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Abstract 

Fertilizer drawn forward osmosis (FDFO) desalination has been earlier explored using flat sheet 

forward osmosis (FSFO) membrane which highlighted flux and reverse solute flux (RSF) 

performance. This study evaluated and compared the performances of a newly developed 

polyamide (PA) based hollow fiber FO (HFFO) membrane and cellulose triacetate (CTA) FSFO 

membrane. Both membranes were evaluated for pure water permeability (PWP), salt rejection 

rate (1000 mg/L NaCl) in RO mode. Physical structure and morphology were further examined 

using scanning electron micrograph (SEM). SEM images revealed that the overall thickness of 

the HFFO and FSFO membranes was 152 µm and 91 µm respectively. Flux and RSF 

performances of these two membranes were evaluated using nine fertilizer DS as NH4Cl, 

KNO3, KCl, (NH4)2SO4, Ca(NO3)2, NH4H2PO4, (NH4)2HPO4, NaNO3 and CO(NH2)2 in active 

layer –feed solution membrane orientation. HFFO membrane clearly showed better 

performance for water flux with five DS ((NH4)2SO4, NH4H2PO4, KNO3, CO(NH2)2 and 

NaNO3) as they showed up to 66% increase in flux. Beside thick PA active layer of HFFO 

membrane, higher water flux outcome for FO process further highlighted the significance of 

the nature of support layer structure, the thickness and surface chemistry of the active layer of 

the membrane in the FO process. On the other hand, most DS showed lower RSF with HFFO 

membrane with the exception of Ca(NO3)2. Most of DS having monovalent cation and anions 

showed significantly lower RSF with HFFO membrane.  

Keywords: Fertilizer draw solution, Forward osmosis (FO), Flat sheet FO membrane, Flux, 

Hollow fiber FO membrane, Reverse salt flux  
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Introduction 

 

Energy intensive thermal and membrane based desalination processes are currently being used 

extensively to meet the growing demands of clean water. The rising energy prices have really 

made it difficult to economically produce good quality water. Although thermal desalination 

was initiated many decades ago, but due to comparatively low energy systems, in the last 30 

years, membrane based desalination processes gained popularity and now competing the long 

established distillation based technologies [1]. Membrane based technologies now claim major 

share of the installed desalination capacity  in the world [2].  

 

Forward osmosis (FO) is a newly introduced membrane based desalination technique 

harnessing the natural available power i.e., osmotic pressure (OP) of draw solution (DS)  to 

induce flux thus avoids any additional external energy source to drive desalination. Due to this 

particular reason, in a very short period of time, FO technology has been evaluated for a wide 

range of applications ranging from sea / brackish water desalination [3-5] to power generation 

[6]. Fertilizer drawn forward osmosis (FDFO) is an innovative FO process [7] using 

commercially available fertilizers as DS to desalinate water for agricultural use. Additionally, 

opposite to other FO processes, final diluted draw solution does not necessarily require 

separation of the remaining DS and thus product permeated water is used directly for 

fertigation. It helps FDFO process taking a real advantage from low cost forward osmosis 

desalination approach.  

 

Beside aforesaid FO inherent advantages, FO membrane and DS characteristics are considered 

as the major impediments in the commercialization of forward osmosis system [8]. Similarly, 

FDFO process has also seen certain limitations for its practical applications [7]. Apart from the 

fertilizer DS related issues such as excessive DS recovery, high nutrients concentration in 

permeated water, risk of possible nutrients loss to feed solution, membrane associated issues 

such as low water flux and high RSF are also noticed.  FO flux is directly linked to initial capital 

cost and operating cost of FO system. High flux FO operation means small FO plant footprint 

and reduced reverse solute flux (RSF) reflects reduction of DS leakage to FO waste streams.  

 

FO membranes are mainly classified into two main groups 1) flat sheet and 2) hollow fiber. 

Earlier studies with CTA flat sheet FO (FSFO)  membranes highlighted issues such as low 

water flux (Jw) and high RSF [9, 10] which also affect FDFO process directly. Lower 
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performance ratio of 16.48% indicated serious issues with FSFO membrane [7]. Initially, only 

the asymmetric (active layer embedded on a porous support layer-used to increase the structural 

strength of the membrane) FSFO membrane was produced and tested for various applications. 

