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Abstract—In this paper we consider two extensions of the Gacs-
Korner common information to three variables, the conditional
common information (cCI) and the coarse-grained conditional
common information (ccCI). Both quantities are shown to be
useful technical tools in the study of classical and quantum
resource transformations. In particular, the coarse-grained con-
ditional common information is shown to have an operational
interpretation as the optimal rate of secret key extraction
from an eavesdropped classical source pxyz when Alice (X)
and Bob (Y) are unable to communicate but share common
randomness with the eavesdropper Eve (Z). Moving to the
quantum setting, we consider two different ways of generating
a tripartite quantum state from classical correlations pxyz:
(i) coherent encodings Zzyz \/Pzyz|zyz) and (ii) incoherent
encodings > . Ppay:|ryz){(zyz|. We study how well can Alice
and Bob extract secret key from these quantum sources using
quantum operations compared to the extraction of key from
the underlying classical sources pxy z using classical operations.
While the power of quantum mechanics increases Alice and Bob’s
ability to generate shared randomness, it also equips Eve with
a greater arsenal of eavesdropping attacks. Therefore, it is not
obvious who gains the greatest advantage for distilling secret key
when replacing a classical source with a quantum one. We first
demonstrate that the classical key rate of pxyz is equivalent
to the quantum key rate for an incoherent quantum encoding
of the distribution. For coherent encodings, we next show that
the classical and quantum rates are generally incomparable,
and in fact, their difference can be arbitrarily large in either
direction. Finally, we introduce a “zoo” of entangled tripartite
states all characterized by the conditional common information
of their encoded probability distributions. Remarkably, for these
states almost all entanglement measures, such as Alice and
Bob’s entanglement cost, squashed entanglement, and relative
entropy of entanglement, can be sharply bounded or even exactly
expressed in terms of the conditional common information. In
the latter case, we thus present a rare instance in which the
various entropic entanglement measures of a quantum state can
be explicitly calculated.

I. INTRODUCTION

Resource transformations generally concern transforming
noisy resources into useful ones. One particular resource
transformation is the problem of secret key distillation, which
studies the extraction of secret key ®xy - qz from some
initial tripartite correlation pxy . Here, ®xy is a perfectly
correlated and uniformly random bit shared between Alice
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and Bob and ¢z is an arbitrary distribution held by an
eavesdropper. Often, the correlations pxy 7 are presented as a
many-copy source p’xy-,, and Alice and Bob wish to know the
optimal rate of secret bits per copy that they can distill from
this source. It turns out that Alice and Bob can often enhance
their distillation capabilities by openly disclosing some infor-
mation about X and Y through public communication [1]],
[2]]. In general, Alice and Bob’s communication schemes can
be interactive with one round of communication depending
on what particular messages were broadcasted in previous
rounds. Such interactive protocols are known to generate
higher key rates than non-interactive protocols [2]. It is also
possible to consider scenarios in which Alice and Bob are
not allowed to communicate, yet they still have access to
some publically shared randomness that is uncorrelated with
their primary source pxyz. Clearly public communication is
a stronger resource than public shared randomness since the
former is able to generate the latter. In fact, whereas public
communication can significantly improve Alice and Bob’s
ability to distill secret key, public shared randomness offers
no advantage whatsoever, as we demonstrate in this paper.

We envoke a conditional form of the Gacs-Kdrner common
information to fully analyze the problem of key distillation
using shared randomness [3]. Recall that the original task
studied in Ref. [3] involves Alice and Bob constructing source
codes for X and Y by computing some common variable Jxy
from their individual variables. The value H(Jxy) quantifies
the greatest asymptotic average sequence-length of matching
codewords per copy when Alice and Bob independently apply
optimal source encodings to their respective variables. For the
task of key distillation, Alice and Bob are likewise trying
to convert their sources into matching sequences of optimal
length. However, the key distillation problem is different in
two ways. On the one hand there is the additional constraint
that the common sequence should be nearly uncorrelated with
Eve. On the other hand, unlike the Gacs-Korner problem, it is
not required that these sequences belong to faithful encodings
of the sources X and Y. Nevertheless, we find that the coarse-
grained conditional common information (ccCl), H(Jxvy|Z),
quantifies the distillable key when Alice and Bob are unable
to communicate with one another. As shown below, this is
also the rate even if Alice and Bob have access to auxiliary
public randomness which is uncorrelated with their primary
distribution.

We refer to H(Jxy|Z) as the coarse-grained conditional
common information in order to contrast it to an alternative
tripartite extension of the Gacs-Korner common information.
While its definition will be made more precise in Sect.
[I-Al we define the conditional common information (cCI)



to essentially be the average common information of all the
conditional distributions pxy|z—. This quantity, denoted as
H(Jxy|z|Z), plays an important role in studying the task
of secrecy reversibility [4] (see also Sect. [[I-F). The value
of H(Jxy|Z) can be obtained by coarse-graining of the
common information in the conditional distributions pxy|7—.,
and hence H(Jxy|Z) < H(Jxy|z|Z).

Next, we move onto the secret key distillation problem in
the quantum regime. There are a variety of physical situations
in which one might encounter a many-copy source of variables
XY Z. Most notably is the task of quantum key distribution
(QKD) in which the variables XY Z are generated through
the inherently stochastic nature of quantum measurement [J].
Alice, Bob, and Eve share a tripartite quantum state of the form
|\Ilq(1q>ABE = Zx,yJ V p(:l?, Y, Z)|xyZ>ABEv where p(df, Y, Z)
describes a joint distribution for variables XY Z. We say that
|W 400> AP F is a quantum encoding (or “quantum embedding”)
of distribution p(z,y, z) since when the three parties measure
their quantum system in the computational basis (i.e. in the
{|z>4}, {|y)>P}, and {|2)F} basis respectively), their measure-
ment outcomes are distributed according to p(zx,y, z). If this
is done on multiple copies of |¥ ), the parties thus generate
a many-copy source of XY Z from which Alice and Bob can
distill secret key using public discussion and local processing.

Note that the above mentioned scenario only describes
one particular way that Alice and Bob could use multiple
copies of |¥,q,) to obtain key. With quantum mechanics,
more physical operations are allowed than just measuring in
the computational basis. Alice and Bob could, for instance,
put their local subsystems through some quantum channel
(i.e. a trace-preserving, completely positive map), or they
could engage in an interactive protocol of local quantum
operations and classical communication (LOCC) [6], [7], [8].
Naively then, it appears that with such greater operational
powers, Alice and Bob can always distill at least as much
key from a quantum source of |¥,,> than from a classical
source of the underlying distribution p(z,y, z). However, in
the quantum scenario, Eve also gains operational strength in
her eavesdropping abilities. This begs the natural question: for
the purpose of secret key distillation, who gains the greatest
advantage when embedding a given distribution p(z,y, 2)
into a multi-party quantum system, the honest parties or the
adversary?

Answering this question is a central aim of this paper.
Through the construction of specific examples, we show
that the advantage can lie either with Alice and Bob or
with Eve. Hence the adage “quantum is more powerful
than classical” is really a matter of perspective when it
comes to the task of secret key distillation. Furthermore,
we prove that quantum coherence plays the essential role
in affecting whether the quantum key rate differs from its
classical counterpart. More precisely, in the state | U ,,) given
above, the distribution p(x,y,z) is encoded as a coherent
superposition of the basis states |zyz)ABF. An alternative

form of quantum encoding is an incoherent mixture of states

pae” = X, 0@y, 2)|ryz){wyz|. We prove that even

when Alice and Bob are allowed to perform arbitrary LOCC
on pe.c, their optimal rate of key extraction is not improved

over the corresponding classical key rate. This result identifies
quantum superposition, i.e., quantum coherence [9], as a key
ingredient that distinguishes classical from quantum secret
key distillation, something that has not been fully understood
before.

