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Abstract 25 

To enhance the seawater desalination energy efficiency forward osmosis – reverse osmosis (FO-RO) 26 

hybrid system has recently been developed. In this process, the FO “pre-treatment” step is designed to 27 

dilute the seawater (SW) with reclaimed wastewater (WW) before the desalination step, thereby 28 

reducing the energy demand for the SWRO process. However, membrane fouling is a major issue that 29 

needs to be addressed. Proper selection of suitable WWs is necessary before proceeding with large-30 

scale FO-RO desalination plants. In this study, long-term experiments were carried out, using state-of-31 

the-art FO membrane with real WW solutions. A combination of water flux modelling and membrane 32 

characterisation were used to fouling to process performance. Initial water fluxes as high as 22.5 L.m-33 
2.h-1 were observed when using biologically treated secondary effluent. It was also found that secondary 34 

effluents cause negligible flux decline. On the other hand, biologically treated wastewater and raw 35 

wastewater caused mild and severe flux decline respectively (25% and 50% of flux decline after 80 hrs, 36 

compared to no-fouling conditions). Ammonia leakage to the diluted seawater was also measured, 37 

concluding that, if biologically treated wastewater is used as feed, the final NH4
+ concentration in the 38 

draw is likely to be negligible.  39 

 40 

 41 

 42 

 43 

 44 

 45 

Keywords: Forward osmosis; membrane fouling; osmotic dilution; seawater; wastewater.  46 



 

3 

 

1 Introduction 47 

Ensuring availability and sustainable management of water and sanitation for all was one of the 17 48 

Sustainable Development Goals put forward by the United Nations for the 2030 Agenda [1]. The lack 49 

of access to clean water is a significant health concern in developing countries, as more than 2 billion 50 

people live without proper sanitation, and millions die from waterborne diseases every year [2]. At the 51 

beginning of the millennium, about 27% of the world population already lived in water-stressed regions, 52 

and this number is expected to keep rising as these regions are now experiencing population growth and 53 

industrialisation [3]. Moreover, one of the several consequences of climate change is putting an 54 

additional strain on water resources all over the world. In 2014, the 5th assessment report of the 55 

international panel on climate change warned against the possible adverse impacts of increased 56 

greenhouse gases emissions on renewable freshwater availability and safety, especially in presently dry 57 

regions [4]. Shannon et al. [5] highlighted several paramount research areas where further work is 58 

needed to ensure more efficient and sustainable use of water resources. Among them are the reclamation 59 

of impaired water and desalination. 60 

With more than 97% of the world’s water being seawater or brackish water, desalination technologies 61 

have been seen as a way to drastically increase the water supply thereby getting closer to meeting the 62 

future water demand. The first desalination plants have been opened in the middle of the twentieth 63 

century and relied on thermal processes to treat the saline feeds and produce fresh water. Since then, 64 

membrane processes have proven to be less energy-intensive, and seawater reverse osmosis (SWRO) 65 

is now used in most desalination plants [6]. Reverse osmosis (RO) is the most widespread water-66 

purifying technique. It applies hydraulic pressure to overcome the osmotic pressure of a solution, 67 

thereby allowing water from a saline or contaminated feed stream (e.g., seawater, brackish water, 68 

wastewater) to cross a semi-permeable membrane while rejecting ions and other contaminants. The 69 

produce water costs of current RO designs in SWRO plants lies between 0.5-1 USD m-3 [7]. However, 70 

the SWRO energy consumption is not expected to improve as we are near the limit set by 71 

thermodynamics [8]. Making use of impaired water sources could be a way to reduce the produced 72 

water cost [7]. However, if wastewater is sent directly through an RO process, irreversible fouling of 73 

the RO membrane is expected to occur [9].  74 

In alignment with the principles of circular economy, reclamation means viewing wastewater (WW) as 75 

a possible valuable resource and not as pure waste that needs to be disposed of. It is, however, 76 

paramount to find non energy intensive technologies. This is to reduce, or at least not increase, the 77 

already high WW treatment cost due to e.g. pumping, aeration and biosolids treatment. If this is 78 

achieved, the treated effluents can even be made available for re-use, e.g. irrigation, toilet flushing, 79 

cooling towers, etc. [10]. 80 
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Because of its lower irreversible fouling propensity, forward osmosis (FO) was recently investigated as 81 

