
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Survey on Bayesian Nonparametric Learning

JUNYU XUAN, University of Technology Sydney, Australia
JIE LU, University of Technology Sydney, Australia
GUANGQUAN ZHANG, University of Technology Sydney, Australia

Bayesian (machine) learning has been playing a significant role in machine learning for a long time due to its
particular ability to embrace uncertainty, encode prior knowledge, and endow interpretability. On the back of
Bayesian learning’s great success, Bayesian nonparametric learning (BNL) has emerged as a force for further
advances in this field due to its greater modelling flexibility and representation power. Instead of playing
with the fixed-dimensional probabilistic distributions of Bayesian learning, BNL creates a new “game” with
infinite-dimensional stochastic processes. BNL has long been recognised as a research subject in statistics
and, to date, several state-of-the-art pilot studies have demonstrated that BNL has a great deal of potential to
solve real-world machine learning tasks. However, despite these promising results, BNL has not created a
huge wave in the machine learning community. Esotericism may account for this. The books and surveys on
BNL written by statisticians are overcomplicated and filled with tedious theories and proofs. Each is certainly
meaningful but may scare away new researchers, especially those with computer science backgrounds. Hence,
the aim of this paper is to provide a plain-spoken, yet comprehensive, theoretical survey of BNL in terms that
researchers in the machine learning community can understand. It is hoped this survey will serve as a starting
point for understanding and exploiting the benefits of BNL in our current scholarly endeavours. To achieve
this goal, we have collated the extant studies in this field and aligned them with the steps of a standard BNL
procedure - from selecting the appropriate stochastic processes, through manipulation, to executing the model
inference algorithms. At each step, past efforts have been thoroughly summarised and discussed. In addition,
we have reviewed the common methods for implementing BNL in various machine learning tasks along with
its diverse applications in the real-world as examples to motivate future studies.
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1 INTRODUCTION
The Bayesian paradigm for machine learning, also known as Bayesian (machine) learning, is to
apply probability theories and techniques to represent and learn knowledge from data. Bayesian
learning has played a significant and irreplaceable role in machine learning area ever since the
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pioneering works of Professor Judea Pearl. Some renowned examples are Bayesian network, Gauss-
ian mixture models, hidden Markov model [134], Markov random field, conditional random field,
and latent Dirichlet allocation [11]. Compared to other learning paradigms, Bayesian learning has
distinctive advantages. First, it embraces the uncertainty by explicitly representing, manipulating,
and mitigating it based on a solid theoretical foundation - probability, which makes Bayesian
learning more robust facing real-world intelligent systems [96]. Second, Bayesian learning can
smoothly encode the prior knowledge about a problem under study in parallel with the knowledge
learned from observed data - an asset that is also useful for overcoming the overfitting issues that
tend to arise with limited amounts of data because priors can be treated as regularisers of the
data. Lastly, Bayesian learning has inherent interpretability thanks to its clear and meaningful
probabilistic structure. Beyond its abilities to make predictions, these interpretability becomes
an additional desired learning outcome. In a standard Bayesian learning procedure, the goal is to
build a model composed of a set of parameters (or random variables) to suit the target problem
and then infer the posterior of these parameters given observed data. The model’s parameters,
which are normally defined to satisfy known fixed-dimensional probabilistic distributions (e.g.,
Gaussian, Dirichlet, gamma, and multinomial distributions), control the data’s goodness-of-fit
and the model’s complexity. Thus, inappropriate model parameters may lead to underfitting (i.e.,
bad goodness-of-fit but good model complexity) or overfitting (i.e., good goodness-of-fit but bad
model complexity) issues. Since the building blocks of Bayesian learning are fixed-dimensional
probabilistic distributions, the number of parameters must be finite; hence the name, Bayesian
parametric learning. Determining or learning the number of these parameters are based on human
labour or restarting the algorithm several times to find the optimal settings - a process that is
time-consuming and not scalable to large-scale unfamiliar data.

Bayesian nonparametric learning (BNL) advances Bayesian learning in terms of the representation
power and modelling flexibility. First, it is necessary to clarify that nonparametric does not mean
“there are no parameters”. In fact, quite the opposite is true. In theory, there are an infinite number
of parameters in Bayesian nonparametric models. Therefore, nonparametric means “there is no
need to predefine the dimensionality for the parameters”. Studies on Bayesian nonparametrics
began with two papers written by Professor Thomas S. Ferguson in 1973 [57] and Professor Kjell
Doksum in 1974 [43]. However, the nonparametric paradigm did not attract much attention from
computer scientists until 2005 when a conference paper titled “Sharing clusters among related
groups: Hierarchical Dirichlet processes” applied Bayesian nonparametrics to machine learning
[166]. Due to the great success of this work, computer scientists began to pay attention to Bayesian
nonparametrics, giving rise to BNL. From then on, BNL became an interdisciplinary subject for
statisticians and computer scientists. Rather than playing with fixed-dimensional probabilistic
distributions, BNL is a “game” to play with infinite-dimensional stochastic processes (e.g., Dirichlet,
Gaussian, Poisson, gamma, and negative binomial processes). The benefits are two-fold. Stochastic
processes are not restricted by predetermined underlying assumptions about the dimensionality
of the data, which provides a far greater ability to represent the data accurately. Further, BNL
builds probabilistic models with flexible structures that can autonomically adapt to new incoming
observations (also known as “letting the data speak”). A typical scenario is document modelling.
Here, BNL can not only learn the summarised topics in a set of documents but can also adapt the
number of learned topics according to the documents in the set. Further, when new documents
arrive, BNL can change the number and content of the topics effortlessly. However, there is no
such thing as a free lunch. While BNL does bring powerful representations and highly flexible
models to the learning table, model inference still faces great challenges. Fortunately, statistical
inference techniques have simultaneously experienced a similar pace of advancement as BNL has
progressed. These advancements include sampling-based inference algorithms (e.g., slice sampling
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A Survey on Bayesian Nonparametric Learning 1:3

and Hamiltonian Monte Carlo), optimisation-based inference algorithms (e.g., variational inference),
and hybrid inference algorithms (e.g., stochastic gradient Markov chainMonte Carlo). Together with
the growing computational powers of “hardware” (e.g., multi-core CPUs, GPUs, and distributed
computing platforms), these efficient inference algorithms make applying BNL on large-scale
real-world tasks possible.

Only a small number of surveys and books in the literature focus on BNL and most were written
by statisticians, Among these, the pioneer review [58] and three books [74, 88, 123] stand out.
While thorough, these works each express a perspective on BNL from a statistician’s point of
view. Applications for BNL are based on statistical scenarios and supported by deep and detailed
theoretical analyses and property proofs in those contexts. Although profound and highly necessary
for developing new models or investigating consistency and asymptotic behaviours, all are difficult
to understand for those with a computer science background. Further, they lack a roadmap to
applying these techniques to machine learning tasks or real-world data-driven scenarios. Outside
of statistics, there are also two general introductions to BNL [70, 96] and one survey specifically
related to non-exchangeable priors [60]. However, all either present very early research progress
or focus on one aspect of BNL. A substantial amount of progress has been made in this field over
the past ten years, which justifies a comprehensive and updated review.
This survey aims to provide a good starting point for researchers who are interested in BNL -

primarily those in the computer science community. To achieve this goal, we have organised the
work in this field to align with the standard BNL procedure. That is, a) select appropriate stochastic
processes, b) manipulate those processes, and c) execute the model inference. In presenting the
stochastic processes, we have mainly focused on the ability of each to model different kinds of data,
rather than on detailed theoretical definitions and proofs. These definitions and proofs have been
purposely omitted with corresponding references for further reading. Our purpose is to highlight
the potential pathways for studying BNL so researchers can choose their own points of interest as a
launch pad for further explorations. For example, developing a new stochastic process for a specific
data structure or designing a more efficient inference algorithm. The Bayesian nonparametric
extensions of current machine learning algorithms or models have been reviewed as motivating
examples for researchers who already have knowledge in machine learning. The goal here is to
explain BNL’s merits for consideration to those who intend to extend other algorithms or models.
Additionally, we have presented a selection of real-world applications across a diverse range of
domains to show the practical value in BNL as encouragement to applied researchers to consider
BNL as an analytical tool in their future studies.
The remainder of this work is organised as follows. The definitions of BNL are introduced in

Section 2. Section 3 presents the basic ingredients (i.e., various stochastic processes) of BNL followed
by their manipulations summarised in Section 4. Section 5 reviews the model inference techniques
used in this community. Sections 6 and 7 discuss the use of BNL in machine learning tasks and
real-world applications. Section 8 concludes this survey and provides our visions for the future.

2 DEFINITIONS
One closely related definition of Bayesian nonparametrics is given by statisticians as

Definition 1 (Bayesian nonparametrics [88]). “Bayesian nonparametrics are models and
methods characterised by (a) big parameter spaces (unknown density and regression functions, link
and response functions, etc.) and (b) construction of probability measures over these spaces.”

This definition is used to distinguish four important concepts in statistics: frequentist parametrics,
Bayesian parametrics, frequentist nonparametrics, and Bayesian nonparametrics. Another simpler
definition of Bayesian nonparametric models comes from the Encyclopedia of Machine Learning as
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Definition 2 (Bayesian nonparametric model [128]). “A Bayesian nonparametric model
(BNP) is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically
chosen as the set of all possible solutions for a given learning problem.”