Finally, we show how the study of classical secret key
distillation can have applications in the theory of quantum
entanglement. Our result involves computing several entangle-
ment measures of a quantum state based on the properties of its
embedded classical distribution. Evaluating some of the most
important entanglement measures for a general quantum state
is a notoriously difficult problem due to the variational charac-
ter of these measures. However, as we will demonstrate in this
paper, when embedding quantum states with certain types of
probability distributions, the entanglement can be bounded by
the secret key rate of the underlying distribution; and in some
cases the two are equivalent. In fact, the entanglement can
be characterized entirely in terms of the conditional common
information. This offers a remarkable demonstration of how
cryptographic results in classical information can be used to
uncover novel physical properties of quantum systems.

Before presenting these results in greater detail, we begin
in Sect. [II| with a relatively self-contained overview of the
necessary concepts. In particular, we present the Gacs-Korner
Common Information and its two generalizations: the condi-
tional common information (cCI) and the coarse-grained con-
ditional common information (ccCI). We then define classes
of probability distributions that possess special properties
such as the ability to dilute and compress secret correlations
at equal rates. We describe a unified framework for local
information processing and public communication in both
classical and quantum key distillation protocols. Secret key is
presented as a classical analog to quantum entanglement, and
the tasks of secret key distillation/formation are described as
the counterparts to entanglement distillation/formation. Sec-
tions and contain our main results. In Sect. we
provide an operational interpretation for the coarse-grained
conditional common information in the framework of classical
secret key distillation assisted only by common randomness.
Sect. presents results comparing secret key distillation in
the classical and quantum regimes. Finally, Sect. [V]offers some
concluding remarks.

II. PRELIMINARIES

A. The Gdcs-Korner Common Information and lIts Tripartite
Extensions

In this section, we introduce the Géacs-Korner bipartite
common information [3] and generalize it into two different
conditional forms.

A common partition of length t for random variables XY
with a distribution pxy (x,y) on X x ) are pairs of subsets
(X, Yi)i_; such that (see Figure [1)):

i) Xin&X; =YinY; =D fori+j,

(i) p(X:lY;) = p(VilX;) = 6i;, and
(iii) if (z,y) € X; x ); for some 14, then px (x)py (y) > 0.
For a given common partition, we refer to the subsets X; x
Y; as the “blocks” of the partition. The subscript ¢ merely



X
Y | Cla,y) =1 0 0
0 C(z,y) =2 0
0 0 C(z,y) =t

Fig. 1: With a suitable permutation, a distribution pxy on
X x Y can be arranged in a block diagonal form, where X =
U'_, X and Y = |J'_, V; for some t. A common partition
of pxvy (z,y) is said to be C(z,y) =i if (z,y) € X; x ;.

serves to label the different blocks, and for any fixed labeling,
we associate a random variable C(X,Y") called the common
partition variable such that C(z,y) = i if (z,y) € A; %
YV;. Note that each party can determine the value of C'(X,Y")
from his/her local information (i.e. C(X,Y) = f(X) = g(Y)
where f(z) =i if x € X; and g(y) = i if y € );). A maximal
common partition is a common partition of greatest length,
and it is not difficult to see that every pair of random variables
XY has a unique maximal common partition up to relabeling
of blocks. We let Jxy denote the common partition variable
of a maximal common partition, and we refer to Jxy as a
maximal common variable of X and Y.
Proposition 1 ([10]): The following are equivalent.

(a) Jxy is a maximal common variable of X and Y.
(b) Jxy belongs to the set

argmax{H(K) : 0 = H(K|X) = H(K|Y)},

and it is related to every other variable in this set by
an invertible function. Note that the maximization here is
(necessarily) restricted to all random variables with | K| <
min{| X[, [¥}.

(¢) If f(X) = g(Y) = C for any variable C, then C is a
function of Jxvy.

Since every pair of variables is uniquely associated with a
maximal common variable up to relabeling, entropic quantities
like H(Jxy) are uniquely defined for any X and Y. In their
original work, Gécs and Korner in fact identify H(Jxy) as
the common informatio of X and Y [3]. Each maximal
common variable Jxy ranges over the same finite set 7, and
it provides a decomposition of pxy as follows:

p(a?,y) = Z p('r’yU)p(j)v (1)
JjeJ

I'We remark that a variant of common information was defined in Ref. [11],
which also has important implications in tripartite secret correlations [12],
[13].

where for any x, 2’ € X and y,y’ € Y, the conditional distribu-
tions satisfy p(z, y|j)p(x. y'|") = 0 and p(z, y|j)p(a’, ylj") =
0if j &+ 5.

The following proposition provides a useful characterization
of values x and z’ that belong to the same block in a maximal
common partition.

Proposition 2 ([3)]): If Jxy () = Jxy (2'), then there exists
a sequence of values

!
TY1T1Y2X2 * * * YnT

such that p(z, y1)p(y1, z1)p(z1,y2) - - - p(Yn, ') > 0.

We now arrive to the main quantities studied in this pa-
per. For a tripartite distribution pxy z, the coarse-grained
conditional common information (ccCl) is defined simply
as the value H(Jxyl|Z). A different type of conditional
common information can also be considered. One first defines
a maximal conditional common variable Jyy |z, which is
a random variable depending on XY Z such that Jxy|z—, is
a maximal common variable with respect to the conditional
distribution pxy|z—.. Like the maximal common variable
Jxv, the maximal conditional common variable is unique for
every tripartite distribution pxyz up to a relabeling of the
various Jxy|z—.. Consequently, the quantity H(Jxy|z|Z)
is unique, and we refer to it as the conditional common
information (cCI).

Note that since Jxy|z—. is computed from both X and
Y with the additional information that Z = 2, maximality of
Jxy|z=. ensures that Jxy is a function of Jxy|z—. for each
z € Z. Therefore, H(Jxy|Z) < H(Jxy|z|Z) with equality
iff H(Jxy|z|ZJxy) = 0. When the equality condition holds,
it means that for each 2z € Z, the value of Jyy|z_. can be
determined from Jxy alone. In other words, there must exist
maximal common variables {Jxy|z—. : z € Z} such that
Jxy(x) = i implies Jxy|z—.(x) = i whenever px|z_.(z) >
0. For these maximal common variables, we therefore have
H(Jxyz|X) = H(Jxyz|Y) = 0.

B. A Zoo of Tripartite Distributions

We next introduce families of different tripartite distribu-
tions that are important to our study. The maximal conditional
common information Jxy |z is useful in characterizing these
classes. A distribution pxy z is said to be ([LO], [4]):

« Block independent (BI) if I(X : Y|Jxy|zZ) = 0.
Table [I] provides an example of a block independent
distribution.

o Uniform block independent (UBI) if there exists a
maximal conditional common variable Jxy |z such that
both I(X : Y|ny‘ZZ) = 0 and H(ny|Z‘X) =
H(Jxy|z|Y) = 0. Note that for UBI distributions,
the ccCI is equivalent to the cCI (i.e. H(Jxy|Z) =
H(Jxvy|z|Z)). Tableprovides an example of a uniform
block independent distribution.

o Uniform block independent under public discus-
sion (UBI-PD) if it is BI and there is a public com-
munication protocol generating messages M such that
poux)my)(zamy is UBL and I(M : Jxy|z|Z) = 0.
Table [III| provides an example of a UBI-PD distribution.