SWRO pre-treatment to make use of impaired water sources (e.g., wastewater primary or secondary 82 

effluent) to reduce the fresh water production cost [7]. In the FO pre-treatment step, seawater is used as 83 

a draw solution (DS) to extract water from an impaired water source. Water transport is created as the 84 

osmotic pressure of seawater (i.e., 25-30 bars) is much higher than the one of sewage wastewater (i.e., 85 

0.3-1 bar). Afterwards, the diluted seawater is sent through the SWRO filtration to produce fresh water. 86 

This pre-treatment step lowers the SWRO operating pressure, as it reduces the osmotic pressure of 87 

seawater, thereby moderating the energy demand of the desalination step. As aforementioned, due to 88 

the absence of hydraulic pressure, the FO process was found to be less prone to irreversible fouling 89 

[11]. This application that is particularly interesting is the use of reclaimed WW [12], as it will also 90 

produce concentrated dewatered waste that can be reused for nutrients recovery or disposed of. 91 

Several researchers have investigated the performance and feasibility of the FO-RO hybrid system, both 92 

at lab-scale and pilot-scale, using different types of FO membranes [13-16]. However, at this stage, this 93 

process is still not ready for large-scale implementation, primarily because of the issue of membrane 94 

fouling. Fouling, which is the deposition of different components (organic, inorganic, or living matter) 95 

on the membrane, is a recurrent problem when working with challenging stream such as wastewater 96 

[17]. Despite the lower fouling propensity of FO compared to SWRO, when high fouling potential 97 

solutions are used, i.e. raw WW, this issue persists. Strategies need to be systematically developed to 98 

lessen the impact of this phenomenon as it decreases the water flux and affects the product water quality 99 

while damaging the membrane, hence increasing the operational and capital costs. Although raw WW 100 

is cheap and readily available, removals of membrane fouling promoters are still necessary before the 101 

FO filtration. As pre-treatment operations will inevitably increase the overall cost, a trade-off needs to 102 

be found between membrane fouling and an acceptable number of pre-treatment steps. Understanding 103 

the degree of raw WW pre-treatment is necessary to minimise the process cost and therefore to select 104 

the best feed for this application is crucial to ensure optimal process operation. 105 

With these premises, the primary objectives of this study were the following: (i) To assess the fouling 106 

behaviour on newly developed thin film composite (TFC) FO membranes using real wastewater and 107 

seawater solutions. (ii) To evaluate the influence of pre-treatment of wastewater solutions on the fouling 108 

potential and the quality of the product seawater. (iii) To understand the nitrogen leakage to the seawater 109 

draw solution. 110 

  111 
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2 Materials and Methods 112 

2.1 FO membrane  113 

Thin film composite (TFC) flat-sheet membranes (Toray Industries, Korea) were employed in this 114 

study. The thin active layer is made of polyamide and is attached to a polysulfone support layer in which 115 

a woven mesh was embedded for better mechanical strength. SEM images of the membrane are shown 116 

in Figure 1. The TFC FO membranes used in this study were about 75 μm thick with a highly porous 117 

support layer and a thin active layer with tight pores. 118 

   119 

Figure 1: a) Active layer surface (x 30,000). b) side-view of the membrane (800x). The thin active layer (AL) is resting 120 
on top of the porous support layer (PL) (EM: embedded mesh) 121 

2.2 Bench-scale FO system 122 

An acrylic FO cell with an active membrane area of 20.02 cm2 was connected to two variable-speed 123 

gear pumps (Cole Palmer, VT, USA), and the solutions were stored in two 5 L plastic tanks. Figure S1 124 

displayed the schematic representation of the system. The pump flow velocity was set to 400 mL/min 125 

(8.5 cm/s) for all experiments, and the solutions were pumped through the membrane cell in counter-126 

current mode. FO experiments were conducted in batch mode, with constant recycling of the feed and 127 

draw solutions to their respective tank. The active layer of the FO membrane faced the FS (FO mode). 128 

The weight of the draw tank was continuously monitored using a digital 15 kg scale (Adam Equipment 129 

PGL-15001 Precision Balance 15 kg x 0.1 g) and was used to calculate the variation of water flux 130 

throughout the experiments. A temperature control system connected to a water bath was used to keep 131 

both solutions at 25°C. Conductivity, total dissolved solids (TDS) and pH were monitored using an 132 