The asymmetric structure of this membrane causes enhancing concentration polarization (CP) 

on both sides of the membrane consequently results in reduction of the actual water flux through 

the membrane. CP drastically reduces the available driving force (osmotic pressure gradient 

(∆π)) at the membrane surface and causes sharp decline in flux that results in poor FO 

operational result performance. 

 

Since FO flux mainly relies on ∆π across the membrane surface contacting DS and feed solution 

(FS) to drive osmosis, therefore, the accumulated CP affects it seriously [11-14].  External 

concentration polarization (ECP) is usually linked with DS and FS concentration whereas 

internal concentration polarization (ICP) is mainly associated with thick dense membrane and 

support layer structure [9]. Membrane fouling and concentration polarization are considered as 

the two serious operational problems with FO systems directly affecting their outcome [12-16]. 

To overcome this issue, efforts were directed to develop an ideal FO membrane having thin 

film on a highly porous and very fine support layer, having high water permeability, low salt 

permeability and enough strength structure layers that gives minimum CP effects, especially 

ICP.  

 

HTI first introduced commercial flat sheet  CTA FO membrane [15]. To reduce the intensity of 

the membrane related issues critical for quick FO commercialization, many research groups 

worked on development of new and improved FO membranes. Some of the resulted positive 

outcomes include novel dual layer hollow fiber membranes [17], well-constructed cellulose 

acetate FO membrane [12], thin film composite FO hollow fiber membrane [18, 19], high 

performance thin film membrane [20], thin film nano composite using functionalized multi-

walled nanotubes [21], double skinned FO membrane [22], acetylated methyl cellulose (AMC) 

membrane [23], cellulose triacetate/cellulose acetate (CTA/CA)-based membranes [24] etc. 

 

Hollow fiber forward osmosis (HFFO) membrane development work was initiated by various 

research groups [25, 26] to produce better performing FO membrane carrying minimum FO 

operational issues. In comparison to FSFO membranes, most of the developed HFFO 

membranes demonstrated proven performance in terms of high water flux and lower RSF  [19, 

27-32]. 

http://www.sciencedirect.com.ezproxy.lib.uts.edu.au/science/article/pii/S0376738813000549
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Up to date many studies have been done to explore FO use in different practical applications 

using FSFO membrane but no serious attempt is yet made for using HFFO [33-39]. Hence this 

study may be considered as a late first genuine step to evaluate HFFO membrane for any 

commercial application as FDFO.  

 

As such, the main objective of this study was to categorically compare HFFO membrane 

performance with FSFO membrane and notice its effects on FDFO desalination process 

efficiency. HFFO membrane was evaluated for different fertilizer DS and flux, RSF results 

were compared with the FSFO membrane outcome to identify specific membrane properties 

critical for higher FO process performances. Comparison of FDFO performance for these two 

different membranes with multiple DS further provided us better understanding about how 

different DS properties and membrane characteristics manipulate FO output. 

 

2. Materials and methods. 

2.1 Experimental Set-up 

Bench scale HFFO set-up as shown in the Fig. 1 was used for this study. Two peristaltic pumps 

(Cole- Palmer, U.S.A.) were used to supply FS and DS to HFFO membrane module. Cross 

sectional flow rates were maintained at 400 ml/min for both FSFO and HFFO membrane units. 

While changing DS, each FO system was washed thoroughly at the end of each test for 30 

minutes using distilled water at 400-800 ml/min. Temperature of the DS and FS stream was 

kept constant at 25°C ± 1°C using temperature water bath controlled by heater/chiller. 

 

Water permeation through HFFO membrane was evaluated by measuring weight loss of FS 

using a weighing scale (CUW 4200H by CAS, Korea) connected to a computer data logging 

system which was later used to calculate water flux in these particular FO tests. A conductivity 

data logger probe was immersed in FS tank to record changes in FS conductivity at certain time 

intervals. This data helped  in measuring RSF during FO operations. An identical bench scale 

FO set-up was used for FSFO membrane evaluation stated elsewhere [7]. 
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2.2  Membranes used 

 HFFO membrane lumens, supplied by Samsung Cheil Industries, Korea were used in this 

study. HFFO lumens were composed of active polyamide (PA) thin film composite (TFC) layer 

inside of porous polyethersulphone hollow fiber substrate. Inside and outside diameter of these 

hollow fiber lumens were 0.9 mm and 1.2 mm respectively and HFFO module carried average 

FO membrane area of 3.96 x 10-2 m2.    