X —
Z =0 0 1 2 Z =1 0 1 2 Z =2 0 1 2
0 1/8 1/8 0 1/6 1/6 0 172
Y
1 1/8 178 1 1/6 1/6 1 1/8 1/8
2 172 2 1/3 2 1/8 1/8

TABLE I: An example of a block independent (BI) distribution.

the conditional probability p(z,y|z).

In this example, Z = {0, 1,2} and the probability depicted is

X —
Z =0 0 1 2 Z =1 0 1 2 Z =2 0 1 2
0 1/8 1/8 0 1/6 1/6 0 1/4 1/4
Y
1 1/8 178 1 1/6 1/6 1
2 172 2 1/3 2 172

TABLE II: An example of a uniform block independent (UBI) distribution. In this example, Z = {0, 1,2} and the probability

depicted is the conditional probability p(z, y|z).

X —
Z =0 0 1 2 Z =1 0 1 2 Z =2 3 4 5
0 1/8 1/8 0 1/6 1/6 0 172
Y
1 1/8 1/8 1 1/6 1/6 1 1/8 1/8
2 172 2 173 2 1/8 1/8

TABLE III: An example of a uniform block independent under public discussion (UBI-PD) distribution. In this example,
Z ={0,1,2} and the probability depicted is the conditional probability p(z,y|z). Alice who holds the random variable X can
announce whether the value is in the range {0, 1,2} or {3,4,5}. After this public announcement M, Alice and Bob will hold

a UBI distribution D(XM)(Y M)(ZM)-

o Uniform block independent under public discussion
and eavesdropper’s local processing (UBI-PD)) if there
exists a channel Z|Z such that Pxyz is UBI with the
required public communication M also satisfying I(Z :
J XY|7|M7) = 0. Table provides an example of a
UBI-PD| distribution.

« Semi-unambiguous [14] if H(Z|XY) = 0.

o Unambiguous [I3] if H(Z|XY) = 0
H(XY|JxyzZ) = 0.

and

Being BI means that given Z, Alice and Bob share no more
correlations besides their block number specified by some
maximal conditional common variable Jxy|z. For UBI dis-
tributions, the blocks of the conditional distributions pxy|z—.
can be ordered in such a way that is independent of Z, and
their number can therefore be computed locally by Alice and
Bob. Finally, for UBI-PD, the distribution becomes UBI once

Alice and Bob exchange messages M which, from Eve’s
perspective, is independent of their block number. For semi-
unambiguous distributions, the random variable Z can be
uniquely determined by random variables X and Y'; while
for unambiguous distributions, each random variable can be
uniquely determined by the other two random variables.

The relations between these distributions are depicted in

Figure

C. A Unified Framework for Local Information Processing
and Public Communication

In this section we review the definitions of classical and
quantum local operations and public communication (LOPC).

1) Classical Operations: In the classical LOPC setting,
each party is allowed to perform the following operations:



Z =0 0 1 2 Z =1 0 1 2 Z=0 0 1 2
0 172 0 172 _ 0 172
Y AV
1 1/8 1 1/8 532 | == 1 1/8 1/8
2 3/8 2 5/32 1716 2 1/8 1/8

TABLE IV: An example of a uniform block independent under public discussion and eavesdropper’s local processing (UBI-
PD|) distribution. In this example, Z = {0, 1} with pz(0) = 1/5 and pz(1) = 4/5. The rightmost table is a full coarse-graining
of Z, where Z contains only one value 0. Alice and Bob can generate Jxyz without public communication.

Fig. 2: The relations between known classical distributions.

Generate local random variables that are uncorrelated
with the variables held by any other party.

Copy the value of any locally held variable.

Change the values of any locally held variables accord-
ing to some function.

Broadcast the result of any computed function over an
authenticated public channel.

®

(ii)
(iii)

(iv)

Note that operations (i) - (iii) encompass any sort of noisy
processing that a party may wish to perform. A general
classical LOPC protocol P. then consists of two phases:
Phase I - a coordinated and multi-round exchange of public
messages in which each message is a function of some party’s
local variables, and Phase II - each party processes his/her
variables in a way that can depend on the particular messages
exchanged in Phase I, thereby generating the output variables
of the protocol. It is not difficult to see that the variables
produced by any sequence of operations (i)—(iv) can always
also be generated by a protocol following this two-phase
format [11], [2], [16].

Consider now an arbitrary random variable G that is dis-
tributed according to pe over alphabet G. Formally, we will
represent G as a quantum state:

wa = Y, p(9)lgXyl,

=Y

2)

where the |g) are orthonormal vectors for a vector space of
dimension |G|. Suppose that the party holding G announces

some public message described by random variable M ranging
over set M. Then the resulting state has the form

wam = Y, Y, plg,m)lgXgl® [mym|©,

ge€G meM

3)

where we use the convention that system C' holds the public
communication accessible to all parties (including Eve).

2) Quantum Operations: In the quantum LOPC setting,
each party is allowed to perform the following operations:

(i) Perform a local quantum instrument (&, )., [17], where
each &, is a completely positive (CP) map, and their
sum Y &, is a trace-preserving map. Quantum instru-
ments represent the most general type of quantum mea-
surement. When performing the instrument on the state
o, the “measurement” outcome m is obtained with prob-
ability p(m) = tr[€y,(0)], and the post-measurement
state given this outcome is o, = Ep(0)/p(m) for
p(m) > 0.

(ii) Broadcast the result of any quantum measurement.

A general quantum LOPC protocol P, is described by a
multi-level “tree” of local instruments in which the choice of
instrument performed at each node of the tree depends on the
particular history of measurement outcomes leading up to that
node (see Ref. [18]], [8], [6] for details). Classical operations
(1)—(@v) above fall within the framework of local quantum
instruments since evaluating a function is a special type of
quantum measurement in which the measurement outcome is
the function’s value. Therefore, quantum LOPC generalizes
the notion of classical LOPC.

In both classical and quantum LOPC protocols, we assume
that only Alice and Bob engage in public discussion and Eve
is passively eavesdropping. With a slight abuse of notation,
for a given classical/quantum protocol we use P./P, to denote
both the particular protocol as well as the map associated with
the protocol. For instance, when a quantum LOPC protocol is
performed on state 0B the overall action can be expressed
as

O,ABE N a,ABEC _ Pq(O_ABE) _ Zp(,rn)(_),TA;LBEQ@|,'n><,'n|C7
m

where a;;‘LBE is the tripartite state generated when m is the

total broadcasted message.



D. Classical and Quantum Secret Key Rates

Throughout this paper, we will assume that some basis for
Alice, Bob, and Eve’s system has been chosen and is fixed.
Each of these is typically referred to as the computational basis
for the given system and is denoted by {|z)4}%4,, {|y>B}zi 1
and {|2)P}?2 | respectively. Let pxyz be an arbitrary three-
way joint probability distribution for random variables X, Y,
and Z which takes on values p(z,y,z). We introduce the

following physical instantiations of pxy z:
o A coherent embedding (or qqq embeding):

|\I/qq11> = Z \/p(xayaz)|xyz>ABE' (4)

T,Y,z

« A one-sided incoherent embedding (or cqq embedding):

Pegqg = Zp(x)|x><x|’4 ® [ (W] P 7, (5)
where [1h,) = > /p(y, 2[x)[yz).