HQ30D portable multi-meter (Hach, CO, USA).  The reverse salt flux JS (RSF, g/m2/h) was calculated 133 

based on the conductivity measured continuously in the feed solution as: 134 

Jௌ ൌ
λ∗ΔሺCܨܸ∗ܨሻ
ሺA∗	Δtሻ

            (1) 135 
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Where λ (cm/S/L) is a conductivity calibration factor. This was obtained by linear regression of the 136 

conductivity of NaCl solutions as a function of its concentration (i.e. conductivity = (1/λ) * mass 137 

concentration of NaCl), CF is the conductivity of the feed solution, VF is the volume of the feed solution. 138 

The specific reverse salt flux (SRSF, g/L) was calculated as follows: 139 

	SRSF ൌ
ܵܬ
Jܹ

             (2) 140 

2.3 Feed and draw solutions 141 

Real seawater was collected from the faculty of science at the University of Technology, Sydney (UTS). 142 

Johns Water Exchange provided the seawater to the university after its collection in Rose Bay, Sydney. 143 

The seawater was pre-treated directly at UTS with a five μm filtration bag and a UV filter sterilizer. 144 

These pre-treatment steps were necessary to reduce the risk of fouling and biofouling within the support 145 

layer. Real wastewater was collected from the wastewater treatment plant in Central Park, Sydney. In 146 

this plant, the wastewater undergoes different treatment steps as shown in Figure S2. In this Figure, the 147 

FS sampling locations were also outlined. In fact, solutions were collected at various points to assess 148 

the impact of pre-treatment of the feed solutions:  149 

1. Primary effluent (i.e. solution 4, Primary Eff.). The raw municipal WW was pre-treated in two 150 

different ways to remove large particles that could instantly damage the membrane. The first is 151 

a simple settling (for two days) and the second is coagulation-flocculation (10 g/L of FeCl3 was 152 

used as a coagulant). 153 

2. Mixed liquor before ultrafiltration (i.e. solution 3, also referred to as Mixed Liq). This consists 154 

of the recirculated mixed liquor together with the activated sludge. For the same reason of the 155 

primary effluent, the mixed liquor was either filtered using 1.2 μm paper filters or left to settle 156 

down during two days. After settling down, the supernatant was collected using a peristaltic 157 

pump. 158 

3. Secondary effluent i.e., mixed liquor after ultrafiltration (i.e. solution 2, Secondary Eff.). This 159 

solution was used directly without any additional treatment. 160 

 161 

Synthetic seawater was prepared by dissolving 0.6 M of sodium chloride (i.e. NaCl, 35 g/L) in deionized 162 

(DI) water. This is the approximate concentration in real seawater in Sydney. For the real seawater, its 163 

composition is displayed in table 2.  164 

All solutions were stored in the fridge and the dark before use. Wastewater and seawater solutions were 165 

used within a week after sampling. 166 
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2.4 Experimental protocol 167 

2.4.1 Determination of membrane parameters 168 

Three key membrane parameters were determined to model the FO water flux: the pure water 169 

permeability coefficient A (Lm-2h-1bar-1), the salt permeability coefficient B (Lm-2h-1) and the 170 

membrane structural parameter S (μm). The A and B parameters represent the transport of water and 171 

salts through the membrane, while S indicates the solute transport in the support layer. The membrane 172 

parameters were determined using the methodology described by Tiraferri et al. [18]. Four consecutive 173 

FO experiments were run for 1 hour with DI water as feed solution. Initial volumes were set to 2 L. The 174 

DSs were prepared with different concentrations of NaCl (0.5 M, 1 M, 1.5 M and 2 M).  175 

2.4.2 Short-term experiments using synthetic seawater and real wastewater 176 

Seven baseline experiments were conducted with different real wastewater feed solutions (Table 1). 0.6 177 

M NaCl solution was used as a DS for 6 of the tests, and real seawater was used in only one experiment 178 

to check that the behaviour of seawater was similar to the one of the synthetic solution. Real seawater 179 

was not used for the baseline experiments because one of the goals was to carry out mineral and organic 180 

analyses on the final draw solution, to see the nutrients leakage, and real seawater would have made it 181 

difficult given its inevitable variability of the initial composition of real seawater. All experiments were 182 

conducted for 8 hours with 2 L of FS and DS. The relative flux decline was plotted to assess the impact 183 

of the wastewater composition. 184 

Table 1. Long and short-term experiments conducted. For the short-term experiments each 2 L of FS and DS was 185 
used, while 4 L of FS was used for the long-term one. 186 

Experimental Period Feed Solution (FS) Draw Solution (DS) 

Short-term experiment (8 hr) 

