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Abstract: Due to an increase in customer-oriented service strategies designed to meet more

complex and exacting customer requirements, meeting a scheduled time window has become

an important part of designing vehicle routes for logistics activities. However, practically,

the uncertainty in travel times and customer demand often means vehicles miss these time

windows, increasing service costs and decreasing customer satisfaction. In an effort to find a

solution that meets the needs of real-world logistics, we examine the vehicle routing problem

with hard time windows under demand and travel time uncertainty. To address the problem,

we build a robust optimization model based on novel route-dependent uncertainty sets.

However, due to the complex nature of the problem, the robust model is only able to tackle

small-sized instances using standard solvers. Therefore, to tackle large instances, we design

a two-stage algorithm based on a modified adaptive variable neighborhood search heuristic.

The first stage of the algorithm minimizes the total number of vehicle routes, while the

second stage minimizes the total travel distance. Extensive computational experiments are

conducted with modified versions of Solomon’s benchmark instances. The numerical results

show that the proposed two-stage algorithm is able to find optimal solutions for small-sized

instances and good-quality robust solutions for large-sized instances with little increase to

the total travel distance and/or the number of vehicles used. A detailed analysis of the

results also reveals several managerial insights for decision-makers in the logistics industry.
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1 Introduction

The vehicle routing problem (VRP) is a combinatorial optimization problem, first introduced

by Dantzig and Ramser (1959), that aims to find the optimal set of routes for a fleet of vehicles

delivering goods or services to a given set of customers. Due to its broad application in a

variety of practical contexts (e.g., logistics, internet routing, and freight transportation), the

VRP and its numerous variants have been studied extensively (Baldacci et al., 2012; Kumar

and Panneerselvam, 2012; Toth and Vigo, 2014).

The vehicle routing problem with time windows (VRPTW), as an important variant

of the VRP, assumes that each customer must be served within a given time window. For

example, some customers might only accept deliveries between 11:00 am and 1:00 pm. Due to

increasing and more exacting customer requirements, incorporating customer time windows

into today’s logistic and freight transportation activities has become more and more popular

over the last two decades, and the VRPTW and its variants are likely to continue to be

a hot research topic among researchers for the foreseeable future (Bräysy and Gendreau,

2005a,b; Baldacci et al., 2012; Miranda and Conceição, 2016). Several popular real-world

applications of the VRPTW include waste collection, postal deliveries, school bus routing,

and security patrol services (Bräysy and Gendreau, 2005a). The VRPTW assumes that

all the input data, such as customer demands and travel times, are both deterministic and

are known in advance. However, the solutions derived by deterministic models are often

infeasible when applied to real-world situations because the level of customer demand and

the travel times are uncertain (Taş et al., 2013). For example, in school bus routing problems,

a single bus collects students from several pre-assigned stops and must arrive at the school

within a specified time window. However, not all students use the bus on a daily basis

and the likelihood that a student will take the bus on any given day varies significantly

in practice (Caceres et al., 2017). Thus, the number of students at each stop is highly

uncertain. Moreover, the levels of traffic congestion in urban areas means the travel time

between any two stops can vary greatly. Hence, ignoring the uncertainty of travel times or

student demand may mean students are late for school or that the bus does not have room for

all the students. Real-world waste collection problems are also plagued by these two types of

uncertainty. The amount of waste at each collection point can vary daily and vehicle speeds

are influenced by the prevailing traffic conditions. Indeed, uncertainty in demand and travel

times are common issues in many real-world VRPTW applications. And when vehicles fail

to serve customers within an agreed upon time window, a reputation for poor service and

customer dissatisfaction is often the result.

In an attempt to find an efficient routing strategy for such real-world applications, we
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study the VRPTW with demand and travel time uncertainty. The robust optimization theory

outlined by Ben-Tal et al. (2009) is used to deal with the uncertainties. Robust optimization

treats the uncertain parameters of an optimization problem as random variables. Early

studies on robust optimization focused on deriving a robust counterpart for the original

optimization problem using predefined uncertainty sets, such as ellipsoids or polyhedrons, to

obtain a feasible least-cost solution for any realization of the uncertain parameters over the

uncertainty sets (Ben-Tal and Nemirovski, 2002; Bertsimas and Sim, 2003, 2004). However,

more recent works on robust optimization have developed several solution frameworks that

can exploit the additional distribution information available in the uncertain parameters

to produce less conservative solutions (Bertsimas et al., 2011). One advantage of robust

optimization is that the consistency between the tractability of the robust counterpart and

the original problem can be maintained as long as the uncertainty sets are designed properly,

e.g., by using polyhedral uncertainty sets (Bertsimas and Sim, 2004). Additionally, the

uncertainty sets can be derived with only partial information about the distributions of

the uncertain parameters, such as supports and moments (Han et al., 2013). Thus, robust

optimization is advantageous because of its computational tractability and its ability to

tackle real-world applications where only partial distribution information or a small amount

of historical data about the uncertain parameters is available.