Definition 2 was formulated for researchers in the machine learning field, so it concentrates more
on the infinite-dimensional characteristic and the learning ability of BNP. Additionally, the ability to
build models on infinite-dimensional parameter spaces is an important distinction in this definition,
as it implicates stochastic processes as an alternative to probabilistic distributions. Compared to
traditional and naive applications of stochastic processes in time series events modelling, one
major contribution of Bayesian nonparametric learning to the machine learning community is to
introduce stochastic processes for two (or higher)-dimensional space partition or more complex data
structures. BNL’s strengths from a computer science perspective are its flexible data structures and
manipulations. Therefore, we argue it would be better to define BNL according to those strengths
to promote a better understanding of BNL in computer scientists and enhance their willingness to
adopt BNL in their studies. An alternative definition for BNL follows.

Definition 3 (Bayesian nonparametric learning). Bayesian nonparametric learning
(BNL) is to build and inference the probabilistic models for specific learning tasks based on stochastic
processes and their manipulations.

In the above definition, the core of BNL is to define and manipulate stochastic processes according
to the target task. As an analogy, building a Bayesian nonparametric model for a specific learning
task is just like using Lego bricks to build a robot, where the stochastic processes are bricks of
different shapes, and the manipulation is like assembling the bricks to form more complex objects,
e.g., a robot. This definition vividly demonstrates the core of BNL and the standard procedure
for building a model. In the next section, we review the different bricks, i.e., stochastic processes,
currently used in this field, followed by the different manipulation techniques.

3 BASIC INGREDIENTS: STOCHASTIC PROCESSES
3.1 Definition and property
In probability theory, a stochastic process is a set of (indexed) random variables, where indexes are
derived from an (countably infinite) index/parameter space and the variables are derived from a
state space. Statistics defines a number of different stochastic processes according to the different
properties of these random variables, which we have organised some popular ones in BNL into a
relational diagram in Figure 1. Not all of these processes have been used in machine learning field
(yet), but the most popular and representative ones are reviewed below.
— Gaussian Process (GP). A GP [151] is a specific set of random variables with a property that any

finite subset of these variables satisfies a Gaussian distribution. A GP prior is represented as
д(x) ∼ GP(fm(x),kc (x ,x ′)) (1)

where д(x) is a realisation of GP, fm(x) = E[д(x)] is the mean function, and kc (x ,x ′) = E[(д(x) −
fm(x))(д(x

′) − fm(x
′))] is the covariance function.

When used in machine learning,д(x)models an underlying function, e.g., the mapping relationships
between the features and labels of data. Hence, the GP is a good prior for latent functions and
is especially useful for situations when there no knowledge of the functional form exists. It has
been proven that GP has a deep relationship with traditional algorithms in machine learning, e.g.,
support vector machines [178].

One large group of popular stochastic processes in BNL falls within the scope of Lévy processes
[148], which are (informally) defined as the stochastic processes with stationary and independent
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Fig. 2. Illustrations of a parameter/index set, a state space, a realisation, and corresponding measure. The
three illustrated examples are: Poisson, gamma, and beta processes.

increments. According to the Lévy-Itô decomposition, a Lévy process could be roughly decomposed
into two components: one continuous component and one discrete component. When there is no
continuous component and discrete jumps are positive, the Lévy process is called a pure-jump
increasing Lévy process and is characterised by Lévy measure [177]. One merit of this pure-jump
increasing Lévy process is its close relationship with Poisson process that each pure-jump increasing
Lévy process is corresponding to a Poisson process using Lévy measure as mean measure. Because
of this relationship, the realisation of each pure-jump increasing Lévy process could be viewed
as a (countably infinite) set of points in a product space defined by its index/parameter space and
state space, where each point is a pair <a parameter, a variable>. These points/pairs are all that is
obtained from a stochastic process. Based on these points/pairs, a measure on parameter space can
be constructed asM =

∑∞
k=1 variablek δparameterk , whereM is a measure, k is the point index, and

δ is Dirac measure. The constructed measure is called a random measure since the realisation of
process is random. Furthermore, an important property of the Poisson process is its equivalence
with completely random measures (CRM), noting that any measureM from a Poisson process is a
completely random measure [100]. A number of stochastic processes in this area have been proven
to be as special cases of CRMs, and these special stochastic processes can be manipulated thank
to such property as discussed in more detail in the following section. Figure 2 illustrates these
concepts using three examples. Next, we review some representative examples in this group in
more details.

— Poisson Process (PP). A PP [102] over the product space Z+ × Θ is represented as Π ∼ PP(Π0),
where Π0 is a base measure over Θ. Note that, in theory, the base measure Π0 could be any
measure, but PP is normally used as the likelihood, so Π0 is often a discrete measure from a prior,
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such as Π0 =
∑∞

k=1 λkδθk . A realisation Π is set of points (θk ,Nk ) ∈ Θ×Z+, and is represented as

Π =
∑
k

Nkδθk (2)

where Nk satisfies a Poisson distribution parametrised by λk , i.e., Nk ∼ Poisson(λk ).
— Gamma Process (GaP). A GaP [145] Γ ∼ GaP(c, Γ0) is a Lévy process whose Lévy measure depends

on two parameters: c and Γ0. c denotes concentration parameter, and Γ0 represents the base
measure.

ν(dθ ,dr ) = cr−1e−crdrΓ0(dθ ) (3)

A realisation Γ is a set of points (θk , rk ) ∈ Θ ×R+ from a corresponding PP with mean measure
ν and is represented as

Γ =
∑
k

rkδθk (4)

where rk satisfies an improper gamma distribution. Since {r } are all positive numbers, GaP is
used as a prior for positive variables. For the computational convenience, PP is usually selected
as the likelihood when GaP is used as prior just like the conjugate relationship between gamma
and Poisson distributions.

— Beta Process (BP). A BP [87, 170] B ∼ BP(c,B0) is a Lévy process whose Lévy measure depends
on two parameters: c and B0. c is a positive concentration parameter, and B0 is a base measure
on Θ. If B0 is continuous, the Lévy measure of Θ × [0, 1] of the BP is

ν (dθ , db) = cb−1(1 − b)c−1dbB0(dθ ) (5)

A realisation B is a set of points (θk ,bk ) ∈ Θ × [0, 1] from a PP with mean measure ν and is
represented as

B =
∑
k

bkδθk (6)

where bk satisfies an improper beta distribution. A realisation from BP can be viewed as a list of
(countably infinite) probabilities (the summation does not need to be one), which is commonly
used as, but not limited to, the prior for the rows of a matrix in factor analysis [13]. Another
three-parameterised version is proposed in [14].

— Negative-binomial Process (NBP). A NBP [196, 200] X ∼ NBP(Γ0,B0) is another process over
the product space Z+ × Θ, parameterised by two parts: Γ0 =

∑
k rkδθk is a shape measure

and B0 =
∑

k bkδθk is the probability measure. A realisation X from NBP is a set of points
(θk ,Nk ) ∈ Θ ×Z+ and the obtained measure is

X =
∑
k

κkδθk (7)

where κk satisfies a negative-binomial distribution κk ∼ NB(rk ,bk ). NBP is an alternative as the
likelihood for a GaP prior. Compared to PP where the mean and variance must be same, NBP
is with a free variance-to-mean ratio which means the mean and variance are detached so it is
suitable for the over-dispersed count data [197]. The BP for b is another prior for NBP, and it has
been proven that NBP is conjugate with a three-parameterised BP [14].

— Bernoulli Process (BeP). A BeP [102] I is Lévy process I ∼ BeP(I0) where I0 =
∑

k bkδθk is a hazard
measure and a realisation of BeP is

I =
∑
k

ζkδθk (8)
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where ζk satisfies a Bernoulli distribution ζk ∼ Bernoulli(bk ). BeP is similar to PP, except that it
gives weight 1 to points. Hence, BeP is normally used as a likelihood for the binary data and BP
is often set as the corresponding prior.
There are also some processes that are not Lévy processes but can be derived from them. For

example, Dirichlet process is a normalisation of GaP and Mondrian process is a multidimentional
extension of PP.
— Dirichlet Process (DP). DP [57, 162] is the pioneer and foundation of the BNL. It is defined as:

A DP, which is specified by a base measure H on a measurable space Θ and a concentration
parameter α , is a set of countably infinite random variables that can be viewed as a (probability)
measure on partitions from a random infinite partition {Ω}∞k=1 of Θ. An explicit representation
of a DP using the stick-breaking process [162] is

G =
∑
k

πkδθk (9)

where
∑

k πk = 1. One property of DP is that: for any finite partition {Ω}Kk=1, the variables
(measures on these partitions) from DP satisfy a Dirichlet distribution parameterised by the
measures from a based measure H on relative areas

(G(Ω1),G(Ω2), . . . ,G(ΩK )) ∼ Dir(αH (Ω1),αH (Ω2), . . . ,αH (ΩK )) (10)

whereG is a realisation of DP(α ,H ) and Dir() denotes the Dirichlet distribution. The property∑
k πk = 1 in DP is normally used as the mixing distribution in mixture models, which makes DP

the most active and successful stochastic process in BNL. Analogous to the relationship between
gamma and Dirichlet distributions, DP could be seen as a normalised GaP, i.e., πk = rk/

∑
j r j .

An interesting extension of DP is the Pitman-Yor process (PYP) [161], which has an additional
power-law property that is useful for language and network models.