DI water 0.6 M NaCl 

DI water Real Seawater 

Secondary effluent (Secondary Eff.) 0.6 M NaCl 

Mixed liquor after filtration 1.2 microns (Mixed 
Liq,f) 

0.6 M NaCl 

Mixed liquor after settling (Mixed Liq,s) 0.6 M NaCl 

Raw WW after coagulation-flocculation 
(Primary Eff,cf) 

0.6 M NaCl 

Raw Wastewater after settling (Primary Eff,s) 0.6 M NaCl 

Long-term experiment (80 hr) 

Secondary effluent (Secondary Eff.) Real Seawater 

Mixed liquor after settling (Mixed Liq) Real Seawater 

Raw WW after coagulation-flocculation 
(Primary Eff.) 

Real Seawater 

 187 

 188 
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2.4.3 Long-term experiments using real seawater and wastewater 189 

Three long-term experiments were conducted, with the duration of 80 hours, to investigate the long-190 

term flux decline and fouling behaviour of wastewater in actual conditions. The initial volume of the 191 

FS was set to 4 L. An initial amount of 2 L of real seawater was used as a draw solution for all the 192 

experiments. Table 1 displayed the different FS and DS used for the experiments. At the end of each 193 

experiment, the membrane was collected for further analyses of the fouling layer and determination of 194 

the primary fouling precursors in real solutions. 195 

2.5 Modelling the water flux of the FO experiments  196 

To better understand the impact of fouling using different types of wastewater streams and how the 197 

water flux (J୵) deviates from the theoretical one. Water flux was modelled via the classical solution-198 

diffusion model coupled with the diffusion-convection transport in the membrane support layer [19]. 199 

Membrane pure water permeability (A), NaCl salt permeability coefficients (i.e., BNaCl) and structural 200 

parameters S were obtained as above described. The results are shown in Table 4. The effect of the 201 

internal concentration polarization (ICP), on the porous support layer of the FO membrane, was taken 202 

into account in the equation used. Since all the experiments have been carried out in FO mode (i.e., 203 

active layer (AL) facing the feed solution (FS)), equation (3) was used to predict the water flux [19, 20].  204 

௪ܬ ൌ ቀ	ln	௠ܭ	ߪ	
஺గವ	ା	஻ೞ

஺గಷ	ା	௃ೢ	ା	஻ೞ
ቁ    (AL-facing FS)                                                         (3)         205 

In this equation, σ is the reflection coefficient, assumed as unity (complete rejection of the solute),  ܭ௠ 206 

is the mass transfer coefficient of NaCl, given as salt diffusivity divided by S. The bulk osmotic 207 

pressures of the draw and feed are displayed as ߨ஽ and ߨி are the DS and FS bulk osmotic pressure 208 

respectively. 209 

2.6 Analytical methods 210 

Several analyses were carried out on the solutions before, during and after the FO filtration. Cation and 211 

anion concentrations were respectively measured using a 4100 MP-AES (Agilent Technologies, VI, 212 

Australia) and a 790 Personal IC (Metrohm, Switzerland). Spectroquant® Cell Test kits and Reagent 213 

Test kits (Merck Millipore, Germany) were also used to measure the concentrations of anions and 214 

cations (Cl-, PO4
3-, NO3

- and NH4
+), and for the determination of total phosphorus, total nitrogen, and 215 

COD values. A 2100P Portable Turbidimeter (Hach, CO, USA) was used to determine the turbidity 216 

values of wastewater samples. Dissolved organic carbon (DOC) values were measured using a multi 217 

N/C® 3100 TOC Analyzer (Analytik Jena, Germany). Prior to the TOC analysis, samples were filtered 218 

using a 0.45 μm filter to obtain the DOC values. Total suspended solids (TSS) values were calculated 219 

upon filtration of the solution with a 0.45 μm ceramic filter, drying off the clogged filter in a 104°C 220 
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oven and measurement of the weight increase of the filter. The osmotic pressure of the solutions was 221 

computed using OLI Stream Analyser 3.2 (OLI System Inc., Morris Plains, NJ, US). The detailed 222 

organic matter characterisation of the real wastewater was performed using liquid chromatography-223 

organic carbon detection or LC-OCD (DOC-Labor, Germany) as per the procedure described elsewhere 224 