Our aim through this research is to explore the joint impact of demand and travel time

uncertainty on route planning, and produce a cost-effective, robust a priori routing strategy

that is insensitive to uncertainty. The resulting contributions of this paper are as follows:

(1) a robust optimization model based on novel route-dependent uncertainty sets for the

VRPTW with demand and travel time uncertainty;

(2) a two-stage algorithm based on a modified adaptive variable neighborhood search

(AVNS) that is able to deal with large-sized instances; and

(3) an extensive computational study using adapted benchmark instances that shows our

two-stage algorithm can generate optimal solutions for small-sized instances and good-

quality robust solutions for large-sized instances with little increase to the total travel

distance and/or the number of vehicles used.

The remainder of this paper is structured as follows. The relevant literature is reviewed

in Section 2. Section 3 describes the VRPTW and a robust version of the VRPTW with

demand and travel time uncertainty. The corresponding mathematical models for these two

problems are also provided. In Section 4, we describe the details of the proposed two-stage

algorithm. Section 5 presents an extensive computational study using the modified versions
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of Solomon’s benchmark instances (Solomon, 1987) and a comprehensive analysis of the

results. Section 6 concludes the paper and offers several managerial insights.

2 Related work

The VRPTW is one of several well-known extensions to the VRP. The literature related to

this study includes the VRPTW and its two important variants: stochastic versions of the

VRPTW and robust versions of the VRPTW. For a comprehensive background on the VRP,

we refer readers to Toth and Vigo (2014).

In the VRPTW, each customer must be served by one vehicle within a scheduled time

window. Customer time windows can be ”hard”, where earliness or tardiness are not al-

lowed, or ”soft”, where earliness and tardiness are allowed but with a penalty (Miranda and

Conceição, 2016). Over the last two decades, scholars have intensively proposed methods

of solving the VRPTW with both exact and heuristic algorithms. The most successful ex-

act algorithms rely on a column generation technique to compute the lower bound and a

branch-and-price or a branch-and-cut-and-price algorithm to find an optimal integer solu-

tion (Jepsen et al., 2008; Desaulniers et al., 2008; Baldacci et al., 2011). Some of the more

well-known heuristics include Tabu-search (TS) (Cordeau et al., 2001), large neighborhood

search (LNS) (Pisinger and Ropke, 2007), variable neighborhood search (VNS) (Mladenović

and Hansen, 1997), iterated local search (Ibaraki et al., 2005) and evolutionary algorithms

(Mester and Bräysy, 2005). Detailed surveys of the various methods for solving the VRPTW

are provided in Bräysy and Gendreau (2005a,b). As extensions to the VRPTW, a number

of more complex routing problems have been explored. One interesting extension is the

VRPTW with multiple depots and heterogeneous vehicles. In this scenario, the vehicles

have different capacities and multiple vehicle depots are available (Dondo and Cerdá, 2007).

The pickup and delivery problem with time windows is another interesting extension. Here,

a number of customer requests, that each involves shipping some goods from a pickup point

to a delivery point, need to be satisfied by a fleet of vehicles. Two successful heuristics for

solving this problem are the reactive TS heuristic (Nanry and Barnes, 2000) and the adaptive

LNS (ALNS) heuristic (Ropke and Pisinger, 2006).

More recently, researchers have begun to associate issues with data uncertainty and the

VRPTW, giving rise to stochastic versions of the VRPTW (Ritzinger et al., 2016; Gendreau

et al., 2016) and robust versions of the VRPTW (Agra et al., 2012, 2013; Braaten et al.,

2017). Reviews of these two important extensions follow.