— Mondrian Process (MoP). Let Θ be a box in RD with a positive linear dimension. The Mondrian
process [143] on Θ, denoted as MP(Θ), is a temporal stochastic process (Mt )t ≥0 takes values in
guillotine partitions of Θ and its distribution is specified by the generative process Mondrian(Θ):
the random variable Mt is the guillotine partition of Θ formed by cuts/nodes with birth time
tb ≤ t .
Although themeasure is not a widely used concept in computer science, we have still included it in

this paper because the measure view of these stochastic processes is essential for developing aspects
of BNL, such as new manipulations and posterior inference algorithms. The following example
illustrates such concept: The bottom row of Figure 2 shows a sample (i.e., an infinite number of
points): (b1,θ1), (b2,θ2), . . . , (bk ,θk ) from a beta process with a 2-simplex as the index space and (0,
1) as the state space. The measure composed by these points is:M =

∑
k bkδθk , which is defined as a

measure of the index/parameter space, i.e., it maps a subset of this space to a nonnegative value. For a
subset of the 2-simplex (i.e.,A in the figure), the measure value onA byM isM(A) =

∑
k bkδθk (A) =

b1 + b2. From this example, we can see that the summation in the measure definitions is to sum the
weights of the points within the subset A. To make it further simple, particularly for the computer
scientists, a measure can be simply considered as a set of points, e.g., (b1,θ1), (b2,θ2), . . . , (bk ,θk )
shown in Figure 2. Such points are, in fact, what we obtain and operate in the BNL. A concrete
example to show how the points from measure definition are used follows: Suppose we have a
number of data, i.e., x, in 2-dimensional real space as shown in Figure 3. We can use the points
from the Dirichlet Process, i.e., (π1,θ1 =< µ1, Σ1 >), (π2,θ2 =< µ2, Σ2 >), . . . , (πk ,θk =< µk , Σk >),
to model these data as p(x) =

∑
k πkN(x ; µk , Σk )whereN(x ; µk , Σk ) denotes a Gaussian probability

density function parameterised by a mean vector µk and covariance matrix Σk . We can see that
one component of a point θ is used as the parameters for a mixture, and the other component π is
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Fig. 3. Illustrations of the usage of a measure. A DP measure G =
∑
k πkδθk is used to model a set of

2-dimensional data. After the posterior inference, three mixtures/points (i.e., three ecllipes in the figure) are
chosen to represent/model such data.

Table 1. Properties of stochastic processes. ‘Stick-breaking’ denotes if the process has a stick-breaking
constructive representation; ‘CRM’ denotes if the process is a completely random measure; ‘NRM’ denotes if
the process is a normalised random measure; ‘Power-law’ denotes if there is a version with power-law (cluster
number to data number) phenomenon.

Stochastic Process Stick-breaking CRM NRM Power-law
Poisson Process

√

Dirichlet Process
√
[162]

√ √
[167]

Beta Process
√
[13]

√

Bernoulli Process
√

Gamma Process
√
[145]

√

Negative-binomial Process
√ √ √

[14]
Hierarchical Dirichlet Process

√
[176]

√ √
[12]

Indian Buffet Process
√
[164]

used as a weight for a mixture. After the posterior inference, an appropriate number of points are
selected to optimally model the data. As shown in Figure 3, three points/mixtures (i.e., eclipses) are
chosen for modelling/representing the data. The above model is well-known as an infinite Gaussian
mixture model [137].

Some important properties of the above stochastic processes are summarised in Table 1, including
the stick-breaking construction methods and the power-law extensions. Note that these stochastic
processes are only a very small portion of all stochastic processes. In addition to the above processes,
there are a large number of stochastic processes with special properties existing in the current
statistic literature, many of which may be valuable for modelling different data structures or
resolving different learning tasks. We believe these processes are a huge undiscovered treasure that
deserves more attention from the machine learning community.
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3.2 Construction
Recall that the definition of a process only states its respective properties but does not provide
a way to construct its realisations. Discovering a way to construct the realisation of a stochastic
process (also known as a representation) is crucial in posterior analysis. The above subsection only
gives the definitions of different processes from which we can judge whether a measure is from
a specific stochastic process. In order to obtain an instance/sample from a process and perform
the model inference, an explicit construction method is needed. Based on the properties of Beta
distribution, stick-breaking is commonly accepted as an efficient construction methodology. Several
sticking-breaking methods have been proposed for different processes. These are summarised
below.

— Sticking-breaking for Dirichlet Process [152]. Sticking-breaking continuously breaks a stick with a
unit length, and constructs the weights using these breaks. For DP, the procedure is as follows:

G =
∞∑
k

πkδθk πk = νk

k−1∏
j=1

(1 − νj ) νk ∼ Beta(1,α) θk ∼ H

where Beta() denotes a Beta distribution and νk is the k-th random break in a unit stick with a
Beta distribution parameterised by 1 and α . We can see that the weights πk ofG can be explicitly
constructed/represented and that this G has already been proven to be a sample of DP.

— Sticking-breaking for Hierarchal Dirichlet Process [167, 176]. There are two versions of stick-
breaking for HDP: Teh’s version [167] and Sethuraman’s version [176]. The Sethuraman’s verion
is

G0 =

∞∑
k

π0,kδθk π0,k = ν0,k

k−1∏
j=1

(1 − ν0, j ) ν0,k ∼ Beta(1,α0)

Gd =

∞∑
t

πd,tδθd,t πd,t = νd,t

t−1∏
j=1

(1 − νd, j ) νd,t ∼ Beta(1,αd )

θk ∼ H θd,t = θzd,t zd,t ∼ π0

where zd,t denotes an index to one of {θk }∞k=1. Compared to Teh’s version, Sethuraman’s version
has the advantage in that the stick weights in different layers are decoupled, which makes
the posterior inference easier. From this constructive representation, we can see the factor
sharing property of HDP.Gd in the lower layer shares the factors {θk }∞k=1 of G0 in higher layers.
Another interesting point is that the constructions of π0 and {πd } are independent, and the only
connections between G0 and {Gd } are the relationships between θk and {θd }.

— Sticking-breaking for Indian Buffet Process [164]. To obtain Z ∼ IBP(α), the stick-breaking proce-
dure is

zi,k ∼ Bernoulli(bk ) bk = νkbk−1 =
k∏
l=1

νl νk ∼ Beta(α , 1)

where b1 > b2 > · · · > bK . It has been proven that {zi,k } from such a procedure satisfies IBP.
As illustrated in Figure 4, there is an interesting connection between the above procedure and
stick-breaking for DP: Suppose we fix ν ∼ Beta(1,α). Initially, the stick weight for DP is ν1 and
1 − ν1 for IBP. The stick weight for DP in the k step is νk

∏k−1
i=0 (1 − νi ) and (1 − νk )

∏k−1
i=0 (1 − νi )

for IBP. Hence, we can see that at each breaking step, the weight for DP is the length of discarded
stick while the weight for IBP is the length of the remainder of the stick.
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A stick with unit length
Sticking-breaking for DP Sticking-breaking for IBP

$"~1234(1, 6)

$%~1234(1, 6)

$+~1234(1, 6)

Fig. 4. Illustrations of the connection between the stick-breaking procedures for DP and IBP.

— Sticking-breaking for Beta Process [13]. The stick-breaking construction procedure for B ∼

BP(c,B0) is different from IBP, in that there are more than one unit sticks. The procedure is

B =
∞∑
i=1

Ci∑
j=1

ν (i)i, j

i−1∏
l=1

(1 − ν (l )i, j )δθi, j ν (l )i, j ∼ Beta(1, c) Ci ∼ Poisson(B0(Ω)) θi, j ∼ B0

where each atom has two subscripts (i, j). The stick weight is equal to the i-th break in the
atom-specific stick, and the atom number follows a Poisson distribution.

4 MANIPULATIONS OF STOCHASTIC PROCESSES
The aim of the BNL is to use the above stochastic processes to model the data and then resolve the
specific tasks. However, the modelling ability of any single stochastic process is limited. Therefore,
in more complicated situations, two or more stochastic processes may need to be manipulated in
different ways. A summary of the state-of-the-art designs of the manipulation follows, and their
relationships to the most popular stochastic processes used in BNL are illustrated in Figure 5.

4.1 Layering
The base measure of a stochastic process can either be a continuous or discrete, and the realisation
of a stochastic process is a random measure. Hence, it is possible to use a random measure from
one stochastic process as the base measure for other stochastic processes to share the statistical
strength between these processes. Take document modelling for example. The random measure in
the upper layer could be the topic pool and the lower measure at the document level could be the
topics in a document. The existing new Bayesian nonparametric priors based on this manipulation
are summarised as follows.
— Hierarchical Dirichlet Process (HDP). HDP [167] is built by piling one DP on top of another DP(s)

to transfer some statistical strengths from top layer to the bottom layer. For example, suppose a
top measure G0 over Θ is with a DP (α , H ) prior and Gd is the measure in the bottom layer also
with a DP (αd ,G0) prior, then we have

Gd ∼ DP(αd ,G0), G0 ∼ DP(α ,H ) (11)

Meanwhile, each random measure Gd is conditionally independent with others given G0. HDP
is the first and most successful model to use this manipulation; hence, many extensions to this
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Fig. 5. Visualisation of relations between famous stochastic processes used in BNL. (A double circle denotes
basic processes, and a single circle denotes outcomes from manipulations.)

model have been developed, including: supervised [36], incremental [67], nested [129], adapted
[195], tree [17], evolutionary [185], and dynamic versions [139].

— Hierarchical Pitman-Yor processes (HPYP). Similar to HDP, HPYP [110] piles one PYP on top of
other PYP(s). Unlike HDP, HPYP has two parameters: a concentration parameter α and a discount
parameter β .

Yd ∼ PYP(αd , βd ,Y0), T0 ∼ PYP(α , β ,H ) (12)
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The discount parameter β controls the power-law property so that the PYP degenerates to a DP
when β = 0. This power-law property means that HPYP is well-suited to document and network
modelling.

— Hierarchical Beta Process (HBP). Akin to HDP, HBP [170] was proposed to make the different BPs
share the same discrete measure (an infinite number of probabilities) from a global BP through

Bd ∼ BP(cd ,B0), B0 ∼ BP(c,H ) (13)
BP is an effective tool for the factor analyses and HBP were designed as a way to share factors
during this process. Hence, they have been successfully used for document classification, convo-
lutional factor analysis [26], shared subspace learning [80], image interpolation, and denoising
[201].