[21]. 225 

2.7 Membrane analysis 226 

Following the long-term experiments, the three fouled membranes were collected and dried off in an 227 

oven at 50°C. The surface of the active layer was measured by scanning electron microscopy (SEM) 228 

using a SUPRA 55-VP instrument (Zeiss, Germany). Before the SEM analyses, the membrane samples 229 

were coated with a palladium-gold layer using an EM ACE 600 coater (Leica, Germany). The elements 230 

composing the fouling layer on the membrane were determined by electron - dispersive X - Ray (EDX). 231 

The cake layer was also analysed by Fourier transform infrared (FTIR) Spectroscopy using the 232 

IRAffinity-1 from Shimadzu (Japan).  233 

 234 

3 Results and Discussion 235 

3.1 Feed and draw solution characterisation 236 

After conducting all the chemical analysis on the different types of real WW used as FS, a full 237 

characterization was obtained. Table 2 shows the initial composition of the real WW ans SW samples 238 

utilised for the experiments. It can be seen th, while Table 3 displays its LC-OCD fractionation. 239 

Additionally, in Table S1 the turbidity values before and after the pre-treatments are shown. From the 240 

LC-OCD fractionation data, it can be seen that there is a much higher concentration of low molecular 241 

weight neutrals organic compounds (LMW neutrals) in the primary effluent compared to the mixed 242 

liquor. This is expected as, when the primary effluent is mixed with the biomass in the aerobic reactor, 243 

the carbon source in the WW is first absorbed and then gradually degraded by the heterotrophic bacteria 244 

community.  245 

In terms of filtration, these compounds are likely to have higher fouling propensity compared to larger 246 

molecular weight one. In fact, they could stick on the rough membrane promoting the attachment of 247 

other organic or inorganic compounds. 248 

 249 
 250 
 251 
 252 
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Table 2 Composition of the real seawater and wastewater solutions used in all the experiments. Feed and draw samples 253 
were collected at the beginning and the end of each experiments. * The osmotic pressure was calculated via OLI Stream 254 
Analyser 3.2 (OLI System Inc., Morris Plains, NJ, US). 255 

     
SEAWATER  Mixed liquor 

Secondary 
effluent 

Primary 
effluent 

     
(Rose Bay. 
Sydney) 

(Central Park. 
Sydney) 

(Central Park. 
Sydney) 

(Central 
Park. 

Sydney) 

pH   [‐]  7.9  7.38  7.5  7.9 

COD  
[mg/L 
O2] 

 [‐]  27  23  212 

TDS  [mg/L]  33100  357  336  646 

Turbidity   [NTU]  0.31  1.3  0.39  63.6 

Osmotic 
Pressure* 

[bar]  27.16  0.38  0.335  0.57 

Na+  [mg/L]  10800  122.5  113  142.4 

Ca2+  [mg/L]  790  33.5  20.63  16.5 

Mg2+   [mg/L]  1460  8  5.56  9.25 

SO4
2‐  [mg/L]  2600  38  45.06  38 

TP   [mg/L]  0.51  7  3  22.4 

NO3
‐  [mg/L]  6.6  12.8  23.3  0.89 

NH4
+  [mg/L]  7.97  8.62  2.44  84.3 

 256 

Table 3. LC-OCD fractionation results of different wastewaters used in the experiments where: LMW = low-molecular 257 
weight; n.q. = not quantifiable (< 1 μg/L; signal-to-noise ratio); “Biopolymers” = polysaccharides, proteins, 258 
aminosugars; “Building blocks” = breakdown products of humics; “Neutrals” = include mono-oligosaccharides, 259 
alcohols, aldehydes, ketones; “Acids” = summary value for monoprotic organic acids < 350 Da. 260 

   Approximate molecular weights (g/mol): 

   >> 20,000 ~1000 ~300-500 < 350 < 350 

  DOC Biopolymers 
Humic 

substances 

Building 

blocks 

LMW 

neutrals 

LMW 

acids 

Secondary 

effluent 

mgC/L 9.660 0.119 5.434 0.582 2.025 n.q. 

% DOC 100% 1.2% 56.2% 6.0% 21.0% -- 

Mixed liquor 
mgC/L 11.177 0.458 5.907 0.622 2.654 n.q. 