Stochastic versions of the VRPTW extend the VRPTW by assuming that the key problem

parameters, such as customer demands, travel times, and service times, are stochastic. Over
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the last 20 years, many researchers have studied different stochastic versions of the VRPTW

with the majority focusing on stochastic demands and stochastic travel times. Of the studies

that focus on the VRPTW with stochastic demands, several different mathematical models

and algorithms have been proposed and explored: Ong et al. (1997) proposed a chance-

constrained model; Chang (2005) proposed a two-stage stochastic programming with recourse

model and developed a heuristic based on the integer L-shaped method; Lei et al. (2011)

also formulated a two-stage stochastic recourse model and devised an ALNS heuristic; and

Zhang et al. (2016) proposed three probabilistic models to address on-time deliveries from

different perspectives of the carrier and customers. The VRPTW with stochastic travel

times was introduced more recently and has attracted greater researcher attention than the

VRPTW with stochastic demands ever since. Ando and Taniguchi (2006) used a genetic

algorithm to solve the VRPTW with stochastic travel times. Russell and Urban (2008)

addressed the VRPTW with stochastic travel times based on the assumption that the travel

time between any two customers obeys an Erlang distribution. Li et al. (2010) considered

the VRPTW with both stochastic travel times and service times and introduced a chance-

constrained model and a stochastic recourse model. Taş et al. (2013) addressed the VRP

with soft time windows and stochastic travel times by assuming the travel times obey a

gamma distribution. Taş et al. (2014) also studied the VRP with soft time windows and

considered time-dependent and stochastic travel times. A TS heuristic or an ALNS heuristic

is used to solve the problem depending on whether or not service times are a factor. More

recently, Ehmke et al. (2015) solved the VRPTW with stochastic travel times by a chance-

constraint approach. Recent surveys of stochastic versions of the VRPTW can be found in

Ritzinger et al. (2016) and Gendreau et al. (2016).

Our literature review of stochastic versions of the VRPTW reveals that researchers often

solve these problems using a two-stage stochastic programming with recourse model or a

chance-constrained programming model. However, both these methods have two distinct

disadvantages. First, both methods assume that the precise distributions of the uncertain

parameters are known or can be estimated in advance, which is rare in real-world VRPTW

applications. Second, since both methods suffer from the curse of dimensionality, their

computational tractability is seriously affected by the dimensions of the problem at hand.

As a result, both stochastic programming and chance-constrained programming are suitable

for small- and medium-sized VRPTW applications where there is enough historical data to

fairly accurately estimate the distributions of the uncertain parameters.

Consequently, a few researchers have turned to robust optimization as a new framework

for overcoming these disadvantages. Robust optimization treats uncertain parameters as

random variables that take their values from predefined uncertainty sets. As such, this
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framework has great merit in terms of its computational tractability and its ability to solve

real-world VRPTW applications with only partial distribution information or little historical

data about the uncertain parameters (Gounaris et al., 2014). For a detailed introduction to

robust optimization, we refer readers to Ben-Tal et al. (2009).

Unlike stochastic versions of the VRPTW, robust versions of the VRPTW, and even

robust versions of the VRP that do not consider time windows, have received much less

research attention. According to our review, Sungur et al. (2008) were the first to discuss a

robust version of the VRP with demand uncertainty. Gounaris et al. (2013) also considered

a robust version of the VRP under demand uncertainty. They developed robust counter-

parts of several known deterministic VRP formulations and proposed a branch-and-cut so-

lution procedure that is able to optimally solve instances of up to 50 nodes (i.e., customers).

Gounaris et al. (2014) presented an adaptive memory programming meta-heuristic that can

provide high-quality solutions for the same problem discussed in Gounaris et al. (2013). Re-

searchers have also used robust optimization to deal with some variants of the VRP that

consider other types of uncertainty. Ordóñez (2010) showed that the Miller-Tucker-Zemlin

model could be modified to handle various robust versions of the VRP that include uncertain

travel times, travel costs, and customer demands. Lee et al. (2012) tackled a robust version

of the VRP with deadlines under demand and travel time uncertainty using an exact solu-

tion algorithm based on a column generation method. However, their algorithm is limited to

solving instances of up to 25 nodes and takes around an hour to provide a routing strategy.

Solano-Charris et al. (2015) considered a robust version of the VRP with uncertain travel

costs, relying on two greedy heuristics, a local search, and four meta-heuristics to solve the

problem. Adulyasak and Jaillet (2015) considered the VRP with deadlines given uncertain

travel times in the context of both stochastic and robust optimization. They show that a

robust model produces very competitive solutions compared to a stochastic model in a great

number of scenarios, and is much less sensitive to uncertainty. Despite some interest in robust

versions of the VRP, very few researchers have investigated robust versions of the VRPTW.