— Gamma-Negative Binomial Process (GNBP). In contrast to HDP and HBP, GNBP [197] is not
composed of a single process (e.g., a DP and a BP), but rather of two processes: a GaP and a NBP
as follows:

Id ∼ NBP(p, Γ0), Γ0 ∼ GaP(c,H ) (14)
More layers could be added by assigning further random measures to H from another GaP.

— Beta-Negative Binomial Process (BNBP). Analogous to a negative-binomial distribution, a BNP
has two parameters. While GNBP places a GaP on one parameter, another BNBP layering
manipulation [14] is to place a BP on another parameter as follows

Id ∼ NBP(B0, r ), B0 ∼ BP(c,H ) (15)
— Enriched Dirichlet Process (enDP). EnDP [173] could be viewed as a special case of HDP, which is

defined as
Gθ ∼ DP(α ,Hθ ), Gϕ |θ ∼ DP(αϕ |θGθ ) (16)

and aims to model the joint distribution of (ϕ,θ ) but with more flexibility and convenience
(conjugacy) than a process that uses a direct product base measure.

4.2 Superposition
Superposition is used to combine two or more random measures together, like a “plus” operation.
If layering is considered to be a form of vertical manipulation, the superposition is a horizontal
manipulation.
— Superposition of Poisson Processes. According to the Superposition Theorem in [102], it is known

that combining a set of independent Poisson processes yields a new PP with a mean measure
that is the sum of the mean measures of the individual processes:

Π1 ⊕ · · ·Πn ∼ PP(µ1 + · · · + µn) (17)
where Πn ∼ PP(µn). Given the relationship between PP and completely random measures, this
theorem has become the foundation for the superposition of other processes.

— Superposition of Dirichlet Processes. Inspired by the superposition of PP, [112] proposed the
superposition of DP as follows:

(c1, c2, · · · , cn) ∼ Dir(µ1(Ω), µ2(Ω), · · · , µn(Ω))
c1G1 ⊕ c2G2 ⊕ · · · ⊕ cnGn ∼ DP(µ1 + µ2 + · · · + µn)

(18)

where {G} is a set of independent DPs.
— Superposition of Normalised Random Measures (SNRM). Since DP is a special case of NRM, the

superposition manipulation of DP has been extended to the more general NRMs [28] as follow;
the superposition of n independent normalised random measures {µ j }nj=1 on Θ is

µ1 ⊕ · · · ⊕ µn = c1µ1 + · · · + cnµn (19)
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where cn =
µn (Θ)∑
j µ j (Θ)

. This more general definition extends this manipulation to more situations.

4.3 Subsampling
Subsampling (randomly) selects parts of infinite components in a randommeasure from a stochastic
process.When certain conditions are satisfied, the selected components form a new randommeasure
from an underlying process.
— Thinned Poisson Process [112]. Based on the Marking Theorem [102], let Π ∼ PP(µ) be a PP on the

space Θ, and a measurable function q : Θ → [0, 1]. If independently drawing zθ ∈ {0, 1} for each
θ ∈ Π with P(zθ = 1) = q(θ ), a new PP is

Πt = {θ ∈ Π : zθ = 1} ∼ PP(qµ) (20)

where Πt still satisfies a PP on Θ with mean measure qµ.
— Thinned Completely Random Measures (TCRM) [59]. Let Π =

∑∞
k=1 πkδθk be a CRM on Θ and a

measurable function q : Θ → [0, 1]. For each point (θk ,πk ), we define a Bernoulli variable rk
with P(rk = 1) = q(θk ) (independent with other {r }).

TCRM =
∞∑
k=1

rkπkδθk (21)

TCRM is still a CRM, but with a mean measure qµ. Note that PP is a special case of CRM. TCRM
generalises this manipulation to all the CRMs, such as BP and NBP.

— Thinned Dirichlet Process [112]. Let G ∼ DP(µ) be a DP on Θ that can be represented as G =∑∞
k=1 πkδθk and a measurable function q : Θ → [0, 1]. For each k , independently draw rk through

P(rk = 1) = q(θk ),
Gt =

∑
k :rk=1

π ′
kδθk ∼ DP(qµ) (22)

where π ′
k =

πk∑
j πj

are the re-normalised coefficients for the selected components.
— Thinned Normalised Random Measures (TNRM) [28, 29, 112]. Given an NRM µ =

∑∞
k=1 πkδθk on Θ

and a Bernoulli variable rk ∈ [0, 1]. The TNRM is,

TNRM =
∑

k :rk=1
π ′
kδθk (23)

where π ′
k =

πk∑
j πj

are the re-normalised coefficients for the selected components. Note that DP is
a case of TNRM.

4.4 Point-transition
Point-transition moves the points of a random measure according to an underlying probabilistic
transition.
— Point-transition of Poisson Process. Based on the Transition Theorem [102], let Π ∼ PP(µ) be a PP

on space Θ and T : Θ × FΘ → [0, 1] be a probabilistic transition. From [112], the transformed
measure is

Πp = {T (θ ) : θ ∈ Π} = PP(T µ) (24)
— Point-transition of Dirichlet Process [112]. LetG =

∑∞
k=1 πkδθk ∼ DP(µ), and its point-transition is

Gp =

∞∑
k=1

πkδT (θk ) ∼ DP(T µ) (25)
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— Point-transition of Normalised Random Measures (PNRM) [28]. Given an NRM µ =
∑∞

k=1 πkδθk on
Θ, the point-transition of µ is to draw atoms θ ′

k from a transformed base measure to yield a new
NRM as

PNRM(µ) =
∑
k

πkδθ ′

k=T (θk ) (26)

where T is a transition kernel.

4.5 Nesting
With a partition of a space by a process, e.g., DP, nesting is to further partition each area through
another process. In other words, each component of a random measure is attached to an additional
random measure.
— Nested Dirichlet Process (nDP) [8]. The root partition is created by a DP, and each component in

that partition is further attached to another DP. Repeating this procedure forms a tree of infinite
width and depth. Each datum (e.g., a document) is associated with a path of this tree.

— Nested Hierarchical Dirichlet Process (nHDP) [129]. This process generates a nested structure
similar to a nDP but associates a datum with a new revised copy of the generated tree structure
rather than a simple path.

4.6 Marginalisation
According to de Finetti’s Theorem [2], an exchangeable sequences could be obtained through
marginalising Finetti mixing measure out as follows,

P(X1,X2, · · · ,Xn) =

∫ n∏
i=1

P(Xi |θ )P(dθ ) (27)

where P(·|θ ) is a named mixture measure and P(dθ ) is named mixing measure. In BNL, the mixing
measure comes from a stochastic process, so marginalising out a stochastic process results in a new
exchangeable measure. Some examples of this type of marginalisation manipulation are shown
below. Such marginalisation not only contributes new processes but also provides alternative con-
structive representations from the stick-breaking construction in Section 3.2 for the corresponding
processes which is crucial for BNL inference.
— Chinese Restaurant Process (CRP).Marginalising a DP through,

CRP(X ) =

∫
P(X |G)dG, G ∼ DP (28)

where the mixing measure G comes from the DP. CRP [2] can be seen as a prior for random
partitions of data points, and its name comes from the metaphor used to understand the process:
In a Chinese restaurant, the i-th customer walks into this restaurant and chooses to sit at an
occupied table with the probability nt

α+i−1 or a new table with the probability α
α+i−1 , where nt is

the number of customers siting at table t . If the customer picks an occupied table, she eats the
dish already on the table; if a new table is picked, she needs to order a new dish for the table
from H . As a result, θi is the dish eaten by the i-th customer. {θi } from such process has been
proven to be a sample from DP(α ,H ).

— Chinese Restaurant Franchise (CRF) [167]. CRF is a marginalisation of HDP. Based on CRP, the
metaphor to understand this process is as follows: There are D Chinese restaurants with a shared
menu. The i-th customer walks into the d-th restaurant and picks an occupied table at which
to sit with the probability nd,t

αd+i−1 or a new table with the probability αd
αd+i−1 , where nd,t is the

number of customers siting at table t in d-th restaurant. If this customer picks an occupied table,
she just eats the dish already on that table; if a new table is picked, she needs to order a new dish.
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The new dish is ordered from the menu according to its popularity. The probability that the new
dish is the same as the one on other tables has a probability of Tk

α+
∑
k Tk

and the probability that it
is a new dish is α

α+
∑
k Tk

, whereTk is the number of tables with the same dish θk . As a result, θd,t
is the dish on table t of restaurant d , and θd,i is the dish eaten by customer i in restaurant d .

— Nested Chinese Restaurant Process (nCRP) [141]. nCRP is a marginalisation of nDP. A metaphor
based on CRP can be used to understand this process is as follows. There are infinite restaurants
in a city and each restaurant has infinite tables. On each table, there is a card with the address
of another restaurant. As such, all restaurants are organised into an infinite tree structure. A
customer visiting this city dines first at the root restaurant and chooses a table using the CRP
strategy. she notes the name of the restaurant on the card on her table and the next night she
dines there, again choosing the table using CRP. This procedure repeats infinitely many times.

— Nested Chinese Restaurant Franchise (nCRF) [1]. Analogous to nCRP and nDP, nCRF is a marginal-
isation of nHDP. The metaphor based on CRP and CRF to understand this process is slightly
different: There are multiple cities, and each city has infinite restaurants with infinite table. The
card on the table has the name of another restaurant in the same city as with nCRP. However,
there are also an infinite number of menus organised using nCRP. The tree structures for all
cities and menus are the same. A customer visiting a city dines first at the root restaurant and
again chooese a table using nCRP. But this time, the meal is ordered from the menu (at the
same position of the infinite tree) according to popularity as determined by CRF. Hence, nCRF
combined with CRF helps to share the menus between restaurants, and nCRP helps to build the
hierarchy.

