant. This is because reducing the user’s waiting

time leads to a higher utility because waiting users may not

take the tasks.

Furthermore, in Fig. 7, although the system’s cost increases

when the learning interval becomes larger, the slope of the

curves decreases. This is because when the learning interval is

longer, the training model has more data and higher accuracy

so the post-price is given less to the users, i.e., the users are

provided fewer rewards. When the learning interval is longer

than about 15 (Δt ≥ 15), RTIS’s performance is always better

than Ying’s. This is because a too short learning interval causes

a bad prediction model but a proper learning interval can

improve the performance.



Fig. 4. Screenshot: the sensing result over band 1000-1700 MHz shown in the web service.

Fig. 5. Comparison of the fixed and Adaptive gradient decent models in
terms of MSPE and complexity.

Fig. 6. Providing an instant payment can improve the user’s utility, and the
advantage is more obvious when the learning interval is larger.

VI. CONCLUSION

In this paper, we propose a novel Real-Time Incentive

Solution (RTIS) that encourages mobile users to participate

in sensing tasks and evaluates their contributions to the radio
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Fig. 7. The effect of budget ratio on the cost: a higher percent of pre-budget
is better when the learning interval is shorter. This is because short interval
leads to lower accuracy, and more post-budget is paid. Thus, setting the pre-
budget in short interval higher is attractive for more users to take the task.

environment map in a real-time manner. We also present a

demonstration about how to outsource the spectrum sensing

tasks to the mobile users and compare the proposed solution

with some current works in terms of the system cost and the

user utility. The contribution of this paper is a formalization

of the real-time pricing mechanism based on spatio-temporal

prediction and aggregation with respect to spectrum sensing.

From the hardware to the software and the algorithm, it can be

clearly seen the feasibility and flexibility of the crowdsourcing

spectrum sensing tasks achieved by the proposed RTIS. In the

future work, we will focus on how to improve the prediction

accuracy and scale the existing spectrum sensing using RTIS

with massive data.
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