Agra et al. (2012) proposed a layered formulation for a robust version of the VRPTW with

travel time uncertainty. In a continuing work, Agra et al. (2013) proposed two new formula-

tions for the same problem and developed a new column generation algorithm based on two

techniques that can significantly reduce the extreme points of an uncertainty set. However,

their exact algorithm is only able to solve instances of up to 40 nodes. Jaillet et al. (2016)

proposed a novel mathematical framework based on distributionally robust optimization to

address a specific class of routing problems with uncertainty. To illustrate the efficacy of

their framework, they solved the VRP with soft time windows given uncertain travel times.

Heuristic methods are a more recent introduction to solving robust versions of the VRPTW.
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Toklu et al. (2014) proposed an ant colony optimization heuristic to solve a robust version

of the VRPTW under travel time uncertainty. Braaten et al. (2017) developed an ALNS

heuristic to solve the same problem discussed in Agra et al. (2013).

Our review of the relevant literature only reveals a limited number of papers that deal

with robust versions of the VRPTW. Most only consider one kind of uncertainty, either

travel time or customer demand; few consider multiple kinds of uncertainty or explore the

joint impact of multiple uncertain parameters on route planning. Moreover, the existing

exact algorithms can only tackle robust versions of the VRPTW with small-to-medium-sized

instances. Efficient algorithms that are able to solve real-world scenarios with large-sized

instances are still needed. Thus, in this paper, we consider a robust version of the VRPTW

with both demand and travel time uncertainty and develop a two-stage algorithm that can

solve the problem with large-sized instances.

3 Problem description and model formulation

Subsection 3.1 briefly describes the VRPTW and presents a deterministic mathematical

formulation for the problem. In Subsection 3.2, we consider a robust version of the VRPTW

under demand and travel time uncertainty, and extend the deterministic model into a robust

formulation based on novel route-dependent uncertainty sets.

3.1 The deterministic VRPTW

The VRPTW is defined on a complete digraph G = (N,A), where the set of nodes is

represented by N = {0, 1, · · · , n, n+1}, and the set of arcs is represented by A = {(i, j)|i, j ∈
N, i 6= j}. Nc = {1, · · · , n} denotes the set of customers and K = {1, · · · ,m} denotes the set

of homogeneous vehicles with a capacity of Q. The vehicle depot is represented by two nodes

0 and n+1. Every vehicle starts from the depot node 0, visits a subset of customer nodes, and

ends its route at depot node n+1. Each customer node i ∈ Nc has a non-negative demand qi,

a service time si, and a time window [ai, bi]. ai and bi denote the earliest and latest allowable

arrival time at customer node i, respectively. If a vehicle arrives at customer node i before

ai, it must wait until ai, and the time window is missed if it arrives at node i after bi. A time

window is also associated with the depot nodes 0 and n+ 1, i.e., [a0, b0] = [an+1, bn+1]. The

travel time between node i and node j is denoted as tij and, similarly, the travel distance

between these nodes is denoted as dij, where (i, j) ∈ A. Each customer can only be served

by exactly one vehicle and the vehicle fleet is big enough to serve all customers. The primary

objective of the problem is to minimize the number of vehicle routes; the secondary objective
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is to minimize the total travel distance.

The mathematical formulation for the VRPTW contains two types of variables. The first

are flow variables xijk for all (i, j) ∈ A and k ∈ K. Let xijk be 1 if arc (i, j) is used by vehicle

k, and 0 otherwise. The second type of variables are time variables yi for all i ∈ N . yi

specifies the arrival time of a vehicle at node i. The (deterministic) VRPTW is formulated

as follows:

(V RPTW ) min

∑
k∈K

∑
j∈Nc

x0jk,
∑
k∈K

∑
(i,j)∈A

xijkdij

 (1)

s.t.
∑
k∈K

∑
j∈N

xijk = 1 ∀i ∈ Nc (2)∑
j∈Nc

x0jk = 1 ∀k ∈ K (3)∑
i∈Nc

xi,n+1,k = 1 ∀k ∈ K (4)∑
j∈N

xijk −
∑
j∈N

xjik = 0 ∀k ∈ K, i ∈ N (5)∑
i∈N

qi
∑
j∈N

xijk ≤ Q ∀k ∈ K (6)

yi − yj + (bi + tij + si − aj)xijk
≤ bi − aj ∀k ∈ K, (i, j) ∈ A (7)

ai ≤ yi ≤ bi ∀k ∈ K, i ∈ N (8)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (9)

Objective (1) lexicographically minimizes the number of vehicles (routes) and the total travel

distance. Constraints (2) guarantee that each customer can only be visited by one vehicle.