— Indian Buffet Process (IBP).Marginalising a BP through,

IBP(X ) =

∫
P(X |B)dB, B ∼ BP (29)

where the mixing measure B comes from a BP. The basic IBP can be found in [77, 78]. The
metaphor for IBP is: There is an Indian buffet restaurant with infinite number of dishes. The first
customer walks into this restaurant and picks Poisson(α) number of dishes. The i-th customer
follows the former customers and picks an formerly selected dish with a probability of nk

i , where
nk is the number of customers picking dish k , and then she picks Poisson(αi ) number of new
dishes that no one has chosen them before. The customer-dish selection from such procedure has
been proven to be a sample from IBP(α). In machine learning, IBP is often used as the prior for a
binary matrix with an unfixed number of columns, which is especially suitable for the factor
analysis.

— Nested Indian Buffet Process (nIBP) [31]. Similar to nCRP, a nested version of IBP is able to build a
hierarchy where each layer is composed of a number of IBPs (i.e., the number of features in IBPs
at the up-layer). Continuing the metaphor, there are infinite number of Indian buffet restaurants
in a city, each has an infinite number of dishes, and a card with the address of another restaurant
in the same city next to each dish. Hence, the restaurants in this city are organised as an infinite
tree structure. A customer who visits the root restaurant in this city and chooses dishes using the
IBP strategy but uses a layer-dependent probability Poisson(α/ℓi ) to choose any new dishes. The
next day, the customer will visit all the restaurants on the cards next to her chosen dishes. Note
that a customer can go to multiple restaurants with nIBP, rather than only a single one in nCRP.

5 POSTERIOR INFERENCE
After building an appropriate Bayesian nonparametric models for a specific task, the next step is to
infer the latent variables defined in the model (more accurately, the posterior joint distribution of
latent variables), given an amount of observed data. To obtain the posterior distribution, there are
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(a) MCMC (b) Variational Inference

Fig. 6. The illustration and comparison of the ideas of two posterior inferences: (a) MCMC and (b) variational
inference.

two main methodologies: sampling-based (i.e., Markov chain Monte Carlo) and optimisation-based
(i.e., Variational inference). The most straightforward candidate for the Bayesian model posterior
inference is Markov chain Monte Carlo (MCMC) (e.g., Gibbs sampling), which has also been widely
adopted for Bayesian nonparametric models. The basic idea of MCMC [3] is to approximate a
(posterior) distribution from its samples. To obtain the samples, a Markov chain is constructed with
its stationary distribution as the desired (posterior) distribution. Figure 6(a) illustrates this idea,
where the bins are the count of samples in the corresponding support areas. It is clear that more
samples means a more accurate approximation. Although the Monte Carlo Markov chain (MCMC)
methodology can, in theory, derive the exact posterior distribution of the latent variables, it is
inefficient. As illustrated in Figure 6(b), an alternative for BNL is variational inference [10]. This
methodology uses a set of (often simpler, independent and parameterised) variational distributions
to approximate the real posterior distribution. This approach transforms a posterior distribution
inference problem into a high-dimensional optimisation problem. With the help of gradients, this
method can efficiently explore the parameter space of the variational distributions to approximate
the desired posterior distribution as much as possible. In general, MCMC has better theoretical
distribution approximation accuracy than variational inference when a sufficient number of samples
are obtained, because introducing the variational distributions will introduce additional unnecessary
approximation errors which do not exist in MCMC. In the case of big data, variational inference is
more efficient than MCMC because obtaining sufficient samples in MCMC is very time-consuming
and hard to evaluate. Yet gradient-based variational inference is able to explore the parameter space
efficiently. The existing works for basic processes in the current literature on BNL literature are
summarised below and in Table 2.

5.1 Markov chain Monte Carlo
While the (countably) infinite nature of BNL enables great modelling power, it also brings a challenge
on model inference in that an infinite number of factors and weights make the posterior inference of
the latent variables much harder. One commonly accepted solution in BNL is the truncation method
[62, 181], which sets the component number so large that the given data would only adopt a subset
of them, but it does introduce an approximation error. Another successful technique to resolve
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Table 2. Existing inference algorithms for popular stochastic processes in BNL. Slice is short for slice sampling;
VI for Variational inference; SMC for Sequential Monte Carlo; EP for Expectation Propagation.

Stochastic Process Slice VI SMC EP Scalable
Dirichlet Process

√
[97]

√
[9]

√
[20]

√
[113]

Beta Process
√
[14]

√
[19]

Gamma Process
√
[145]

Hierarchical Dirichlet Process
√
[176]

√
[155]

Indian Buffet Process
√
[44]

√
[182]

√
[42]

this problem is: data/variable augmentation [160, 172], also known as Slice Sampling [39, 126]. The
existing Bayesian nonparametric models that use the slice sampling method for model inference
are summarised below.
— Slice Sampling for DP. A realisation from DP can be represented as G =

∑∞
k=1 πkδθk , where πk

are (a countably infinite number of) stick weights. The slice sampling for DP [97] introduces an
auxiliary variable ui ∼ Unif(0,πki ) which functions as an adaptive truncation for the data i , and
then only needs to sample π > ui for data i .

— Slice Sampling for BP. Instead of the fixed range used in DP, a positive decay function f :
limk→∞ f (πk ) = 0 controls the support for the auxiliary variable uk ∼ Unif(0, f (πk )) [14].
Compared to the function used in DP, the decay function is more flexible and more applicable to
many other models.

5.2 Variational inference
Using variational inference involves two important components: setting variational distributions
and choosing optimisation methods. Clearly setting the variational distribution can significantly
reduce the additional approximation error and appropriate optimisation methods can boost the
inference efficiency and adapt to the complex scenarios, e.g., large-scale and streaming data. Existing
work on variational inference for BNL is summarised below.
— Ordinary Variational Inference. The form of variational inference for BNL is based on a stick-

breaking representation where the latent variables in this representation include stick weights,
atom parameters, and data assignment indexes. Since stochastic processes such as DP [9, 106]
and GaP [145] have the potential to produce an infinite number of atoms, we have opted for a
truncation method to ensure that only a finite number of atoms need to be approximated with a
finite number of mean-field (latent variable) distributions. Other similar works have been applied
for HDP [9], IBP [44], and nCRP [174].

— Collapsed Variational Inference. As stated, there are normally three groups of latent variables in
BNL (i.e., stick weights, atom parameters, and data assignment indexes). Sometimes stick weights
could be marginalised out to make the inferences of DP [105] and HDP [147, 168] more accurate
and efficient.

— Online/Stochastic Variational Inference. Instead of coordinate-ascent optimisation which is not
efficient for large datasets because a full pass of all the data at each iteration is required, stochastic
optimisation is used to update the variational parameters [15, 176]. At each iteration, a number
of data are sampled from the entire dataset before updating the variational parameters. This
optimisation could improve the inference efficiency because of the estimated noisy gradients
of the variational objective have been proven to be natural gradients of the Kullback-Leibler
divergence objective [90].
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— Truncation-free Variational Inference.One problemwith the above variational inference methods is
that the truncation is needed, which brings additional approximation errors that are resolved with
a locally collapsed method. Here, the global latent variables are marginalised, and the distribution
of the local variables could be sampled [175]. This method can be viewed as a combination of the
sampling and variational inference methods. Another idea to avoid truncation is variational DP
[106], where a tying assumption is given. That is, the variational distributions of components
larger thanT are set as priors, andT are adaptively increased with a decrease in the optimisation
objective and KD-tree-based data organisation is introduced to accelerate the speed of inference.

— Streaming Variational Inference. Streaming variational inference algorithms were proposed to
handle data that arrives sequentially in the form of a data stream. This method does not require
data to be preserved in memory, which means it can be discarded after processing. The idea is to
decompose the joint posterior to a recursive form where the distribution of the incoming datum is
derived from the posterior distribution of the former observed data. Different techniques can then
be used for approximation, such as a designed variational stochastic process with independent
factors for DP [111] or more general extensions based on assumed density filtering [159] or
component identification [16].

5.3 Scalability
Considering the exponentially increasing amount of data in many areas, the ability to handle
Big Data is also a research direction for BNL. The idea is to extend current inference algorithms,
particularly those designed for a single processor/machine into parallel versions for multiple
processors/machines. Existing inferences algorithms for this problem are mainly categorised into
the following two groups: MCMC and variational.
— Parallel MCMC. [155] proposed a parallel MCMC for HDP using an asynchronous method. The

advantages of this approach are that it is easy to incorporate new data and processors, and it is
extremely fault-tolerant. The disadvantages is with additional approximation. To overcome this
disadvantage, further parallel MCMC for DP, HDP, and PYP were proposed [48, 113, 179] based
on the inverse-superposition of DPs. Here, each processor or machine handles one supercluster
(i.e., one of DPs). Generating data-based super-clusters generation further improves the efficiency
[23]. Although the above methods could use marginalised representations of DP or HDP to avoid
truncation, a slice sampling-based parallel MCMC [68] has been developed to explicitly sample
the stick weights in DP and HDP in an elegant way.

— Parallel Variational Inference. In this form of inference, the posterior distribution is decomposed
for the streaming and parallel inference, and a component identification algorithm resolves the
mismatch problem when merging different variational posteriors from different processing nodes
[16]. Instead of obtaining the exact variational approximation of the real posterior distribution by
combining subposteriors (from different processing nodes) together, a Markov chain is designed
to collect samples from the variational approximation [127], which again can be viewed as a
combination of variational and sampling.