« A two-sided incoherent embedding (or ccq embedding):

pecg = ¥, p(@, )|z ayl P @ [y )hay P, (6)

T,y

where |¢;ry> = Z \/ZW|Z>

« An incoherent embedding (or ccc embedding):

T play, 2)|eyz oy PP ()

T,Y,2

Pcce =

Note that p... corresponds to the state wxy z introduced in
Eq. ). We can therefore think of p... as either a classical or
quantum object, the difference being dictated by whether it is
processed using either classical or quantum LOPC.

The various embeddings can be related through a series of
local physical transformations:

(1) (2) (3)
|¢qqq><¢qqq| > Pecqq — Pceq —> Pcces ®)

where (1) is attained by Alice performing a dephasing channel
0 — ) leyalole)al

and likewise for (2) and (3). One can also consider a dephasing
exclusively on Eve’s side. This corresponds to the state

page =, D0 PP @ )2E, (9)

’ ’
zZ r,xhy,y

where [1) = 3 /ol g )

Secret Key Distillation: The scenario we consider is an iden-
tical, independent, and discrete (i.i.d.) source that is generating
some particular embedding of pxyz for Alice, Bob and Eve.
The goal of Alice and Bob is to distill secret key, which is
shared randomness held independently of Eve’s system. We
denote the state corresponding to log s bits of perfectly shared
randomness by

(10)

1 s—1
(I)AB _ = Ny AB.
N

1=0

Y

The notion of secret key rate is defined as follows.

Definition 3: For a distribution pxy z, we say that R is a
(classical) LOPC achievable key rate if for every ¢ > 0,
there exists a classical LOPC protocol P. acting on Alice
and Bob’s parts of o4BF := p&" (for n sufficiently large)
and generating the state 6A5FC (with C being the public
communication system) such that

3 [64PEC — 9P @5FC| | <k, (12)
where 65¢ = TrypcAPPC and llogs > R — e. The
supremum achievable key rate is denoted by Kp(pxyz). We
say that R is a ccc, ccq, cqq, or qqq LOPC achievable key
rate if there exists a quantum LOPC protocol P, to replace P,
in Eq. (T2), and we further take 045% := p&1, gABE .= p@n,

cce?
oABE = pn or gABE = |10 1gqq|®™ respectively.

The supremum achievable key rates in these scenarios are
denoted by KD(pccc)’ KD(/Occq)a KD(chq) and KD(’L/)QQQ)
respectively [19].

We are also interested in key distillation scenarios where
the public communication is replaced with public shared
randomness. This can be seen as a special subclass of LOPC
protocols in which the only public communication consists
of one message that distributes to all parties (including an
eavesdropper) a random variable W which is uncorrelated
with XY Z. We say that R is a common randomness (c.r.)
achievable key rate if Eq. is satisfied with the public
communication just establishing common randomness in this
way. We denote the supremum of all achievable c.r. key rates
as K" (pxvz)-

E. Quantum Entanglement

Quantum pure entanglement [20] is a resource shared be-
tween two or more quantum systems that is distinct from secret
key. However, quantum entanglement and secret keys share
many similarities [21], [22[], [23], [24], [25], [141], [26], 1271,
(150, [28]. Starting from a tripartite pure state |¥ ., Alice
and Bob share one entangled bit (ebit) of quantum information
in the state |4, if it has the form

W q)*PE = @204 @ [0)F, (13)

where [®2)45 := 1/1/2(]00) + [11))45 is a so-called ebit
and |p)F = > 4/p(2)|2) is any state held by Eve. On the
surface, the tripartite state |, Y BF = |®2)AB®|p)F looks
very similar to the state pr]gE = 058 @ |p)p|F, which
contains one bit of distillable secret key and is obtained from
| W02 PE through dephasing by Alice and Bob. However
there is a critical difference between the two states. For
P E @ | o) |, it is entirely consistent that there should exist
some third party Sapna (S) who holds as side information
the value of Alice and Bob’s bit in <I>’243 In other words,
we can envision a four-party state oAPPS P4B%
lo){p| ¥ with @555 = 2(]000)<000|+|111)(111]). And while
Kp(cABF) = 1, there is no secrecy with respect to Sapna:
Kp(c4B%) = 0. In contrast, Alice and Bob’s entanglement
in |Uapg) exists regardless of what side information is

Note that throughout the paper, we will explicitly write out the projector
|®2)(P2|, and reserve the notation P2 for a classical (diagonal) state.



known. That is, if Treg(cABF%) = |0y} ®y|4E for any
state oABFS | then necessarily o4PF° has the product-state
form oABES = |0y (D,|AB @ o5, This means that if Alice
and Bob should dephase when holding the state o429 they
will generate key that is secret from not only Eve but also
Sapna: |®o)}{®2|1F ® 09 — 48 ® 0P, Therefore, pure-
state entanglement is intrinsic to bipartite systems themselves
and, unlike secret key, one does not need to introduce any
third party to speak of its pure entanglementE]

Similar to the secret key rate Kp, one can also define for
pAB the entanglement distillation rate £ [29]. This quantifies
the asymptotic rate for which ebits can be obtained from p*%
using local operations and classical communication (LOCC).
The operational class LOCC differs from quantum LOPC in
that the former makes no explicit reference to a third party
who records the “public” communication. It is a fundamental
and challenging problem in quantum information to compute
Ep(pAP) for a given quantum state. Almost all meaningful
measures of entanglement provide an upper bound for Ep
[30], and three such measures are the relative entropy of
entanglement [31]], the squashed entanglement [32], and the
entanglement of formation [33]:

o E,.(p"B): the relative entropy of entanglement is

E,(p*?) = min §(p|o), (14)
gE
where S is the set of separable density operators and
S(pllo) = —Tr[plogo] — S(p) is the relative entropy;
o By (pB): the squashed entanglement is

1
Ey(p*P) = = inf I(A: B|E), ass,

2 pABE

15)

where the infimum is taken over all extensions pABF
such that Trg p*BF = pAB and I(A : B|E),ane =
S(AE) + S(BE) — S(ABE) — S(E) is the conditional
quantum mutual information of the state pABF,

o Ep(p“P): the entanglement of formation is

Er(p"?) = min Y p(3)S(Tra 1),

(3

(16)

with the minimization taken over all decompositions
PP =30 p(@)|pi){pil-
The particular significance of these entanglement measures is
that they provide upper bounds not only for the distillable
entanglement but also for distillable key.

Theorem 4 ([34]], [30], [35]], [36]): For an arbitrary tripartite
state [Wgqq) PP with pAP = Trp [Woeq)(Wyqeq|* P, the
rates Kp(W,q,) and Ep(pAB) are both upper bounded by
the relative entropy of entanglement E,(p7) as well as the
squashed entanglement Ey,(p“P).

Unfortunately, each of the above entanglement measures in-
volves a complicated minimization and in fact, their evaluation
represents an NP-hard/NP-complete computational problem
[37]. It is therefore not surprising that very few instances
are known in which any of these measures can be explicitly

3We remark that for quantum keys in a bipartite state with the strongest se-
curity condition, one also does not need to consider any additional adversarial
party since he/she is assumed to hold the purification of the state.

computed. In this paper, we introduce a new class of quantum
states for which all these measures can be evaluated. Our
strategy will be based on the notion of reversible secrecy,
which we describe next.