Constraints (3)-(5) are the flow conservation constraints, which ensure that each vehicle’s

route starts from depot 0 and ends at depot n+ 1. Constraints (6) are the vehicle capacity

constraints. Constraints (7) calculate the arrival time of a vehicle at node i (i ∈ N). Con-

straints (8) ensure that each time window is respected. Constraints (9) deal with the nature

of the variables.

3.2 A robust VRPTW under demand and travel time uncertainty

As discussed in Section 1, real-world VRPTW applications are often subject to a variety of

uncertainties. Therefore, a deterministic VRPTW model, which ignores the uncertainty in
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data, may not be an appropriate choice; a robust optimization model, which does consider

uncertainty, may be more suitable. We use the robust optimization theory discussed in

Ben-Tal et al. (2009) and consider a robust version of the VRPTW with both demand and

travel time uncertainty. However, to effectively represent the uncertain parameters, robust

optimization requires a careful and practical definition of the uncertainty sets. In real-world

VRPTW applications, each vehicle route services a different subset of customers. Thus,

each vehicle suffers different levels of uncertainty. For example, if a vehicle has a longer

pre-planned route and/or more customers on its route, it is likely to experience higher

uncertainty. Further, not every customer on a route will have the same level of demand

uncertainty, and not every route segment will have the same level of travel time uncertainty.

In reality, a route may only contain a few customers with high demand uncertainty and

a few crowed route segments with high travel time uncertainty. Lee et al. (2012) made

similar observations and, hence, restricted the number of customers or segments with high

uncertainty on each route to control the overall robustness of the routing strategy.

Based on the above observations and discussions, we define two types of uncertainty

sets for each vehicle used k: the customer demand uncertainty set Uk
q and the travel time

uncertainty set Uk
t . Each is defined as a budget uncertainty polytope, as discussed in Bert-

simas and Sim (2003, 2004). The following polytopes formally define the overall demand

uncertainty set Uq and travel time uncertainty set Ut for the considered robust version of the

VRPTW.

Uq = ×k∈KU
k
q (10)

with

Uk
q =

{
q̃ ∈ R|Nk||q̃i = qi + αiq̂i,

∑
i∈Nk

|αi| ≤ Γk
q ,

|αi| ≤ 1,Γk
q =

⌈
θq|Nk|

⌉
,∀i ∈ Nk

}
(11)

Ut = ×k∈KU
k
t (12)

with

Uk
t =

t̃ ∈ R|Ak||t̃ij = tij + βij t̂ij,
∑

(i,j)∈Ak
|βij| ≤ Γk

t ,

|βij| ≤ 1,Γk
t =

⌈
θt|Ak|

⌉
,∀(i, j) ∈ Ak

}
(13)
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Equation (10) reflects that the overall demand uncertainty set Uq is the Cartesian product

of the demand uncertainty set Uk
q for each vehicle. In equation (11), Nk denotes the set of

customers on the route of vehicle k; qi represents the nominal value of uncertain demand q̃i;

and q̂i denotes the maximum deviation from the nominal value for each node i ∈ Nk. αi is

the auxiliary variable, and Γk
q is the uncertainty budget that controls the level of demand

uncertainty. Given the level of demand uncertainty experienced by each vehicle relates to

the number of customers on its route, Γk
q is defined as equaling

⌈
θq|Nk|

⌉
.
⌈
θq|Nk|

⌉
is the

least integer that is greater than or equal to θq|Nk|. θq is the demand uncertainty budget

coefficient, and has a value of between 0 and 1. If θq = 0, Γk
q = 0 and q̃i = qi, there is no

demand uncertainty. If θq = 1, Γk
q = |Nk|, each customer demand q̃i can take any value in

the interval [qi− q̂i, qi + q̂i]. Broadly speaking, Γk
q imposes an upper bound on the number of

customers with high demand uncertainty and is determined by θq and |Nk|. Equation (12)

shows that the overall travel uncertainty set Ut is the Cartesian product of the travel time

uncertainty set Uk
t for each vehicle. The parameters in equation (13) have similar meanings

to those in equation (11). Ak denotes the set of arcs on the route of vehicle k. tij denotes

the nominal value of uncertain travel time t̃ij, and t̂ij represents the maximum deviation

from the nominal value for each arc (i, j) ∈ Ak. βij is the auxiliary variable. θt is the

travel time uncertainty budget coefficient, and has a value of between 0 and 1. The travel

time uncertainty budget Γk
t controls the degree of travel time uncertainty and is defined as

equaling
⌈
θt|Ak|

⌉
. |Ak| denotes the number of arcs on the route of vehicle k.