5.4 Others
Some other inference methods that have been applied to BNL are:
— Sequential Monte Carlo. Also known as particle filtering, this approach approximates the posterior

distribution through a large collection of samples (i.e., particles) that are propagated over time
and updated by sequential importance sampling. The sequential Monte Carlo method has been
applied to DP mixture with time varying mixtures [20], beta-binomial DP mixtures [116], general
conjugate DP mixtures [56], and nonparametric Bayesian matrix factorisation [182].
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Table 3. Summery of the classical models in machine learning and their corresponding Bayesian nonpara-
metric extensions.

Classical machine learning models Nonparametric extensions

Gaussian Mixture Model (GMM) [137]
Latent Dirichlet Allocation (LDA) [167][4]
Hidden Markov Model (HMM) [167] [64] [65]
Linear Dynamic Systems (LDS) [21, 61]
Support Vector Machine (SVM) [202]
Nonnegative Matrix/Tensor Factorisation (NMF/NTF) [42, 182] [108, 189, 192]
Mixed Membership Stochastic Block models (MMSB) [54, 122]
Partially-Observable Reinforcement Learning (PORL) [46]
Conditional Random Field (CRF) [95, 135]
Markov Random Field (MRF) [25]
Author Topic Model (ATM) [190]
Principal Component Analysis (PCA) [51]
Bayesian Inverse Reinforcement Learning (BIRL) [32, 33]

— Power Expectation Propagation. [121] This method generalises expectation propagation and
variational inference using a flexible α-divergence. An example is nonparametric Bayesian matrix
factorisation [42].

6 APPLICATIONS IN MACHINE LEARNING
BNL is an efficient mechanism that has been used to resolve many tasks in machine learning. Indeed,
many famous models in machine learning already have a Bayesian nonparametric counterpart,
as summarised in Table 3. This section presents a selection of studies on the application of BNL
arranged according to task. Each category of task explores how BNL has been used a solution
task and the additional benefits BNL has brought. Note that these state-of-the-art works not only
show the wide applicability of BNL, but also showcase how the BNL procedure has been used in
practice. Some popular stochastic processes in BNL which suit different machine learning tasks are
summarised in Table 4.

6.1 Supervised learning
Sometimes data have labels (also known as responses), such as the emotion tags, the GDPs of coun-
tries, network relations, and so on. Supervised learning is a method for modelling the relationships
between data and these responses/covariants to make predictions - a basic task in machine learning.
Supervised BNL tends to fall into two categories.
— Generalized linear models (GLM)-based, where the data are assigned to a number of clusters,

and the responses (for classification) of the data are modelled by multinomial logistic models
(also called ‘softmax’) [82, 153]. A DP is used as a prior for weighting {πk }

∞
k=1 the clusters and

the parameters {θk }∞k=1 are used in the multinomial logit models. Although the data and the
responses in each cluster have a linear relationship, multiple clusters make it possible to capture
non-linear relationships. This idea has been further extended for group data using HDP [36, 193].

— Covariant space-based. The relationship between the covariant space and the data is captured by
dependent stochastic processes by: 1) setting the base measure as a special stochastic process,
such as a single-variable stochastic process [114] and a multi-variable Gaussian process [69]; 2)
varying the stick-breaking procedure, such as linking stick weights through a stochastic process
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Table 4. Summery of popular stochastic processes in BNL which suit different machine learning tasks and
real-world tasks.

Machine learning tasks Processes Real-world tasks Processes

Supervised Learning DP, HDP, GP, BP,
CRP, IBP

Text Mining DP, HDP, IBP,
PYP, GaP

Factor analysis IBP, BP, GaP Natural language processing CRP, DP, HDP
Transfer learning HDP, HBP, PYP,

DP, nCRP
Computer vision BP, IBP, DP

Tree structure learning nCRP, HDP, DP,
PP, GaP

Biology DP, HDP, PYP

Relational learning DP, IBP, PP Music analysis HDP, GP
Reinforcement learning HDP, PYP, GP,

IBP, BP
Robots DP, HDP, GP

Causal inference GP, DP
Metric learning BP

[115], a kernel function [50], or a permutation stick-breaking order [34, 115]; 3) auxiliary PP in a
covariant space, such as kernel beta process [140] and correlated normalised random measure
[76]; and 4) revising the seating mechanisms in CRP or IBP, such as ddCRP [7] and ddIBP [71].
More discussions on this aspect can be found in [60].

6.2 Factor analysis
Factor analysis describes or captures the variability of observed or correlated data with the help
of a collection of unobserved variables called factors, which is useful for denoising or storage
[171]. The mathematical definition is Y = ΦX + E, where Y is data, Φ is factors, X is the factor
loading matrix, and E is the error. Traditionally, the dimensionality of Φ needs to be given in
advance, but BNL relaxes this requirement. Since IBP defines a distribution for infinite (on columns)
binary matrices, it has become a significant cog in this field [77]. Below, we summarise the studies
into two important branches of factor analysis: Principal component analysis and Non-negative
matrix/tensor factorisation.
— Principal component analysis (PCA). PCA is a very popular tool for dimension reduction, but the

selection of the number of significant components requires strong background knowledge that
is normally unknown. Unlike general factor analysis, PCA aims to project the data to an space
spanned by orthonormal vectors. A BNP-PCA [51] is defined as

Y = P(X ⊙ Z ) + E (30)

where P is an orthogonal matrix that satisfies PT P = I , and Z is with an IBP prior.
— Non-negative matrix/tensor factorisation (NMF/NTF). Same with PCA, the nonparametric versions

of NMF/NTF are also mainly based on IBP or BP. The basic idea is to factor the data matrix or
tensor into two matrices: one is binary (mask) matrix and the other is a factor matrix, and an
infinite prior is given to the binary matrix, such as IBP [42, 182] or BP [108].

Y = XZ (31)

where Z has an IBP prior. Instead of providing a prior to one matrix, another idea is to simul-
taneously given two matrices a joint prior, e.g., a dependent IBP [192]. A similar idea was also
applied to NTF based on a tensor-variate Gaussian process or a tensor-variate t process [189].
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Due to the infinity property of those processes, the nonparametric extensions of NMF or NTF
can remove the requirement of prefixing the matrix dimensions. Another category of research is
to simultaneously assign an infinite prior (i.e., a GaP [6]) to the combination parameter of the
likelihood function as

Y = X ΓM (32)

where Γ is with a GaP prior.

6.3 Transfer learning
Transfer learning [131] is a learning scheme that extracts transferable knowledge from the a source
domain(s) and reuses this knowledge in a target domain to resolve the problem of insufficient data
in traditional machine learning schemes. It appears that the core of the transfer learning is to extract
transferable knowledge between domains which can be generalised to the target domain. BNL is
good at generalisation because of its ability to build a flexible prior and, hence, has been applied to
transfer learning. The existing works in this area are summarised according to the different forms
of the transferable knowledge below.
— Transfer by sharing factors. Factors are real-valued vectors and can also be viewed as high-level

semantic descriptions of data; this allows them to be transferred from one domain to another. In
Bayesian nonparametric joint factor analysis (NJFA) [79], domains are jointly factorised with
shared factors and domain-specified factors. In contrast to simply sharing factors between two
domains through a matrix product and summation, factor sharing in NJFA relies on an ingenious
HBP prior. HBP is used to control the assignment of factors between domains, and its advantages
are: 1) factors are shared by domains through hierarchically dependent beta processes; 2) the
number of both shared and domain-specified factors does not need to be prefixed but rather
automatically learned from the data.

— Transfer by sharing topics. Different from factors, topics are a set of latent variables characterised
by the unit summation and are used as the transferable statistical strengths between domains.
BNL makes these transferable statistical strengthens more flexible by giving them Bayesian
nonparametric priors. In Clustered Naive Bayes [142], a number of Naive Bayes share topics
(named parameters in [142]) from a DP. Further tasks within the same group share the same
parameters so that well-trained tasks can help to train the insufficiently-trained task. As we
discussed in Section 4.2, HDP defines a way to share statistical strengths, which has also been
applied to transfer learning [18]. Here, categories share the topics/clusters. HPYP is also able to
benefit the transfer learning analogy to HDP. For example, a set of basic topics is first generated
for sharing, and each domain uses these topics as the base measure of a Transformed PYP, which
transforms these topics to another set of topics using a domain-specific transformation matrix
[27]. Unlike HDP, the activated topics are controlled by an additional IBP. The advantage over
HDP is that sharing of topics and their weights could be decoupled, which makes it possible to
share low-weight topics between domains [53].

— Transfer by sharing tree. Knowledge is inherently multi-granular, and the more general the
knowledge in the source domain, the larger the probability it will be reusable in a (related) target
domain compared to specific knowledge. Hence, sharing trees has emerged as an efficient method
for transfer learning. In terms of the tree construction, BNL could contribute a rather flexible tree
prior. One example is the transfer Hierarchical LDA (thLDA) [98], which transfers the knowledge
in an existing tree to a target domain, where a path of the tree from the root to the bottom node is
sampled for each document in the target domain through nCRP. In addition to thLDA, the second
example is [146] where a tree structure is built with a fixed three-layer depth and unbounded
width through nCRP. In this model, domains are treated as nodes in the bottom layer (named
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‘level 1’), the parent nodes of the domains are named supercategory in the middle layer (named
‘level 2’), and the root node in the top layer (named ‘level 3’) is a set of two variables. Each
domain is characterized by a Gaussian distribution, and domains are expected to share similar
parameters with their parent nodes (i.e., supercategories or root nodes). The third example treats
the parameters in the tree as transferable knowledge to assist the classification of classes with
less labeled data [156] where a tree structure with leaf nodes as labels/domains is built with an
nCRP prior. Another example is the polylingual tree-based topic model [91], which uses a similar
method to nCRP. A tree is assigned a path through a probability made up of the product of the
weights of branches in the path, where the tree is also separately built from the source domain.
Without resorting to nCRP, the doubly Hierarchal Pitman-Yor Language Model [183] builds a
latent HPYLM as the transferable knowledge and, simultaneously, two separate HPYLMs are
built for the two domains with the latent HPYLM as part of the base measures in PYPs in two
HPYLMs.