% DOC 100% 4.1% 52.8% 5.6% 23.7% -- 

Primary effluent 
mgC/L 42.646 4.248 9.083 1.944 16.995 1.790 

% DOC 100% 10.0% 21.3% 4.6% 39.9% 4.2% 

 261 

3.2 Membrane parameters 262 

The water flux and reverse salt flux values for different concentrations of NaCl as DS are shown in 263 

Figure 2. The reverse salt flux increases proportionally with the draw solution concentration. However, 264 

as a consequence of the concentration polarization effect, the water flux increase was not linear with 265 

the increase in osmotic pressure difference as shown by the trend of specific water flux (specific water 266 

flux = Jw/Δπ).  267 
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 268 

Figure 2. Baseline experiments to determine the membrane parameters (A, B, S) according to Tiraferri et al. [18]. 269 
Water flux and Reverse salt flux have been monitored for four different concentrations of NaCl draw solution (i.e. 0.5, 270 
1, 1.5 and 2 M) with DI water as FS. The experiments were run for 2 hours. 271 

 272 

Membrane parameters were determined by using these data as input in the Tiraferri et al. algorithm 273 

making sure to have an R2 > 0.9. The results and are presented in Table 4. As expected, the A value is 274 

high compared to values found in the literature for CTA membranes (typically between 1 and 2 275 

LMH/bar [18]). Higher water permeability of TFC compared with CTA can be explained by the 276 

enhanced hydrophilicity of the TFC active layer and the fact that the porous layer is thinner, more 277 

porous and less tortuous. Higher porosity and less tortuosity decrease the S parameter, which in turns 278 

reduces the internal concentration polarisation effect. Compared to other commercial TFC membranes 279 

[22, 23], Toray membranes have also slightly higher water and salt permeability coefficients. Finally, 280 

the B/A ratio of the Toray membranes (Table S2) is relatively low compared to other commercial CTA 281 

and TFC membranes, which indicates a good selectivity [23, 24].  282 

 283 

 Table 4. Membrane parameters of the Toray TFC membrane, determined with the methodology developed by 284 
Tiraferri et al. [18] 285 
 286 

Parameter Value Unit 

A 6.47 LMH/bar 

B 1.74 LMH 

S 409 Μm 

K 0.276 s/μm 
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3.3 Impact of wastewater quality on the process performance and the type of fouling 287 

3.3.1 Short-term experiments 288 

The water flux decline trends when using different qualities of wastewater were shown in Figure 3. The 289 

initial water flux varies because of the increasing TDS amount of wastewater and the subsequent rise 290 

of osmotic pressure. Because of the configuration of the experimental set-up, the DS is diluted, and the 291 

FS concentrated during the experiments. The DS dilution causes the flux to decline due to the reduction 292 

of the process driving force. 293 

 294 

Figure 3. Water Flux for seven different feed-draw solutions couples. Operating parameters: Draw solutions = NaCl 295 
(except 1. Real Seawater); Feed solutions = Real Wastewater (Secondary effluent, mixed liquor pre-treated or not, 296 
primary effluent pre-treated or not); Operating time = 8 hours. 297 

 298 

Based on the experimental results it can be seen that, when secondary effluent or mixed liquor are used, 299 

no severe flux decline was observed. In fact, the water flux trends are similar for DI, Secondary Eff. 300 

and Mixed Liq. Low membrane fouling using biologically treated WW was also found by Cath. et al. 301 

with CTA membranes and secondary effluents [14]. However, when primary effluents (i.e. Primary 302 

Eff.) is used, severe flux decline was observed. It can be noticed that the type of pre-treatment carried 303 

out on activated sludge (3.1 and 3.2), and raw wastewater (4.1 and 4.2) did not impact the short-term 304 

water flux decline. Therefore, it can be argued that an initial biological treatment of the WW is deemed 305 

necessary if FO wants to be used as a dewatering method for WW. To conclude, different wastewaters 306 
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were tested on FO using model seawater as DS. The results showed a high initial Jw (22-23 LMH) using 307 

the newly developed Toray TFC membrane. However, if non-biologically treated WW is used, settling 308 

or coagulation-flocculation were found not sufficient to avoid quick fouling of the membrane.  309 

3.3.2 Long-term experiments 310 

The water fluxes exhibited by the different FS during long-term experiments with real seawater (as DS) 311 

and real wastewater (as FS) are displayed in Figure 4. The initial water fluxes were 23.1, 22.1, 20.5 and 312 