F. Reversible Entanglement and Secret Key

Dual to the task of entanglement distillation is the task
of entanglement formation, which describes building a given
state pAP using LOCC and an initial supply of ebits. The
entanglement cost F of a mixed state pA% is the asymptotic
optimal rate of ebit consumption for Alice and Bob to generate
faithful copies of pAZ by LOCC [38]]. The entanglement cost
is obviously lower bounded by the distillable entanglement,
and compared to the above entanglement measures, the fol-
lowing hierarchy holds [30]:

ED AB Er AB

(p ) < (P AB) < Ec(pAB) < EF(,OAB),
Kp(Vqqq) Esq(p™7)

A7)

where the first inequality references Theorem 4] A state p%

is said to possess reversible entanglement if Ep(p47)

Ec(pB). Operationally this means that the entanglement in

pAB can be concentrated and diluted at equal rates.

Recently, the phenomenon of reversible secrecy, which is
the classical analog to reversible entanglement, was studied in
[4]. Here, one first identifies the key cost K¢ of a distribution
pxyz as the amount of secret correlations needed for Alice
and Bob to asymptotically prepare their reduced distribution
pxy using a classical LOPC protocol that reveals to Eve
in the public communication no greater amount of informa-
tion about their variables than what she possesses in pxyz
[39]. The distribution is said to possess reversible secrecy if
Kp(pxyz) = Kc(pxyz). The following theorem provides
a strong necessary condition on the structure of distributions
having reversible secrecy, and well as a sufficient condition.

Theorem 5 ([4]): (1) If KC;(pXYZ) = KD(pxyz) then
there exists a channel for Eve Z|Z such that py, is BL. (2)
If pxyz is UBI-PD|, then Kc(pxyz) = Kp(pxyz).

In Ref. [4]], it is shown that the necessary condition (1) and
sufficient condition (2) are equivalent whenever either Alice
or Bob holds a binary random variable.

A key result proven in Theorem [I2] below is that for a
distribution pxy z having reversible secrecy and |¥ 4, being
its qqq embedding, Eq. can be further upper bounded as

Ep(p"P)  _ JEn(p?”
KD(quq) b (

By identifying a class of distributions in Section[[I-A]for which
Kp(¥44q) = Kp(pxyz), this chain of inequalities becomes
tight and we are thus able to compute the various entanglement
measures of pA5.



III. KEY DISTILLATION USING AUXILIARY PUBLIC
RANDOMNESS

The main result in this section links the secret key rate
K% (pxyz) to the coarse-grained conditional common in-
formation (ccCI).

Theorem 6: K% (pxvyz) = H(Jxy|Z). Moreover,
H(Jxy|Z) is achievable with no additional common random-
ness.

Achievability:  We will prove that H(Jxy|Z) is an
achievable rate without any auxiliary shared public random-
ness (i.e. W is constant). For n copies of pxy z, Alice and Bob
extract their common information from each copy of pxyz.
This will generate a sequence of J%y-, with Alice and Bob
having identical copies of this sequence. It is now a matter of
performing privacy amplification on this sequence to remove
Eve’s information [40]. The main construction is guaranteed
to exist by Lemma [I3] in Appendix [A] From this lemma, it
follows that H(Jxy|Z) is an achievable key rate.

Converse: The converse proof follows analogously to the
converse proof of Theorem 2.6 in Ref. [41] (see also [16]).
Starting from the definition of c.r. achievable key rate, Eq. (12)
implies certain entropic constraints on the generated variables.
Let us write

/U\ABEC _

Z p(k, k‘/, z”,w)|k‘, k/><]<i, k/‘AB®|Zn, w><zn7w‘EC7

k,k,z™ w

where W (taking on values w) is the public shared randomness
initially uncorrelated with all other variables, K (taking on
values k) is the final variable obtained by Alice locally
processing (X", W), and K’ (taking on values k') is the final
variable obtained by Bob locally processing (Y™, W). Let
us consider first the scenario when K and K’ are functions
of (X™, W) and (Y, W), respectively; we will consider the
possibility of stochastic mappings later. From Eq. (I2) in the
definition of achievable key rate, we obtain

e > Pr{K + K'},

e> 1 |pkzrw — 1 - pzewly

19)
(20)
where 1 is the uniform distribution over K with 1 log || >

R — €. Applying Fano’s Inequality and data processing to Eq.

yields
H(K|Y"™W) < h(e) + elog|K], (21)

where h(z) = —xlogx — (1 — x)log(1l — z) is the binary
entropy function. Similarly, applying Fannes’ Inequality to Eq.
(20) gives

log |K| — H(K|Z"W) < elog |K| + h(e). (22)
For € < 1/2, these can be combined to obtain the bound

log |K| < H(K|Z"W) — H(K|[Y"W) + 2h(e) + 2¢log |K|,
(23)

and thus for any achievable R < 1 log|K| + €, we have

1
R< =loglK| +e¢
n

1 1
-—[H(K|Z" — H(K|Y™
<y o H(E|ZW) = HOKY"W)] +

(24)
To analyze the quantity H(K|Z"W)—H(K|Y"W), we will
use a standard trick, stated in Lemma [I6] to obtain
H(K|Z"W)—- H(K|Y"W)
—n[[(K:YWUW) - 1(K : ZDUw)], (25)

where U := JY(</) Z(>) Notice that for any i € {1,--- ,n}

we have
X (<) x Gy (<) z() _ x @) _y @) 76 (26)

since the sampling is i.i.d. Here the notation X —Y — Z means
that X,Y, Z form a Markov chain so that I(X : Z|Y) = 0.
Therefore, because K is a function of (X", W), we have

KU - XDw-yW) z), (27)

Removing the superscript “.J” and taking ¢ — 0, we have the
bound

R<I(K:Y|UW)—I(K : Z|lUW)
such that KU — XW —Y Z.
Next, Eq. gives
h(2¢) + 2elog |[K| > H(K|Y"W) — H(K|X"W)
= n[[(K : XD gy <D xEDw)
—I(K : YDy =D x Dy,
(29)

where the first inequality follows because H(K|X"W) is
nonnegative and the equality follows from Lemma [16] We
want to put this in terms of U. To do this, note that

I(K : Xy =D xEDw)
= [(KYSDXxED 2 xD)gw)
= I(KYSDxGDzGD - x| gw)
—1(z5) XD JRY D X EDw)
= I(KUX®D . x| gw)
= I(KU : XD gw) + 1(XCD . XD | KUW),

(28)

(30)
where the first equality follows from the chain rule and
I(YNDXED XU JW) = 0, and in the second equality
1(zG) XD Ky (<D xEDw)
<I1(z5D: KX |gy DX Dy
= 1(2=D : x| gy (<D x Dy
=0.
The first equality uses 1(ZG7) : K|JY (<D XEDHW) =
0 since K — JYSHDXENDW — Z(>7) is a Markov chain.
Again this follows from the basic Markov condition K —
WX™ —Y"Z™ and the sampling is i.i.d.. The second equal-

ity follows from i.i.d. sampling and W independence of
Xnyn, zr.

€2y



A similar analysis likewise gives
I(K : YD gy =D x D)
= I(KU : YD W) + (XD .y KUW)
<SIHKU :YDgw) + 1(XED . XD\ KUW),  (32)
where the inequality follows from the Markov condition
XCD _KuxDw —y ),
which can be derived from the more obvious Markov condition
KUX" - JXDWw -y,
Putting everything together yields
h(e) + e(log |K] — 1)
> H(K|Y"W) - H(K|X"W)
> (KU : XD JWw) — (KU : YD |JW)
= I(KU : XDy D gw)
— (KU : YD XIW) - (KU : YD [ JW)

= I(KU : XD gy DOwW) + (KU : ZD|Jy D xDw)
(34)

(33)

= (KU : XY 2D gy D),

where the second term in (33)) is zero from the already proven
Markov chain KU — XW — Y Z, and in we use the
fact that I(KU : Z(D|JYD X W) = 0. Removing the
superscript “J” and taking ¢ — 0 necessitates the Markov
chain KU - YW — XZ.