Based on the above defined route-dependent uncertainty sets, we extend the deterministic

model outlined in equations (1)-(9) into a robust model by adapting the resource inequalities

formulation from Agra et al. (2013). Agra et al. (2013) proposed the resource inequalities

formulation for a robust version of the VRPTW with travel time uncertainty based on

adjustable robust optimization discussed in Ben-Tal et al. (2009). In adjustable robust op-

timization, some decision variables are allowed to adapt themselves as uncertain parameters

vary in uncertainty sets. As such, we change each decision variable yi in the deterministic

model to yi(q, t) for all i ∈ N , where yi(q, t) is a function of q ∈ Uq and t ∈ Ut. According

to Agra et al. (2013), only the demand vector q ∈ ext(Uq) and travel time vector t ∈ ext(Ut)
need to be considered in the robust formulation. ext(Uq) and ext(Ut) are sets that contain

all the extreme points of sets Uq and Ut, respectively. Thus, the considered robust version of

the VRPTW given the route-dependent uncertainty sets can be formulated as follows:

(RV RPTW ) min

∑
k∈K

∑
j∈Nc

x0jk,
∑
k∈K

∑
(i,j)∈A

xijkdij

 (14)
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s.t. (2), (3), (4), (5)

yi(q, t)− yj(q, t) + (bi + tij + si − aj)xijk ≤ bi − aj
∀k ∈ K, (i, j) ∈ A, q ∈ ext(Uq), t ∈ ext(Ut) (15)

ai ≤ yi(q, t) ≤ bi ∀k ∈ K, i ∈ N, q ∈ ext(Uq), t ∈ ext(Ut) (16)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (17)

Constraints (7) and (8) are rewritten for every q ∈ ext(Uq) and t ∈ ext(Ut) as shown

in constraints (15) and (16). One key observation from the above formulation is that the

number of decision variables yi(q, t) and the number of constraints (15) and (16) increase

with the size of the sets N , ext(Uq), and ext(Ut). Notably, finding all the extreme points in

the sets Uq and Ut is a non-trivial task. However, the column-and-row generation algorithm

discussed in Agra et al. (2013) can be used to solve the above formulation with small-sized

instances.

4 A two-stage algorithm for the robust VRPTW

The above adapted robust formulation always finds it difficult to handle large-sized VRPTW

instances using standard solvers. Therefore, to generate high-quality solutions with large-

sized instances, we devise a simple two-stage algorithm based on a modified AVNS heuristic.

Subsection 4.1 provides an overview of the two-stage algorithm, followed by a detailed de-

scription of the modified AVNS heuristic in Subsection 4.2.

4.1 Overview of the two-stage algorithm

Given there are two lexicographical objectives in the considered robust version of the VRPTW,

the proposed two-stage algorithm separates the optimization process into two stages. The

first stage minimizes the total number of routes and, therefore, the number of vehicles used.

The second stage minimizes the total travel distance in the overall routing strategy. Both

stages rely on a modified AVNS heuristic for optimization. An overview of the two-stage

algorithm is shown in Figure 1.
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Minimize vehicle routes

Stage I

Generate an initial solution

Remove one route with the least number of 

customers and reinsert the customers into the 

remaining routes

modified AVNS

Finds a feasible solution

Does not find a feasible solution 

within a specific amount of time

Outputs the last feasible solution

Minimize travel distance

modified AVNS

Outputs the least-distance solution

Stage II

Figure 1: The two-stage algorithm for the robust VRPTW

As shown in Stage I of Figure 1, an initial feasible solution is generated using a sequential

best insertion heuristic and the maximal possible values of the uncertain parameters from

the predefined route-dependent uncertainty sets. In the next step, the route with the least

number of customers is removed from the initial solution, and the customers on the removed

route are randomly reinserted into the remaining routes. A modified AVNS heuristic then

optimizes the resulting solution. Note that the heuristic allows for infeasible solutions during

this search process. If a feasible solution is found, the solution becomes the new candidate

for the minimum number of vehicle routes and the heuristic is immediately stopped. Next,

the vehicle route with the least number of customers is removed from the new candidate,

the resulting solution is optimized by the heuristic, and the process reiterates. If no feasible

solutions are found within a specified time by the modified AVNS heuristic, the last feasible

solution is output as the result for Stage I. The output solution from Stage I is used as the

initial solution for Stage II. In Stage II, the modified heuristic simply minimizes the overall

total travel distance for all vehicle routes in the final solution from the first stage.
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4.2 A modified AVNS heuristic