18.8 LMH for DI water, Secondary Eff., Mixed Liq. And Primary Eff. respectively. Again, the use of 313 

secondary effluent did not induce any noticeable flux decline compared to the use of DI water. However, 314 

for the mixed liquor, the flux started to be impacted by fouling after 30 hours of operation and gradually 315 

decreased after that. When primary effluent was used, the water flux quickly declined at the beginning 316 

of the experiments, thank stabilizing to a low value after 50 hours of operation. Photographs of the 317 

membranes (Figures S4 and S5) show that a uniform cake layer is rapidly built on the membrane with 318 

primary effluent WW. With Secondary Eff. and Mixed Liq., a clear brown stain was visible at the outlet 319 

end of the feed channel. The rest of the membrane surface was clear for Secondary Eff., but a light 320 

greyish layer was visible with activated sludge. The formation of a dense cake layer explains the pattern 321 

observed with primary effluent. The rapid initial flux decline is correlated to the building up of the cake 322 

layer on the membrane surface. Afterwards, the plateau corresponded to a stabilization of the layer’s 323 

thickness which is linked to the amount of foulants in the solution and the shear force from the cross 324 

flow of water.  325 

A particular oscillating pattern observed for secondary effluent was also observed, and it can be 326 

attributed to “self-cleaning” phenomenon. The fouling cake is detached from the membrane as soon as 327 

the shear stress, caused by its thickness, is greater than its attachment to the membrane [25].  328 
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 329 

Figure 4. Water flux as a function of water recovery for four different feed solutions (left). Water flux decline 330 
percentages are provided after 24 h and 80 h of operation (right). Operating parameters: Draw solution = real seawater; 331 
Feed solutions = DI, Secondary Eff., Mixed Liq. And Primary Eff.; Operating time = 80 hours. 332 

3.3.3 Analysis of the fouling layer 333 

EDX and FTIR analyses were carried out to investigate the composition of the fouling layers. The 334 

results are gathered in both Figure 5 and Figure 6. 335 

The EDX analysis revealed that several elements are present in the fouling layer and that the 336 

composition of the fouling layer seems to be roughly the same independently of the feed solution. The 337 

presence of calcium and magnesium were not a surprise, as these divalent ions act as fouling promoters 338 

by forming complexes with organic molecules and biological matter. This phenomenon is known for 339 

filtration and RO processes but was also highlighted in the osmotic dilution of seawater [11, 26, 27]. 340 

Phosphorous and sulphur peaks indicate that sulphate and phosphate ions are probably acting as fouling 341 

promoters, especially when primary effluent WW is used. It can also be linked to the amount of 342 

biological matter, as proteins are abundant in P and S. The C and O peaks correspond to the active layer, 343 

visible below the fouling layer. Finally, crystals on top of the fouling layer could be seen with the SEM 344 

images (Figure S3). However, they are sparse and do not cover most of the membrane surface. Instead, 345 

a uniform layer of organic fouling could be noticed from the pictures. When primary effluent was used, 346 

this layers than formed several crakes when it dried out. 347 
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 348 

Figure 5. EDX analysis of the surface of the fouling layer on the membranes. 349 

The FTIR analysis confirms the regularity of the composition of the fouling layer, as the same peaks 350 

appeared for the three fouled membranes. These peaks were not visible in the pristine membrane. The 351 

associated wavenumber has typically been associated to organic matter and could correspond to the 352 

following bonds, usually found in organic foulants: O-H (3300 cm-1), C=C (1630 cm-1), COO- (1550 353 

cm-1), C-O (1080 cm-1) [28]. 354 
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355 
Figure 6. FTIR of fouled membranes compared to a virgin TFC membrane (in black). 356 

To sum up, as expected from the FO tests, the raw WW caused a more noticeable fouling cake on top 357 

of the membrane active layer. The presence of known fouling precursors, e.g. Mg2+, PO4
3-, Ca2+

 and 358 

organic matter, confirmed that both organic and inorganic fouling happened. On the contrary, when 359 

secondary effluent was used, the analysis of membrane coupon did not show significant evidences of 360 

organic and inorganic precipitates. 361 

3.4 Evaluation of the produced water quality 362 

To assess the possible nutrients contamination of the diluted seawater, nitrogen, phosphorous and TOC 363 

were measured in the DS. It should be noted that, in this concept, the diluted seawater is supposed to 364 

pass through a second barrier, i.e. RO. The RO filtration step would further reduce the N, P and TOC 365 

concentrations in the final effluent. These results refer to the tests conducted with synthetic seawater as 366 

DS and primary effluent WW as FS. Synthetic seawater was used instead of real in order not to bias the 367 

results since the real seawater itself has nitrogen compounds. 368 

In this study, attention was focused on the rejection of NH4
+ since, among all the nutrients, it is known 369 

to be among the hardest to be rejected [29]. Other studies have already demonstrated that the rejection 370 

of phosphate and COD is almost 100% [29]. The poor rejection of ammonia is to be attributed to its 371 
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small hydrated radii (i.e. 3.31 Å) and positive charge (being the polyamide layer negatively charged). 372 