The double Markov chain K — XW —Y and K - YW — X
implies that I(K : XY |JxyW) = 0 (see Proposition
below). Since K is a function of (X, W), we have that
H(K|JxyW) = 0. Thus, K must also be a function of
(Y, W). Continuing Eq. (28) gives the bound

R<I(K:Y|UW)-I(K : Z]UW)
— H(K|UW) — I(K : Z|UW)

= H(K|ZUW) < H(K|ZW). (35)
We have therefore obtained the following:
R<maxH(K|ZW), (36)

where the maximization is taken over all variables K such
that H(K|XW) = H(K|YW) = 0.

We now apply Proposition to Eq. (36). Suppose that
K obtains the maximization in Eq. . Then, since K is a
function of (Jxy, W), we have that

H(K|ZW) < H(Jxy W|ZW)

= H(Jxy|ZW) < H(Jxy|Z). (37

This proves the desired upper bound under no local random-
ness.

Lastly, we consider the case when Alice and Bob obtain
their final variables K and K’ using stochastic processing.
This can be modeled by introducing local random variables
Q4 and @Qp for Alice and Bob, respectively. Then any
stochastic processing depending on X and Y can be obtained
by deterministic functions depending on X = (X,Q4) and

v = (Y,Qp). Repeating the above argument shows that
R < H(J4y|Z). 1t is straightforward to show that with Q4
and @Qp pairwise independent and independent of XY, we
have JXY = ny.
|
Remark 7: The no-communication results discussed above
are already implicit in the work of Csiszar and Narayan. In
Ref. [41], they study various key distillation scenarios with
Eve functioning as a helper and limited communication be-
tween Alice and Bob. Included in this is the no-communication
scenario with and without helper. However, being very general
in nature, Csiszdr and Narayan’s results involve optimizations
over auxiliary random variables, and it is therefore still a non-
trivial matter to discern Theorem [6] directly from their work.
Additionally, they do not consider the scenario of just shared
public randomness.

IV. ADVANTAGES IN QUANTUM VERSUS CLASSICAL KEY
DISTILLATION

In this section, we consider secret key distillation beyond
classical sources. The main goal is to answer the following
questions: who gains the greatest advantage when embedding
a given distribution p(x,y,z) into a multi-party quantum
system, the honest parties or the adversary? We provide a
partial answer to this question, and demonstrate interesting
relationships between secret keys and quantum entanglement.

A. No advantages in incoherent embeddings.

Theorem 8: Kp(pxyz) = Kp(peee) for any distribution
Pxyz.
Proof. The inequality K p(pccc) = Kp(pxyz) is immediate
from the fact that every classical protocol P. is a special
type of quantum protocol P,. Now we turn to the converse
Kp(peee) < Kp(pxyz). The idea will be to show that
every quantum LOPC protocol P, distilling secret key can be
transformed into a classical protocol P, that distills the same
amount of key. Suppose that 1 [4P5C — o8 @ 55C| < e
with GABEC = P, (p®). To perform the following analysis
let’s fix some notation. First, without loss of generality, let’s
assume that r is even with Alice (resp. Bob) measuring in
all the odd-numbered (resp. even-numbered) rounds. We let
i<k denote a particular sequence of the first & rounds with
i<k = igip—1. If we wish to refer to a specific outcome
in the k*" round, we will denote this by i,. Hence i<; =
(1,42, -+ i) for some particular sequence. Finally, if, say,
Alice is the measuring party in the k' round, we denote her
local instrument conditioned on outcome i by (Agfk))ik.
If we wish to speak of the full composition of Alice’s CP
maps corresponding to the outcome sequence i<i, we will
denote this simply by AU<+), with no subscript. That is (for
odd-numbered k) we have

A(isk) — A(1<k) oA(igk,Q) — A§i<k) OA('i<k—2) O OAQ,

ik T2
and similarly Bob’s action is described by

Blisk-1) — B(i<k*1)03(i<k—3)

Tk—1

— gl=k-1)gli<k—s) pli<z)
th—1 tk—3 2



When Bob performs the measurement B( in the final
round, he announces his outcome and Ahce is allowed to
1m(p1ement on her system one final trace-preserving map
Thus, for one particular r-round outcome sequence
i, Ahce s total CP map is AlU<) = A(kr) Ali<r—1) and
Bob’s total CP map is BU<") = B;' (iar) o Blicr—2),
With the notation in hand, when performing protocol P,
on p&", we can describe the overall state generated across all
outcome branches by

pccc 2 Zp X,Y,2z
X,Y,Z i<,
A1) @ BU=r) (|xy)(xy]) © )z ” @ lic, i<r |,

(38)

where the first sum is over X" x Y™ x Z" with p"(x,y,z)
being the n-fold product distribution of pxy z, and the second
sum is over all possible measurement sequences. If Alice and
Bob dephase P, (p€?) in the computational basis, the resulting
state will be at least e-close to @42 ® 5F¢ by monotonicity
of the trace norm. Hence it suffices to show that this dephased
state A (Py(pece)) can be generated using classical LOPC. To
see that this is possible, we repeatedly use the fact that the
messages are generated locally from the expansion

Z Z ZPI‘X Yli<r, x,y,2)p"(X,y,2)

x'y' X, ¥,z i<,

Xy )Y ® [2)el P ® li<y)i<r|©

A (Py(p2))

(39)

where

PI‘[X/7 yl|i<7"a Xy, Z]

_ AU (x| [x) - Gy (B ([y )Xy DIy
Prli<,|x,y, 2]

(40)
and

Prli<,/|x,y, z]

= Tr[A"=) @ BU=") (|xy (xy])]

= Tr[Al=1) @ BU<) (|xy )(xy)]

g Tr[AUsD) @ BU<H) (Ixy ) (xy])]
evel_n[k Ali<s=) @ Bli<s-2) (|xy )(xy|]

x ﬁ T A=) @ B ([xy )(xy )]
Tr[A(igk—ﬂ ® B(lsk—l)(|xy><xy|]

B (Dl 1—[ Tr A=) (j)(x|)]
Tr B““ 2 (ly Xyl Tr[Al<r—2) (Jx)(x]]
(41)

odd k

T
even k odd k

Thus a classical protocol P. generating A(P,(p2)) is the
following:

1) In the first round, Alice measures her variable x and
broadcasts message 41 with probability Pr[i;|x] =

Tr[Ai, (Jx)<x[)]-

p(0,0,0) =
p(1,1,1) =

2) In every subsequent even-numbered (resp. odd-
numbered) round k, Bob (resp. Alice) consults the
message history 7. and broadcasts i, with probability

Tr{B{ ™) o BU=r-2)(|y Xy |)]

Tr[Bli<e=2)(|y Xy ])]
(42)

Prliglick,y] =

1k

TR [AG==) ()]
(43)

o DA o Al=e) (xx)]
resp. Prliglick,x] = .

3) At the end of r rounds with the total message ¢, having
been generated, Alice and Bob process their variables
using local channels x — x’ and y — y’ with transition
probabilities given by

AT (3] %)

e[ AG=0) (x|

&'1BE= () Dy’

Tr[B<) (ly Xyl)]

4) It can be seen that the state generated through this
process is precisely A(P,(p22)).