 

Simultaneously, commercially available CTA forward osmosis membrane supplied by 

Hydration Technologies Innovations (HTI), USA was used separately with FSFO lab-setup. FO 

lab experimental cell carried flat-sheet membrane of size 26 mm x 77 mm.  Thus FSFO 

membrane represented an average membrane area of 2.02 x 10-3 m2. 

 

All tests for both FSFO and HFFO were carried out in active layer – feed solution (AL-FS) 

membrane orientation. Smooth active layer of FSFO membrane was placed towards FS side 

and rough surface carrying polyester mesh support layer was faced towards DS side. Similarly, 

 

Fig. 1. Schematics of lab scale HFFO set-up used in this study  
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for HFFO set-up, FS was directed to flow through lumens whereas DS was flowed through FO 

module shell outside fiber.  

 

2.3  Chemicals and reagents 

9 commonly used fertilizers including NH4Cl, (NH4)2SO4, KNO3, KCl, (NH4)2HPO4 (DAP), 

NH4H2PO4 (MAP), Ca(NO3)2, NaNO3, and CO(NH2)2 (Urea) were selected to use as DS to  

evaluate and compare performance of these two FO membranes for FDFO process. Membrane 

performance was evaluated against 1M individual fertilizer DS concentration. DI water was 

used as FS for the whole study. 

 

2.4 FO operating setup summary 

Details of the HFFO and FSFO membrane test set-up are summarized in Table 1. 

 

 

3. Results & discussion 

Table 1.  Summary of the operating conditions for bench scale HFFO and FSFO 

membrane systems for FDFO process comparative study 

Description  Details 

DS used   

 

NH4Cl, (NH4)2SO4, KNO3, KCl, (NH4)2HPO4, 

NH4H2PO4, Ca(NO3)2, NaNO3, and CO(NH2)2 

Fertilizer DS concentrations  1 M 

Feed water type  Deionized (DI) water 

Membrane orientation  AL-FS  

Temperature  25ºC ± 1.0 

Parameters evaluated  FO flux and RSF  

HFFO module type  

FSFO membrane type 

 PA lumens based hollow fiber module  

 CTA flat sheet membrane  

DS/FS flow rates   400 ml/min for both DS/FS 

HFFO membrane active area   

FSFO membrane active area 

 39.6 x 10-3 m2 

 2.02 x 10-3 m2 
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3.1. HFFO and FSFO membranes comparison 

 

HFFO and FSFO membranes were used for FDFO process comparison. Physical properties of 

both membranes are summarized in Table 2. Membrane thickness was evaluated using 

micrometer and its surface characteristics were further assessed using scanning electron 

micrograph (SEM). HFFO membrane comparatively shows about 66% overall higher 

membrane thicknesses as HFFO and FSFO membranes show thickness of 152±3 µm and 91±2 

µm respectively. Thus the HFFO thickness is about 66% higher than FSFO membrane. 

Similarly thickness of polyamide active layer of HFFO membrane is also high as compared to 

thickness of active CTA layer of FSFO membrane. 

 

Pure water permeability (PWP) and the salt rejection rate (1000 mg/L NaCl) of both membranes 

were evaluated in RO mode. FSFO membrane was evaluated for higher pressure (5-15 bars) 

whereas HFFO was evaluated at extremely low pressure (up to 1.5 bars) to avoid fiber damage. 

The PWP and the salt rejection of the HFFO membrane were 1.80 Lm-2h-1bar-1 and 98% 

respectively while for FSFO membrane the PWP and rejection were 1.012 Lm-2h-1bar-1 and 

90% respectively.  In comparison to FSFO, HFFO membrane showed PWP value higher by 

78% and salt rejection higher by 9%.  

 

Fig. 2 shows SEM images of both PA HFFO membrane and CTA FSFO membrane. Both 

membranes show a huge difference in making and structure.  Fig 2 (a) shows top image of 

horizontally cut HFFO membrane. A thick PA active layer was seen on top of an outer layer of 

polyether sulphone. The PA active layer presents excellent intrinsic separation properties with 

a hydrophilic rejection layer that provide good mechanical strength to FO hollow fibers. 