6.4 Tree structure learning
Tree structures play an important role in machine learning because they are pervasively applied and
reflect the human habit of organising information. Thus, learning out a hierarchical structure from
plain data has attracted a great deal of attention from researchers in the Bayesian nonparametric
field. Compared to other approaches to this task, Bayesian nonparametric models have the advantage
of a more flexible hierarchical structure. The lack of bounds on the structure’s width and depth
makes it much easier to incorporate the new data.

— nCRP-based. Here, the nCRP views a tree as a nested sequence of partitions. A space is first
partitioned by a CRP and each area in this partition is further partitioned into several areas to
generate a tree of potentially infinite depth and branches. A datum (i.e., a document) is associated
with a path in the tree using DP or Flexible Martingale [157] priors with the nCRP [8]. The datum
could also be associated with a subtree of the generated tree using HDP priors in nHDP [129]
instead of with a path.

— Stick-breaking-based. With this method, an iterative stick-breaking process is used to construct a
Pólya Tree (PT) [133] in a nested fashion. A datum is associated with a leaf node of the generated
tree, and the traditional stick-breaking process is revised to generate breaks within the tree
structure to result in a Tree Structured Stick Breaking (TSSB) [72]. A datum is attached to a node
in the generated tree.

— Diffusion-based. Both Kingman’s coalescent [101, 163, 165] and Dirichlet Diffusion Tree (DDT)
[125] define a prior for an infinite (binary) tree. The idea is that the data are generated by a
diffusion procedure with several divergences during this procedure. An additional time-varying
continuous stochastic processes (i.e., Markov process) is needed for the divergence control. A
datum is placed at the end of branches in the diffusions. DDT has been extended into a more
general structure: multifurcating branches by a Pitman-Yor Diffusion Tree (PYDT) [103] and to a
feature hierarchy by Beta Diffusion Tree (BDT) [84].

— Others. Motivated by the deep belief network (DBN) [86], the Poisson gamma belief network
(PGBN) [199] learns a hierarchical structure where nodes have nonnegative real-valued weights
rather than binary-valued weights in DBN and the width of each layer is flexible rather than
fixed. Each layer’s nodes can be viewed as an abstract feature expression of the input data.

6.5 Relational learning
The aim of relational learning (also known as stochastic relational learning) is to analyse, model,
and predict the relationships between entities. Many data contain relationships by nature, e.g.,
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social networks, traffic networks, protein interactions, and user-item relationships. Hence, a typical
and practical application of relational learning is predicting potential future connections using
a trained model. In traditional Bayesian learning, the key to better predictions is learning the
hidden generative procedures in a network given a prior that encodes different understandings
and explanations. BNL holds the potential provide a much more flexible prior [149]. The existing
research in this direction is summarised below.

— Latent class models. The idea of these models is to group nodes into a number of classes based on
the same behaviours. For example, all the nodes in one class may have the same probability of
being related to all the nodes in another class [188] or to all the nodes that sit outside their own
class [30]. DP is usually the main machinery behind latent class modelling due to its flexibility
on latent classes. [188] was the first to model relationships using BNL. By Xu et al.’s definition,
the probability of observing a link la,b is modelled as p(la,b |Aa ,Ab ) = θa,b where Aa and Ab are
the attributes of nodes linked by la,b , and θa,b is the link probability from a DP prior to make
it more flexible. Further, the attributes of nodes are generated according to the latent variables
Za , i.e., p(Aa |Za), and the link p(la,b |Za ,Zb ,W ) is modelled using these latent variables rather
than directly using node attributes whereW is a model (connectivity) parameter. These latent
variables can be understood as the ‘interests’ or hidden features (i.e., latent classes) of nodes that
determine the formation of the links. Using a DP prior for Z means the data itself determines the
optimal number of states for the variables [99, 187], which has been proven to be effective for
social network analysis [186]. This link patterns between groups are also set to be shared across
multiple networks in [93] for multi-relational data. Rather than modelling the link probability
between groups, [188] models the probability that a node belongs to a class, and nodes with
similar patterns are grouped into classes.

— Latent feature models. [120, 122] model a link as p(la,b |Za ,Zb ,W ), where Za is a binary vector in
[187] and IBP is used as the prior for Z . This means that each node is either characterised by a
series of hidden features or it belongs to a series of clusters. A DP can also be used to supplement
the IBP by creating sub-clusters within each feature/cluster [130].

— Random network models. In contrast to the above models that focus on a given network with
a fixed number of nodes and links, random network models try to model the generation of
both links and nodes to allow the network to grow as more nodes join. Another advantage of
random network models is their ability to model sparse networks (i.e., where the number of
nodes is o(n2)). Essentially, a network is represented as a link sequence by Z =

∑N
n=1 zi, jδθi ,θ j ,

where θi for each node is from a CRM or NCRM, e.g. PP [22] and DP [180]. Additionally, with a
simple transformation, the same idea could also be applied to binary, integer, and multi-relational
networks.

6.6 Reinforcement learning
The reinforcement learning (RL) is a category of sequential decision-making problems that seeks
to find the optimal policy for maximising its long-term profit given an agent that interacts with
an uncertain environment. RL is normally modelled through a Markov Decision Process (MDP)
which is usually represented as tuple < S,A,T ,R > in which S denotes the environment state set,
A denotes the action set of the agent, T (s ′ |s,a) is the state transition function from the state s to
s ′ after the action a, and R(r |a, s ′) represents reward function that defines the profit from action
a. The agent needs to find the optimal policy π (a |s) for attaining a long-term reward through the
interaction with the environment. While RL has many applications, it is typically used in robots and
games, such as the famous AlphaGo program [154]. In RL, BNL could provide a principled way to
tackle the core task of exploration-exploitation problem [73] and the ability to model the underlying
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environment dynamics in a flexible way. The existing studies on BNL in RL are summarised below
according to whether the target is a policy or a reward.

— Forward reinforcement learning. Sometimes, the state of an environment cannot be observed or
can only be partially observed, which provides incomplete information (termed observation o).
Determining the optimal policy in such situations is known as partially-observable RL and is
modelled as a Partially-Observable MDP. Here, the hidden states or environmental models need
to be inferred through the historical (interaction) data. In other words, the transition, observation,
and reward functions need to be learned from a history. GP [37, 40] is a natural and powerful
prior for unknown functions and is particularly efficient in a continuous state space. However, in
discrete state spaces, a Bayesian nonparametric approach based on HDP-HMM [45–47] models
the hidden state transitions as stick weights from HDP. The base measure is composed of two
parts: one is a function for reward evaluation, the other generates observations. Another form of
forward reinforcement learning is based on PYP [46], which extends the classical Deterministic
Markov Models (DMM) [117] using the same method.

— Inverse reinforcement learning. In contrast to forward RL, the target of inverse reinforcement
learning is a reward function. The reward function is given to other elements of an MDP and the
trajectories/demonstrations (i.e., state-action pairs) determined by experts with an assumption
that experts made decisions with knowledge of the underlying environment model. Classical
methods model this reward function as a linear combination of handcrafted features, which
apparently limits the ability to capture the complex behaviours, but this constraint is relaxed
using GP [107]. Instead of improving the learning capability of a single function, a different idea
to resolve the complex function learning is to partition the observations [118, 119] or divide
experts [32] into groups and learn relatively simple reward function for each group based on DP.
A similar idea was used to resolve switched MDP using sticky HDP-HMM [158] as the prior with
the additional ability to partition the data based on their temporal properties, which is beneficial
for representing rich behaviours. Another IBP-based or BP-based idea [33, 136] is to learn the
composite features as conjunctions of the original features and then learn the reward function
for the composite features rather than original features.

6.7 Others
Causal inference and metric learning are other interesting applications of BNL.

— Causal inference, which estimates the effect of an action, such as a medical treatment or a sales
policy, given some observational data. Consider the following basic scenario. Suppose there are
a number of patients X , a treatment regime A, and observed medical history data < X ,Y ,A >.
X takes A which leads to the result Y , noting that each X can only choose to take A = 1 or
take A = 0 at any given time. The goal is to estimate the effect of the treatment regime, i.e.,
E[Y |X ,A] or E[Y |X ,A = 1] − E[Y |X ,A = 0]. In [85], GP is used to approximate the conditional
distributions P(Y |X ,A = 0) and P(Y |X ,A = 1) separately. Another strategy is to approximate the
joint distribution P(X ,Y ,A) and then obtain the conditional expectations through marginalisation
[144], while a counterfactual GP [150] is designed for the continuous-time scenarios.

— Metric learning, which aims to learn out a similarity measure that forces similar data to be close
and dissimilar data to be further apart. A Bayesian nonparametric model for this task is based on
BP [5], where the data likelihood is defined as p(X |H ) = f (H ) and H is the latent features of the
data and decomposed as H = S ⊙ Z . BP is used as the prior for Z , and an additional regulariser is
introduced to the target variational inference optimisation function to control the similar and
dissimilar data pairs.
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7 APPLICATIONS IN REAL-WORLD TASKS
The first study on BNL in the machine learning community concerned document modelling [167].
However, as BNL has developed over the years, it has attracted attention from researchers in other
fields, such as computer vision and robots. In turn, the increasing number of scenarios BNL is being
applied to is prompting further development of theories and techniques in this area. A summary of
the main fields of application for BNL is described in this section and Table 4.