Figure 7 shows how the rejection decreased when primary effluent WW was used as FS. This can be 373 

explained by the fact that the concentration of contaminants is higher in raw wastewater than in 374 

secondary effluent.  375 

 376 

Figure 7. Rejection of NH4
+ after 8 h experiments having synthetic seawater as DS and different real wastewaters as 377 

FS (columns). The dotted line with the markers indicates the amount of NH4
+ that leaked through the FO membrane 378 

to the DS after the filtration. 379 

 380 

To conclude, raw WW showed high NH4
+ leakage in the diluted DS, while both secondary effluent and 381 

mixed liquor showed final NH4
+ concentrations less than 2 mg/L.  382 

3.5 Modelling the system performances 383 

Modelling the water fluxes with different FS was performed using Equation (3) to assess how the 384 

measured data diverge from the theoretical trend. The divergence from measured data to modelled one 385 

was used as a further indication of membrane fouling. In fact, this model does not take into account the 386 

flux decline due to membrane fouling. The model was firstly validated with DI water as FS before 387 

proceeding with WW (Figure 8). It can be seen that the predictions fit quite well the measured data. In 388 

Figure 8, the experimental water fluxes using real seawater and wastewaters results are plotted together 389 
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with the fluxes predicted with the model.  390 

By looking at the second graph from the top in Figure 8, it can be seen that the model predicted quite 391 

accurately the FO water flux when secondary effluent is used as FS. Only at the very end of the filtration, 392 

the measured flux is slightly lower than the modelled. This is probably because in the low end of the 393 

experiment the secondary effluent solution has been concentrated enough to created moderated fouling 394 

on the membrane. 395 

Fouling on the low-end of the filtration is even more noticeable when mixed liquor is used as FS. In 396 

this case a clear divergence from the model happens after about 30 hours. Finally, when primary effluent 397 

is used, soon after the beginning of the experiment the model over-predicted the measured data due to 398 

the severe flux decline. 399 

 400 

Figure 8. Predicted and measured water fluxes. The model used to predict the water flux trend was developed from 401 
Equation 3 using the membrane parameters outlined in Table 4. Excluding the top graph, all the experiments were 402 
conducted with real seawater as DS and real wastewaters as FS. 403 

To sum up, a water flux model was developed and validated with standard experiments using DI water 404 

as FS and seawater as DS. After validation, the model was applied on real wastewaters to see its 405 

deviation from the measured data. As expected, primary effluent displayed the most visible deviation 406 
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even after few hours. When mixed liquor was used, the divergence between model and experiment 407 

occurred after about 30 hours, while secondary effluent showed little to no discrepancies with the 408 

modelled data. 409 

4 Conclusions 410 

Newly developed and commercially available TFC membranes were used to evaluate their 411 

performances and fouling tendency in the FO-RO hybrid process for wastewater reclamation and 412 

seawater dilution. Real wastewater and real seawater are used as feed and draw solution to get 413 

meaningful results. Real seawater achieved an initial water flux of about 22.5 Lm-2h-1 when biologically 414 

treated secondary effluent was used. It was also found that the secondary effluents caused negligible 415 

flux decline. Also, the ammonia rejection was measured to be > 80%. 416 

On the contrary, when raw wastewater was used severe fouling and flux decline was observed. Pre-417 

treatment with sedimentation or coagulation-flocculation was not enough to ensure a good FO 418 

performance during the filtration. A possible explanation is the presence of high concentrations of low 419 

molecular weight organic compounds, measured with LC-OCD. These compounds are suspected to act 420 

as fouling promotors thereby significantly decreasing the filtration time of the experiment. The analysis 421 

of the fouling layers shows that the composition did not change significantly when using secondary 422 

effluent or mixed liquor. However, when raw WW was used, a higher amount of divalent ions (e.g. 423 

Ca2+, Mg2+) and PO4
3- were found with the EDX. Modelling the water flux of the process helped validate 424 

the above conclusions. 425 

To conclude, if mixed liquor or secondary effluent is chosen as feed solution, commercially available 426 

FO membranes were able to produce a good quality permeate, without severe fouling, even during long-427 

term filtration (> 80 hours). Given a stable FO performance, the high quality of diluted seawater will 428 

likely decrease the cost of the downstream RO filtration for potable water production. 429 

 430 

  431 
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