Similarly, in Fig. 2 (b), a side view of the CTA FS membrane shows top dense CTA layer 

embedded on a polyester mesh support layer. Membrane acetate contents (in wt.%) directly 

affect the pure water permeability and salt permeability as well [40]. Water diffusion coefficient 

decreases as the acetate content of the membrane is increased. Similarly salt permeability is 

also reduced with any increase of membrane acetate contents suggests that a better CTA 

membrane may be made by controlling its acetate contents in the membrane along with the 

thickness of the membrane. 
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3. 2. Comparative performances of FO membranes in terms of water flux and reverse 

solute flux 

Lab FO units for both flat sheet membrane cell and hollow fiber module were operated on 

similar operation conditions. The FO flux outcome was evaluated for various fertilizer DS used 

in FDFO process and these results were then compared for their effectiveness for FDFO 

process. These were evaluations in term of AL-FS membrane orientations. Due to severe ICP 

issues, FO operation in this orientation relatively shows less flux output [44].    

 

  

Table 2. Comparison of FSFO and HFFO membrane characteristics and physical properties 

 Flat Sheet FO Hollow Fiber FO 

Source  HTI, USA Samsung Cheil 

Industries, Korea  

 

Active layer  (AL) material Cellulose Triacetate Polyamide  

Support Layer  (SL) material Polyester mesh Polyether sulphone 

Thickness (Overall) (µm) 91 ± 2  152 ± 3 

Thickness (AL) (µm) 45 ± 2 65 ± 3 

Thickness (SL) (µm) 46 ± 2 87 ± 3 

Pure water permeability  (Lm-2h-1bar-1) 1.012 1.80 

Salt rejection (%) 90 98 

Membrane surface charge Negatively charge a Neutrally charge b  

Support layer  surface charge Negatively charge Neutrally charge  

Contact angle of the active layer  ( ˚) 61 c -  

Contact angle of the support layer ( ˚) 87 d -  

Sources: a [41]; b  [42] ;  c [43];   d [16] 
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Fig 2. SEM images for both FO membranes used in our study.  a)  cross-section of HF FO 

membrane showing the inside active PA  layer supported by outside PES layer b) FSFO 

membrane, with CTA active dense layer embedded on polyester mesh c) HFFO horizontally 

cut, larger view, d) FSFO active layer (top view) e & f) HFFO cross-section.  * adapted from 

[45] 

(a) (b*) 

 

(c) 

(d) 

(e) 

(f) 



10 

 

 

3.3  Overall flux evaluation and comparison 

Fig. 3 shows the flux performances for HFFO (PA) membrane and compares it with FSFO 

(CTA) membrane flux results. These two membranes showed a mixed trend when HFFO flux 

output was compared with FSFO flux results using 9 different fertilizers including NH4Cl, 

Ca(NO3)2, NaNO3, KNO3, MAP, (NH4)2SO4, KCl, DAP and urea as DS at 1M concentration. 

Some of the fertilizers DS showed comparatively higher flux outcome with HFFO membrane 

while others show lower flux. Results show that with these two FO membranes, flux varied 

from -4% to 68% for different fertilizer DS. Urea showed the highest increase followed by 

NaNO3, KNO3, MAP and (NH4)2SO4. NH4Cl, KCl and Ca(NO3)2 showed lower flux results 

with HFFO membrane and DAP nearly gave the same flux. Urea, NaNO3, MAP, KNO3 and 

(NH4)2SO4 show that with HFFO, flux were increased by 67%, 32%, 25% and 8% respectively 

whereas NH4Cl, Ca(NO3)2 and KCl respectively showed flux decrease of 4.0, 3.0 and 2.0 % for 

HFFO. Flux for (NH4)2HPO4 (DAP) nearly remained the same for both membranes.   
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Fig. 3. Comparison of flux outcome for FSFO and HFFO membranes 
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Comparing the physical appearance of the active layer of these two membranes (Fig. 2 (a and 

d)), it is evident that hollow fiber PA seems to be very porous as compared to a true dense flat 

sheet CTA membrane. Porous structure of HFFO membrane apparently helped diffuse water 

molecules comparatively easily and faster through the PA membrane surface and thus it 

comparatively delivered high flux output. From the general theory of permeation and osmosis, 

it may be concluded that as HFFO substrates seem highly porous with a narrow pore size 

distribution against a really dense CTA layer of FSFO membrane, the latter might resist speedy 

penetration of water molecules deep through the membrane active layer at a high rate and thus 

deliver comparatively low flux.  