7.1 Text mining
The goal of text mining is to understand a document corpus. Below, we have summarised the
various text mining applications for BNL according to the different types of document corpora to
be mined.

— Single corpus. This task seeks to learn the knowledge shared between different documents in
a corpus. HDP [167] was designed to deal with such tasks by assigning a random measure to
each document using a generated global random measure as a base measure. However, with
an HDP approach, the word vocabulary needs to be fixed in advance, which means new words
cannot be incorporated if subsequent documents are added to the corpus. Latent IBP Compound
Dirichlet Allocation [4] relaxes this constraint through a four-parameter IBP. Further, by using
dependent GaPs or a mixed GaP-NBP, additional information from the corpus can be introduced
into a model. [191] incorporated the links (e.g., citations between scientific papers) between the
documents using a dependent GaPs and authorship information using a mixed GaP-NBP [190].

— Multiple corpora. This task aims to learn the knowledge shared across different corpora. The first
attempt at such a task was undertaken by a three-level HDP [167] that assigned each corpus with
a random measure using a generated global random measure as the base measure. Through this
hierarchical method, the topics shared by different corpora could be inferred. Moving beyond
shared topics, the difference between topics at different corpora is also learned by Differential
Topic Models [27] based on PYP.

— Multiple time-varying corpora. This task aims to learn the shared knowledge across time-varying
corpora. Beyond the idea of HDP, an Evolutionary HDP [194] was proposed to deal with this
task, which added another time-varying dependency between the random measures for different
corpora. The base measure of a corpus is the (convex) combination of two measures: the global
measure and the measure at the previous time stamp.

7.2 Natural language processing
The main applications of BNL in the field of natural language processing are detailed below.

— Word segmentation. This task is to identify word boundaries in continuous speech. CRP is used to
capture the word sequence generation process [75] with two options: if a novel lexical item arrives,
generate a phonemic form; if not, choose an existing lexical form. This idea has subsequently
been applied to HDP and performs better than DP.

— Phrase alignment. This task aims to find frequent phrase pairs from bilingual texts for the benefit
of phrase-based translation systems. Since bilingual texts do not come already segmented, and
the number of aligned phrase pairs is unknown, DP and HDP are used as priors to identify each
aligned phrase pair in a probabilistic model for this task [41].

— Unsupervised part-of-speech (PoS) tagging. Pos tagging is to mark the words in a text with its
corresponding part-of-speeches, which is the basis of text analysis. Infinite HMM is used to model
the word sequence with the help of an HMM and the hidden states (PoS tags) are unbounded
with the help of HDP [66].
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7.3 Computer vision
In the field of computer vision (i.e., image processing and video processing), BNL has been success-
fully applied to the following problems:
— Image interpolation. It is one of the most common image processing tasks and mainly includes

image resizing and remapping. The goal is to factor an image by a linear, but finite, combination
of dictionary atoms [83], which are represented as a matrix. BP and IBP [198] are used as the
prior for this matrix to avoid the need to predetermine the number of dictionary atoms with
an additional sparsity property. Zhou et al. [201] proposed a dependent HBP to incorporate a
constraint on the patch positions in an image.

— Motion capture segmentation. This task aims to identify a finite number of hidden dynamic
behaviours in multiple time series given that each time series may contain multiple dynamic
behaviours. The mapping relationship between time series and dynamic behaviours is expressed
as a matrix, which is given a BP prior to make it infinite [63].

— Background subtraction.This task aims to delineates background information in video streams. The
background is modelled by a probability density and performs better as a multi-mode probability
density with dynamic backgrounds. The appropriate number of modes in the distribution tends
to depend on the target video stream. Hence, [81] proposed a DP-based Gaussian Mixture Model
to allow the number of nodes to be determined by the data.

7.4 Biology
The field of biology is fortunate to boast a massive amount of data, much of which has been
derived from clinical trials and personalised medicines. BNL provides an efficient paradigm in a
fully model-based probabilistic framework that is highly flexible and adaptable [49]. Therefore,
BNL has the potential to be extremely useful in biology, because of the lack of knowledge on the
parametric model establishing.
— Brain MRI tissue classification. MRIs are an effective and routine diagnostic tool, and, as such,

the accurate automatic classification of brain MRI can assist doctors’ diagnoses. Mixture model
clustering algorithms have dominated this task for some time due to their relatively good
performance. However, more recently, nonparametric extensions to these algorithms, such as DP
[35] and HDP [94], have performed even better.

— Positive selection detection. This task aims to detect the positive natural selection from alignments
of protein-coding DNA. Traditional methods assume that the non-synonymous/synonymous
rate ratio at a site as a random variable that satisfies an underlying distribution. DP is used as
the prior of the non-synonymous/synonymous rate ratios of site clusters [92].

— Expressed sequence tag (EST) analysis. It plays a crucial role in gene analysis in molecular biology,
like gene identification in organisms. One aim of this task is to predict the number of new genes
in a new coming sample which can benefit the experimental design and redundancy measuring of
an EST library [49, 109]. PYP [109] is used to estimate the gene proportion in the EST library and
the number of new genes, while the probability of discovering new genes estimated by additional
samples [55].

7.5 Music analysis
Music analysis is another interesting application scenario for BNL. Such applications include
teachingmusic, analysing the human perception of sounds, and designs formusic searches [138, 169].
Music data is stored as acoustic waveforms. Among a number of methodologies for music analysis,
Bayesian techniques have been found to be very effective, which has paved the way for further
advancements using BNL. The following applications are highlighted.
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— Musical similarity computation. This task is to estimate the timbral similarity between recorded
songs, which could be further applied to music retrieval. HDP is used for this task through
representing each song as a (stick weight) posterior distribution. The similarity between two songs
can then be evaluated by the symmetrised KL divergence of two corresponding distributions.
Compared to the traditional single Gaussian-based or GMM-based approaches, HDP-based
approaches perform better [89]. A similar idea was also adopted by [124] with a 2-dimensional
tree structure learned to represent each song.

— Blind source separation. This task is to separate different types of sounds, e.g., instruments or
people, from an audio clip. One challenge for this task is that the number of sound sources is
unknown; however, Blei et al. [6] proposed a GP-based NMF to resolve this problem.

7.6 Robots
Using BNL to teach robots how to complete specific tasks is arguably one of the most pioneering
tasks in current machine learning. Some examples are given below:
— Robot teaching. This task aims to train robots, such as autonomous quadrotor flights or self-

driving cars, to learn actions from hand-held demonstrations [24, 119]. Experts demonstrate good
or perfect actions for a specific task, and the robots learn from these demonstrations through
reinforcement learning (also known as imitation learning).

— Robot object identification. This task aims to enhance the a robot’s ability to identify (often
complex) objects, such as clothes [104] and tactile surfaces [38].

— Robot navigation. This task requires a robot to build a map, locate itself, and find a route to a
target according to its sensor data, which has been modelled as a regression task using GP in
[95, 132].

— Robot introspection. This task helps a robot understand what it is doing by identifying the actions
and sub-tasks it executes [184], which makes it able to react to unstructured environments.

8 CONCLUDING REMARKS
Bayesian nonparametric learning (BNL) is becoming a hot topic in machine learning due to its
unique characteristics. BNL offers a strong theoretical foundation and the ability to generate
powerful models in a highly flexible setting. Starting from the basic motivations and definitions,
this article reviews the latest state-of-the-art research in this field following a standard procedure
of BNL. A standard procedure of BNL comprises two steps: model construction and inference.
Model construction can be likened to playing with Legos, where basic stochastic processes are the
bricks, and the model is built by manipulating those bricks, while model inference is a parameter
adjustment procedure according to the observed data. The recent advances on both steps have been
reviewed, including the popular stochastic processes and their manipulations; the sampling-based
and optimisation-based inference algorithms. The major applications of BNL in machine learning,
e.g., relational learning and transfer learning, and real-world tasks, e.g., biology and computer
vision, have also been summarised. From this survey, we find that BNL is still in its development
stage, with a large gap between the current theories and techniques and the demand for solutions
that address more complicated real-world tasks. However, rather than seeing this gap as presenting
challenges to current developments, we see them as a rich source of possibilities deserving of
further studies in this field. A selection are highlighted below.
— Truncation-free variational inference.Most of the variational inference algorithms for BNL require

truncation, which not only introduces errors into the posterior approximation but also discards
the asymptotic property in the original Bayesian nonparametric model. Some scholars have
attempted to resolve this issue [106, 175], but a general truncation-free variational inference
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method for Bayesian nonparametric models has yet to be developed. Integrating all the state-of-
the-art models to form a unified general method of truncation would be especially significant for
practical platforms.

— Deep Bayesian nonparametric model. Inspired by deep learning, stacking stochastic processes
in more layers would pave the way for deep Bayesian nonparametric models. The challenges
such an innovation would bring, in both constructing such a model and to the model’s inference,
represent great opportunities for further study and progress in machine learning for real-world
scenarios.

— High-dimensionality data modelling. High-dimensionality is a common challenge in data mining
and machine learning. BNL normally assumes the features of this type of data are interchangeable,
which is inappropriate for some tasks. Hence, it would be interesting to study ways of building
reasonable models for high-dimensional data without sacrificing too many correlations.

— New stochastic processes and their manipulations. BNL’s powerful modelling ability depends on an
abundance of stochastic processes and how those processes are manipulated. As the complexity
of data increases, new and ingenious stochastic processes and manipulations will be in greater
demand. One motivating example is the Hawkes process [52], which implies a relationship
between the index and parameters that are independent in PP. This relationship may be valuable
for some machine learning tasks, e.g., modelling the relationships between data and their labels.
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