The AVNS heuristic was first proposed by Stenger et al. (2013). It incorporates an adaptive

mechanism that biases the random shaking step in the basic VNS algorithm (Mladenović

and Hansen, 1997). The AVNS heuristic has two major advantages. First, several selected

routes, and the sequence of nodes in those routes, can be modified during the adaptive

shaking step in one iteration, which produces strong diversification possibilities to escape

the local minimum. Second, the algorithm can adapt based on recent search performance,

so running times with large-sized instances are reasonable. As discussed in Subsection 4.1,

we use a modified AVNS heuristic in both stages of the two-stage algorithm. The modified

AVNS heuristic considers the characteristics of the studied robust version of the VRPTW.

The structure of the modified AVNS heuristic is shown in Algorithm 1 in pseudo-code.

Algorithm 1 The structure of the modified AVNS heuristic

1: Define adaptive shaking neighborhood structures N shake
I with I = 1, · · · , Imax and the

local search neighborhood structures N search
J with J = 1, · · · , Jmax

2: Generate an initial solution Rinitial and improve Rinitial by local search
3: Set current solution Rcurrent ← Rinitial and I ← 1
4: repeat
5: {Adaptive shaking}
6: Determine route and node selection methods based on the adaptive mechanism
7: Generate a shaking solution Rshake ∈ N shake

I (Rcurrent)
8: {Local search}
9: Perform local search on Rshake with neighborhoods N search

J , J = 1, · · · , Jmax to find
local optimal solution Rsearch

10: {Acceptance decision}
11: if (Rsearch improves Rcurrent) or (Rsearch accepted) then
12: Rcurrent ← Rsearch and I ← 1
13: else
14: if I < Imax then
15: I ← I + 1
16: else
17: I ← 1
18: end if
19: end if
20: Update the value of parameters in the adaptive selection mechanism
21: until a given time limit T or a given number Iter of iterations without improvement

The main components of the modified AVNS heuristic consist of an adaptive shaking

step and a local search step that are repeated until a given time limit T is met or a given

number of main iterations Iter without improvement has been reached. Initially, two sets
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of neighborhood structures {N shake
I |I = 1, · · · , Imax} and {N search

J |J = 1, · · · , Jmax} are

defined. The initial solution Rinitial is generated, then improved through a local search. In

the adaptive shaking step, a shaking solution Rshake is generated in the I-th neighborhood

N shake
I given the current solution Rcurrent. In the local search step, a local optimum solution

Rsearch is determined by a local search method with neighborhoods N search
J , J = 1, · · · , Jmax.

Specifically, a randomized variable neighborhood descent (RVND) heuristic is used in the

local search step. If Rsearch is accepted, it replaces the current solution Rcurrent and I is

reset to one. Otherwise, Rsearch is discarded and I is increased by one. Since infeasible

solutions are allowed in the search process, the next subsection explains the feasibility check

and how the value of the objective function is calculated for a given solution, followed by a

detailed description of each of the major steps of the modified AVNS heuristic in subsequent

subsections.

4.2.1 Feasibility check and objective calculation

Infeasible solutions are allowed in the search process because, in tightly constrained problems,

the local search process often quickly converges to local optimal solutions (e.g., the considered

robust version of the VRPTW), but penalties are added to the objective function for violated

constraints. However, allowing for infeasible solutions creates the challenge of checking route

feasibility and calculating the objective function value of a given solution. As mentioned in

Subsection 3.2, uncertain travel times and customer demands take their values from the

route-dependent uncertainty sets. Thus, the largest possible vehicle load and the latest

vehicle arrival time at each customer node on a route can be used to check a route’s feasibility.

The intuition behind this notion is that if the largest possible vehicle load on a given route is

greater than the vehicle capacity or the latest possible vehicle arrival time for any customer

node falls behind the schedule time window, the route is infeasible.