 

Further, Fig. 3 results indicate that for these membranes, the flux variation with a particular DS 

is affected with the anion part of the DS solute. It was observed that most of nitrate based DS 

as NaNO3 and KNO3 gave higher flux with HFFO membrane and chloride based DS (NH4Cl 

and KCl) provided higher flux with FSFO membranes. It is likely that smaller hydrated 

diameter species have more chances to diffuse through the membrane [46, 47]. As the NO3
- and 

Cl- anions carried the smallest hydrated radii size among all anions, they penetrated deep into 

the support layers of HFFO and FSFO membranes SL to reach close to the their active layers.  

However, active layers of these membranes responded differently for DS carrying NO3
- and Cl- 

and delivered inconsistent flux outcome. HFFO and FSFO membrane showed varying flux 

outcome for NO3
- and Cl- based DS. 

 

Moreover, the associated cationic part of the DS also significantly affects FO flux for a 

particular DS. HFFO membrane gave high flux with mono-valent cation based nitrate DS as 

NaNO3 and KNO3 whereas FSFO showed high flux with di-valent cation based nitrate DS as 

Na(NO3)2. This indicates that the FO flux for a particular membrane is associated with both DS 

properties and membrane characteristics. 

 

Dense CTA flat sheet membranes gave lower water flux output due to increased CP 

phenomenon [28]. Interfacially polymerized TFC membranes on hydrophilic porous substrates 

shows reduced ICP effects and exhibits high water flux [48]. Hydrophilicity of porous 

substrates plays an important role on TFC FO membranes. These fluctuations in FO 
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performance consequences for similar DS and operating conditions are attributed to the active 

rejection layer and support layer characteristics.  

 

3.4   Reverse solute flux (RSF) evaluation and comparison 

RSF of 8 fertilizers DS was evaluated for both HFFO and FSFO membranes. RSF is an 

important performance parameter used to evaluate the effectiveness of FO process as it 

represents the unwanted loss of valuable DS diffused through the FO membrane towards the 

feed solution, valuable fertilizer in the FDFO process. Difference of solute concentration in DS 

and FS on both side of the membrane drives RSF.  

 

Overall, RSF results indicate that in comparison to FSFO membrane, HFFO performed 

extremely well for RSF outcome for most of the fertilizer DS. Contrary to flux outcome 

comparison, irregular behavior was observed when HFFO and FSFO membranes RSF results  

were evaluated and compared for different fertilizer DS (1M concentrations). Most of the 

fertilizer DS showed very low RSF with HFFO (Fig. 4). NH4H2PO4, KCl, KNO3, KCl, NH4Cl 

and MAP DS gave lower RSF values whereas (NH4)2SO4 and Ca(NO3)2 comparatively 

delivered higher RSF values among these fertilizers.  

 

The results in Fig. 4 were evaluated for RSF percentage variation for HFFO and FSFO 

membranes. FSFO membrane showed relatively inferior results for RSF. Comparison to HFFO, 

FSFO membrane showed 1145%, 739%, 650%, 727%, 280% and 1058% higher RSF for 

NH4H2PO4, KCl, KNO3, NaNO3, DAP and NH4Cl DS respectively.  

 

Further, NH4Cl and KCl DS carrying monovalent cations and anion gave similar RSF for FSFO 

and HFFO membrane whereas the other DS pair as KNO3 and NaNO3 also carrying monovalent 

cations and anions showed significant difference in RSF outcome (Fig. 4). Ca(NO3)2 and 

(NH4)2SO4 carrying a divalent cation and divalent anion showed less RSF with both 

membranes.  Ca2+ thus shows less RSF as compared to Na+ or K+. HFFO membrane 

comparatively indicated the high RSF value for divalent cation and anion based DS such as 

(NH4)2SO4 and Ca(NO3)2. Divalent cations and anions (Ca2+, SO4
2-) or trivalent anions (PO4

3-) 

have high hydrated radii, hence exhibits low RSF.  

 

FSFO showed better performance in terms of RSF for (NH4)2SO4 and Ca(NO3)2 DS as it 

respectively showed 82% and 36% less RSF for these two DS. Low RSF demonstrated by FSFO 
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membrane for divalent ionic compounds could be attributed to ion size exclusion and Donnan 

electrostatic effect FSFO [17, 25]. Comparative data also proved that divalent cations or anions 

reduce or slow down the relative permeation of respective mono-valent cations and anions.  