Pr[x

(44)

l|i<T7X] =

Prly'li<,,y] = (45)

B. Arbitrarily large advantages in coherent embeddings.

Theorem 9: For any N, a distribution pxy 7 exists such that
when embedding pxy z into a coherent quantum source, one
of the following relationships holds:

(a) Eve gains an arbitrarily large advantage: Kp(pxyz) —
Kp(¥aBF) > N, or

(b) Alice and Bob gain an arbitrarily large advantage:
KD(\I]:;‘,IEE) KD(pxyz) > N.

Remark 10: Since Kp(¥5EF) < Kp(piF), item (b)
implies that KD(pg‘q’fE) Kp(pxyz) > N. In this case,
the gain in Alice and Bob’s key rate comes exclusively from
the fact that the bipartite conditional distributions p(z, y|z) are
coherently embedded.

Remark 11: In the proof of (a) we actually demonstrate a

much stronger result that Kp(pxyz) — Er(pP) > N. This
means that we can distill key from pxyz of a considerably
higher rate than the rate of entanglement needed to generate
the corresponding quantum state p*Z. To our knowledge, this
is the first known result of its kind.
Proof. (a) We consider a very simple binary distribu-
tion p(x,y,z) whose nonzero probabilities are given by
p(1,1,0) = 1/4, p(0,0,1) = /2, and
(1—X)/2. This is a UBI distribution since for each
z € {0, 1}, the distribution p(z,y|z) is diagonal and Jxy|.
is binary. Hence, one can verify the distribution is BI since
I(X : Y|Jxy|z=-Z = z) = 0 for z = {0,1}. Furthermore,
the condition H(Jxy|z|X) = H(Jxy|z|Y) = 0 is satisfied
whenever the conditional distributions {p(z,y|2)}.c0,1} have
the same block diagonal structure for each z. Then by [4] The-
orem 2], its key rate is precisely Kp(pxyz) = [1+ h(N)]/2,
where h(z) = —zlogz—(1—x)log(1—x). The corresponding
qqq embedding has the form

Waua ™) = V/1/2[2)*P10)F+(VAI00)+v/T = A1) AZ[1)F].



Since pP is a two-qubit state, its entanglement of formation
can be calculated using the celebrated concurrence formula
[42] (see also [4]), and it is found to be

Ep(p4B) = h ([1 + \/1 - (1/2 + \/m)Q)]p) .

(46)
This formula can be computed by noting that p4f =
Trg (| gqq {Paqq| “EE) is essentially a single qubit density
matrix w as p”* has support on the two-dimensional sub-
space {|00),|11)}. The concurrence C(p“?) is then given

by vAmax — v Amin,» Were the )\; are the eigenvalues of
woyw*o, = wogwo, [42]. Direct calculation gives

VAmax — V/A mm—zZp )/p(0,0[2)p(1, 1]2);

this establishes Eq. [@6) after using the formula Er(pAB) =
h (1 +4/1-C (p)2>. A simple convexity argument then

shows that Kp(pxyz) > Er(pAP) whenever 0 < \ < 1/2.
We now consider n copies of pxyz. Inspection reveals that
p?{},z is also UBI for any n. Thus, Kp(pxvyz) = n[l +
h(A)]/2. On the other hand, the entanglement of formation is a
sub-additive quantity such that Ep ((p2)®") < nEp(p*P).
Consequently, for any 0 < A < 1/2 we attain an arbitrarily
large gap between Kp(p'yy ) and Ep ((p*P?)®"). By The-
orem [ and the fact that Er(pP) > E,,(pAP), this gap
will be at least as large as the gap between Kp(p'y ) and

Kp ((¥55")%").

(b) Consider the state |U)ABF = /1/2(]00) +
|1+))4B|0YF where Eve is initially uncorrelated. This is a qqq
encoding of a distribution pxyz = pxy - ¢z whose mutual
information is I(X : Y) = 1 — h(1/3) ~ .311. Since Eve has
no side information, the classical secret key rate Kp(pxyz) is
equal to the mutual information, a well-known result in secret
key agreement [2], [[L]. On the entanglement side, the reduced-
state entropy characterizes the entanglement distillation rate
for pure states [43]; hence S(p?) = Ep(UABF). One bit of
entanglement can be converted into one bit of secret key, and
thus Kp(UABE) > S(pg). In fact, this inequality is tight
since S(pP) = Eg(VAP) > Kp(UABE), Because both the
mutual information and von Neumann entropy are additive,
a similar argument to part (a) shows that the gap between
S((pB)®n) — Kp(p%y ») can be made arbitrarily large. HW

C. Embedding Distributions with Reversible Secrecy

We now consider qqq embeddings of distributions with
reversible secrecy, for which it turns out that the quantum em-
bedding favours Eve over Alice and Bob. When adding UBI-
PD and/or semi-unambiguous structure, relationships between
key and quantum entanglement can be drawn.

Theorem 12:

(a) If pxyz has reversible secrecy (i.e. Ko(pxyz) =
Kp(pxyz)), then

Kp(pxyz) = Es(p™?). 47)
(b) If pxyz is UBI-PD (and hence reversible), then
Kp(pxyz) = Er(p*?). (48)

(c) If pxyz has reversible secrecy and is semi-unambiguous,

then
Kc(pxyz) = Esq(PAB) = KD(‘I’ABE) = Kp(pxyz).
49)
(d) If pxyz is UBI-PD and semi-unambiguous, then
Kc(pxyz) = Kp(pxyz) = Kp(UAPE) = Ep(pP)
= Ec(p*?) = Ep(p*?) = E.(p"") = Es(p™”)
= H(JXY|Z|Z).
Proof.

(a) By ’Illeorem @ if pxy 7 is reversible then there must be
a channel Z|Z such that p - is block independent. In other
words, there exists a decomposition

= Z Px ($|j?’ ?)py (y|j5a f)p(jﬂf) (50)

Jz

Pxyz(@:y[Z)

where pX( |7z, Z) and px (+|7%,Z) are disjoint distributions for
Jz + Jj%, and likewise for Bob’s conditional distributions. For
each z, define the local measurement channel acting on Alice’s
system

wm 0= 3 GG 6D

« such that
p(aliz,2)>0
Let Qg) be defined similarly for Bob’s system. These oper-
ations can be viewed as a measurement channel that creates
a state that is a convex combination of common partitions of

Pxy,z-
We next consider the decomposition |Vapgp) =
2. VP(E)e:)lz), in which (zyle.) = +/p(z,yl2).

= Tr 04B% where

ZZP z[Z)p
Sl e B

Note that pAB
)| 02| ® [2)(Z]

(52)

On the state O'ABZ, we 7ﬁrst deEhase in the computational
basis, and then apply Q(AZ) ® Qg) conditioned on Z. Doing
so generates the state

$4B7
= 2 *prM*mﬂu%m®Q§mxw®@xa
- Z Zp (J=[2)|z4=2)(G=i=2]- (53)
Hencze,
Euy(pan) < § Y,p(2)I(A: B)yan

< 1Sl + SO)

< ISR + SGE)

- SAHAZ =)

= IE{D (pxvz) (54)



(b) If pxyz is UBI-PD then again by Theorem E} we
have Kc(pxyz) = Kp(pxyz) = H(Jxy|z|2). Eq.
still holds in this case with Z = Z, and o4z is obtained
from |V spE) by Eve dephasing in the computational basis.
Block-independence of pxy z means that S(Tr4 |¢. X¢.|) =
H(Jxy\z|Z = =z). Since {p(z),|¢.)} provides a pure-
state ensemble realizing p*5, we see that H(Jxy|z|Z) =
EF(pAB).

(c) From Theorem E] and Ref. [14], semi-unambiguous
distributions are shown to satisfy the inequality E,(pAZ) >
KD(\II?(IEE) > Kp(pxyz). Combining with part (a) gives
the desired result.