 

 

 

3.5 Flux and RSF behavior with hydrated radii 

For water permeation (flux) or a salt diffusion (RSF) through a specific membrane, both size 

of water molecule and DS species matter are important. DS ionic size, solute structure and 

membrane pore shape play an important role in delivering any particular flux through the 

membrane. FO performance related parameters as flux and RSF have affinity between DS radii, 

water molecule size and membrane pore size. Ionic and dipole permeabilities are extremely 

sensitive to the ionic/dipolar  radii [49, 50]. Large molecules are retained at the membrane 

surface by electrostatic interactions whereas small, weakly charged ions can enter the pores. 

Anions  hold their hydration shells relatively more strongly than the cations for a given charge 

density  [51].  
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Fig. 4.  RSF with HFFO and FSFO membranes for fertilizer DS  
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Fig. 3 shows that HFFO membrane exhibited better flux outcome for a particular DS carrying 

the same osmotic pressure. For many reasons, solute concentration alone is not sufficient to 

give good estimates of osmotic pressure  [52].  Osmotic pressure is not solely a function of the 

number of solute particles in solution, but it is also related to the solute size  [53]. Osmotic 

potential of organic solutions is largely a function of the size of their solute particles  [54]. 

Solutes influence osmotic potential by altering the molecular spacing of the free water 

molecules in solution and therefore different solutes differently influence the osmotic potential 

[55]. This also authenticates that a close relation between the hydrated radii and membrane pore 

size. 

  

Results presented in Fig. 3 and 4 are further evaluated with different prevailing theories to 

further identify the main issues related to the difference in performance of these two 

membranes.  

 

Both HFFO and FSFO membranes were asymmetric and permeable to both salt and water. 

Water flux and salt diffusion seem to be closely linked with each other. Results from Fig. 4 

indicate the influence of interactions of some strange intermolecular and intramolecular forces 

which play an important role for the specific diffusion of different solutes through semi-

permeable membranes. Characterizing DS by their valancy, comparison of the results in Fig. 4 

shows that DS containing monovalent cations (NH4
+, K+) and anions (NO3

-, Cl-) exhibited better 

results with HFFO CA membrane. DS containing either a divalent cation (Ca2+) or divalent 

anion (SO4
2-) exhibited better performance for RSF with CTA flat sheet FO membrane. Low 

RSF for divalent cation and anion based DS showed that CTA FSFO membrane behaves similar 

to NF membrane for divalent ions rejection properties. Inconsistent trends for RSF results may 

only be associated with the membrane active layer properties as their surface charge, membrane 

pore size and pore geometry.  

 

Fig. 4 indicates that RSF for monovalent cation based NO3
- and Cl- DS reduced significantly 

with HFFO membrane. AL of HF membrane does not allow nitrates to diffuse through the PA 

active layer. In comparison to HFFO, FSFO membrane showed 650% and 727% higher RSF 

for KNO3 and NaNO3 respectively. Nitrate based DS exhibited high flux and lower RSF with 

HFFO (Fig 3 and 4). Furthermore, compared to FSFO, HFFO membrane showed 739% and 

1054% lower RSF for chloride based DS. However, chloride based DS showed higher flux for 

FSFO membrane.  
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The results indicate that in comparison to CTA FSFO, PA HFFO membrane carry smaller pore 

with unique configurations which reduce RSF through the membrane. These membrane pores 

do not allow even the smaller size Cl- and NO3
- ions pass through the HF membrane but at the 

same time high RSF value for divalent DS indicates that the membrane allows DS carrying 

large size divalent Ca2+ and SO4
2- move faster through the membrane. It confirms that only 

hydrated radii size does not direct flux or RSF for any membrane rather membrane properties 

are more vital for FO performance. Similarly the pore size of membrane AL may not suggest 

any particular flux or RSF outcome. PA membrane showed better control of monovalent 

cationic or anionic DS whereas CTA membrane shows better control of diffusion for divalent 

cation or anion based DS.   

 

In any FO process, RSF and water flux movement through the FO membrane is in opposite 

directions [56, 57]. Water molecules in a high flux FO process push solute molecules backward 

and result low RSF. Similar types of opposite forces affect osmosis and diffusion for all flux 

and RSF outcome. Fig. 3 and 4 show that high FO flux outcome reduces RSF. RSF does not 

reduce linearly with the flux rise for all evaluated DS which indicates that flux rise itself does 

affect RSF outcome significantly.  Literature still lacks data which may exactly define water 

and solutes molecules movement patterns through the membrane pores during any membrane 

filtration process as NF, RO, and FO. Due to these unclear hidden issues, effects of such 

phenomenon are not yet incorporated to derive equations for FO flux and RSF. 

 

It is impossible to have an ideal membrane of zero thickness [58]. All natural and synthetic 

membranes come with a finite thickness. Table 2 shows that HFFO membrane comparatively 

carry thick active layer and support layer. HFFO membrane exhibited same thickness same as 

of conventional RO membrane [59]. Water molecules face more obstacles to cross thicker 

membrane. Higher flux with HFFO membrane indicated that thin active layer of FSFO has 

dense and non-porous membrane structure. Due to smooth pore geometry and structure, water 

molecules comparatively have better probability to move quickly through micro porous HFFO 

membrane structure shown in Fig. 2 (a). 

 

Fouling development reduces water flux sharply as fouling make water diffusion passage 

through the membrnae thick [44]. Fouling tends to increase the thickness of the membrane 

which hamper flow of water molecules but flux reduction due to fouling and scaling is mianly 
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contributed due to pore blocking [60]. Membrane development work is focused to construct a 

thinner membrane, however, Fig. 3 results indicate that only the thickness of the specific 

membrane does not effect FO flux notably rather it highlighted role of other membrane 

chracteristics as pore density, pore size, pore structure and pore depth which are not yet evlauted 

in details. These parameters seem more cricitial and relevant than membrane thickness for FO 

flux and RSF outcome. However, influence of  AL thickness on FO outcome is not ruled out 

completely.  

 

CP reduces the net osmotic pressure available across the AL of FO membrane [3]. In FO 

process, CP increases as the thickness of the membrane or SL increases [3, 16, 61-63]. ICP 

effects can be reduce by using thinner and more porous support layer as it reduces mass transfer 

resistance [14]. For most of the DS, higher flux outcome (Fig. 3) by HFFO membrane comprises 

of thick active and support layers (Table 2) reveal that the thickness of the membrane may not 

be considered as the main parameter linked to CP rather AL and SL membrane material 

characteristics and DS properties together contribute to CP build-up in diverse ways. 

 

Fig. 3 and 4 results indicate that for different DS, both HFFO and FSFO membranes showed 

varying behaviors for flux and RSF outcome. It is evident from these results that the differences 

in flux and RSF outcome are owing to varying membrane properties and DS characteristics as 

well. Different DS affects flux and RSF performance inconsistently for these membranes as for 

1M KNO3 DS, water flux increases whereas RSF decreases for HFFO membrane. Similar types 

of varying results were also noticed with other evaluated DS. DS properties seem directly linked 

with membrane structure, porosity, pore density, pore size, pore structure, solute affinity with 

water, AL and SL membrane surface charge, membrane thickness, water and solute flow 

patterns within membrane pores for any particular FO performance outcome. Further studies 

on these fundamental parameters are suggested to understand and predict any resultant FO flux 

or RSF outcome for a specific membrane. 

 

4. Conclusions 

PA HFFO and CTA FSFO membranes were evaluated in this study for FDFO process. 

Summarizing main findings of our study as: 

 HFFO membrane comparatively gave up to 66% higher flux outcome for different 

fertilizer DS.  
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 HFFO membrane performed well for RSF as FSFO showed up to 1184% higher RSF 

values for fertilizer DS. Most of the DS showed lower RSF values with HFFO except 

DS having divalent cations or anions.  

 FO flux and RSF outcome for FO membranes are mainly associated with hydrated radii 

of anions associated with other cation of the DS. Most of the Cl- based DS gave better 

flux outcome with FSFO whereas NO3
- based DS exhibited better flux results with 

HFFO. Divalent cationic or anionic parts of the DS significantly affected RSF and flux 

results. 

  The study confirms close links and associations between DS properties and membrane 

characteristics for FO performance.  

 

Higher water flux and low RSF outcome for HFFO membrane confirmed that HFFO membrane 

is a better choice for FDFO process. 
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