(d) This follows from combining (b), (c) and Theo-
rem with the fact that Ep(pAP) > Ec(p?B) >
max{E, (pAB), By (o).

|

Remark 13: Theorem (a) implies that Alice and Bob
never gain an advantage over Eve when embedding a reversible
distribution into a quantum source. In fact, it is not difficult
to construct distributions in which Eve gains a non-zero
advantage in the quantum setting. This can be seen by the

chain of inequalities in Eq. (54). In particular, whenever o242

is not pure the inequality will be strict. This will hold, for
instance, for any distribution pxy z with a non-trivial channel
Z|Z such that py is UBI-PD.

Remark 14: Theorem [I2] (d) provides an alternative proof
of the well-known fact that pure entangled state possess
reversible entanglement [43]; i.e. that Ec(|y)(y|4P)
Ep(J)Y4|AB) for any [1))AB. This follows from the fact
that any entangled state is a qqq embedding of a UBI
distribution, the distribution p(x,y) given by its Schmidt
decomposition [Y)AP = 37 \/p(z,z)|z,2)AE with an
uncorrelated Eve. In fact, consider any mixed state of the form
p = Dy pilYiy(Wil AP, in which [pt, pt] = [pf,pP] = 0
for all i + j, and either p;* L p# or pP L p? for every i + j.
Here we are denoting p/* = Trp |1; )(1;|*P and likewise for
pB. Such states possess reversible entanglement since they
are the AB reduced state of a qqq embedding [¢))ABF that
is generated by a UBI-PD and semi-ambiguous distribution.
Indeed, the simultaneous commuting of the reduced states
means that a common Schmidt basis can be found for all
the [;>AZ, which we take as the computational basis. Then
by performing suitable local projections, the local orthogonal-
ity of the |¢;) enables Alice and Bob to non-destructively
identify which [¢);) they have among the mixture. On the
level of embedded distributions, this corresponds to a semi-
unambiguous distribution since H(Z|XY) = 0. After Alice
and Bob share the outcomes of their local projections, they
hold one of the pure states |¢);) which is the embedding
of a UBI distribution. Hence the original purification state
[y = Si_ \/DiliyABliYf is the embedding of a semi-
unambiguous and UBI-PD distribution. States having this form
belong to a class of states known as LOCC-flagged, and it
is conjectured that the class of LOCC-flagged distributions
constitute the entire family of bipartite quantum states having
reversible entanglement [44]], [45], [4]. Theorem (d) offers
one direction for testing this conjecture. Namely one needs
to consider whether the embedding of a UBI-PD distribution

always leads to an LOCC-flagged state. As the structure of
UBI-PD distributions can be quite complex, we leave this
question for future research.

V. CONCLUSION

In this paper, we have studied the Gécs-Korner common
information and two ways that it can be extended into condi-
tional form. Both types are useful tools in the resource theory
of secret correlations. We have shown that the coarse-grained
conditional common information H(Jxy|Z) quantifies pre-
cisely the optimal rate of key extraction when Alice and Bob
hold public shared randomness. In fact, achievability of this
rate does not require use of shared randomness, a fact that
cannot be taken for granted since in general, randomness can
serve as a resource in distillation tasks [1], [[L5]].

We have also considered the task of resource distillation in
the quantum setting. Since secret key can be distilled from
both quantum and classical states, a direct comparison can
be made between the two scenarios. Quantum states that are
diagonal in some fixed basis - such as p... - lack coherence
and are typically referred to as ‘“classical” states since they
possess the same entropic properties as classical probability
distributions. However, as quantum objects, these states can
undergo certain physical transformations that are impossible
for classical states. We have shown that despite this enhanced
dynamical ability, secret key distillation is equivalent for a
classical distribution and its incoherent quantum embedding.
The situation is much different when the embedding takes the
form of a coherent superposition. We have presented examples
demonstrating that quantum and classical key rates can be
vastly different; sometimes it benefits Alice and Bob to have
their correlations embedded in a quantum state, sometimes it
benefits Eve. We have linked this investigation of quantum
advantages to the problem of LOPC secrecy reversibility. By
introducing different families of distributions that demonstrate
secrecy reversibility, we are able to bound and in some cases
explicitly compute the entanglement and distillable key of
the embedded quantum states. In the latter case, the con-
ditional common information H(Jxy|z|Z) emerges as the
optimal rate of resource distillation. It is quite beautiful that
notoriously difficult entanglement measures can be computed
using exclusively a classical analysis of the states’s underlying
probability distribution. We hope this paper helps to advance
our understanding of the relationship between classical secrecy
and quantum entanglement.
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APPENDIX A
TECHNICAL LEMMAS USED IN THEOREM[G]

Lemma 15 (See Corollary 17.5 in [l16l]]): Given is an i.i.d.
source of two random variables Jxy and Z with Jxy ranging
over set J. Then, for any € > 0 and for all n sufficiently large



with L log |K| > H(Jxy|Z)—e, there exists a constant y > 0
and a mapping k£ : J" — K = {1,2,--- ,|K|} such that

log [K] = H(k(Jxy)|2") <277,
Proof. Let K = x(J%,-). Note that we can write
D(pxzn |1k - pzn) = log |K| — H(K|Z"),

where where 1 is the uniform distribution over K and

D(px|py) = X, px(z)log 1;’;53 is the relative entropy of

distributions px and py. Pinsker’s Inequality then gives

s lpxzn — 1 - pzn| < A/D(pkzn |1k - pzn)/2,

which implies that H(Jxy|Z) is an achievable key rate. MW

Lemma 16: Let J be uniformly distributed over the set
{1,---,n} and let A®) denote the i*" instance of A in
A", Likewise, let A(<%) A . AGD gpg AGD
AGHD o A(M) with AGSYD = @ and A™tD := . Then for
random variables P and () and sequences of random variables
An, Bn

H(P|A"Q) — H(P|B"Q)
= n[I(P: BDITQ) — I(P : AD|TQ)],

where T = JA>Y) B(<7)
Proof. See, e.g., proof of Lemma 17.12 in [16]. [ |
Proposition 17: If W is independent of XY and
H(K|XW) = H(K|YW) = 0, then K is a function of
(Jxy, W).
Proof. The fact that H(K|XW) = H(K[YW) = 0 im-
plies the existence of two functions f(X, W) and g(Y, W)
such that Pr[f(X,W) = ¢(Y,W)] = 1. Consequently,
if p(z1,y1)p(z1,92) > 0, then f(z1,w) = g(y1,w) =
g(y2,w) for all w € W with p(w) > 0. Indeed, if, say,
flzr,w) + g(y1,w), then Pr[f(X,W) + g(Y,W)] >
p(z1,y1,w) = p(x1,y1)p(w) > 0, where we have used the
independence between XY and W. By the same reasoning,
p(x1,y1)p(y1, x2) > 0 implies that f(z1,w) = f(z2,w) =
g(y1,w) for all w € W. Turning to Proposition ] if Jxy (z) =
Jxv(z'), then there exists a sequence xyiTiYeZs - Ynt'
such that p(zy1)p(y121)p(z1y2) - - p(ynz’) > 0. Therefore,
as just argued, we must have that f(z,w) = f(2/,w) for all
w € W. Hence K must be a function of (Jxy, W). [ |
Proposition 18 (Conditional Double Markov Chains (also
Exercise 16.25 in [16l])): Random variables W XY Z satisfy
the two Markov chains X —YZ —W and Y — XZ — W iff

(55)
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