To calculate the largest possible vehicle load and the latest possible vehicle arrival time,

consider a given solution (routing strategy) R that consists ofm routes and R = {r1, · · · , rm}.
Let rk denote a route served by vehicle k ∈ K, and rk ∈ R. The total number of nodes

on route rk is |rk| and the ith node on route rk is denoted as pki . Thus, route rk can be

presented as an ordered sequence of nodes, and rk = {pk1, pk2, · · · , pk|rk|−1, p
k
|rk|}. Note that pk1

is node 0 and pk|rk| is node n+1, which represent the starting and ending depots, respectively.

{pk2, · · · , pk|rk|−1} is included in the customer set Nc. As discussed in Subsection 3.2, Γk
q and

Γk
t control the number of nodes and segments on route rk that have high levels of demand

and travel time uncertainty. Thus, the latest possible vehicle arrival time at the ith node on

route rk is denoted as Λk(i,Γk
t ), and the vehicle’s largest possible load is denoted as Θk(Γk

q).
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Λk(i,Γk
t ) is calculated using a function originally proposed by Agra et al. (2013), formulated

as follows:

Λk(i,Γk
t ) =



0 if i = 1

max
(
apki ,Λ

k(i− 1,Γk
t ) + spki−1

+ tpki−1,p
k
i

)
if 2 ≤ i ≤ |rk| and Γk

t = 0

max
(
apki , Λk(i− 1,Γk

t − 1) + spki−1
+ tpki−1,p

k
i

+t̂pki−1,p
k
i
, Λk(i− 1,Γk

t ) + spki−1
+ tpki−1,p

k
i

)
if i ≤ |rk| and 1 ≤ Γk

t ≤ i− 1

Λk(i,Γk
t − 1) if 2 ≤ i ≤ Γk

t

(18)

Equation (18) shows that the latest possible vehicle arrival time at each customer node

on route rk is a recursive function of the sequence of the nodes on the route and the pa-

rameter Γk
t defined in the uncertainty set Uk

t . In addition to Λk(i,Γk
t ), we can also cal-

culate the largest possible vehicle load Θk(Γk
q) on route rk by arranging the sequence of

nodes in route rk in decreasing order of customer demand and generating a new sequence

{ok1, ok2, ok3, · · · , ok|rk|−1o
k
|rk|}. Note that oki represents the node with the ith largest customer

demand on route rk. Based on this sequence, the largest possible vehicle load Θk(Γk
q) on

route rk can be calculated by equation (19).

Θk(Γk
q) =

|rk|∑
i=1

qoki +

Γkq∑
j=1

q̂okj (19)

The objective function value of a given solution R can be calculated as follows:

f(R) = Cost(R) + δt

m∑
k=1

|rk|∑
i=1

max(0,Λk(i,Γk
t )− bpki ) + δd

m∑
k=1

max(0, (Θk(Γk
q)−Q)) (20)

where Cost(R) represents the total travel distance in solution R, δt denotes the penalty

factor for a time window violation, and δd denotes the penalty factor for a vehicle capacity

violation in equation (20).

4.2.2 Initial solution

As outlined in Subsection 4.1, the modified AVNS heuristic is used in both stages of the

two-stage algorithm. The initial solution for the modified AVNS heuristic is constructed

using a sequential best insertion heuristic in the first stage of the algorithm. In the second
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stage of the algorithm, the final output from the first stage is used as the initial solution for

the modified AVNS heuristic.

4.2.3 Adaptive shaking

In the shaking step of the modified AVNS heuristic, several selection methods are employed

to initially determine the routes and node sequences of the current solution Rcurrent to

be involved in the shaking. Then, the shaking solution Rshake is generated based on the

predefined shaking neighborhood operators. An adaptive mechanism is also incorporated

into this step to improve the convergence rate of the heuristic toward good-quality solutions.

Shaking neighborhoods

The choice of shaking neighborhood structures is critical since the shaking step helps the

AVNS explore a larger search space. In the modified AVNS, the shaking neighborhoods are

generated based on two operators: a cyclic exchange and a sequence reinsert. Note that the

sequence reinsert operator can be seen as a special case of the cyclic exchange operator. The

cyclic exchange operator, originally introduced by Thompson and Psaraftis (1993), moves

nodes among routes in a cyclic way. There are two important parameters for the cyclic

exchange operator: the number of routes involved NR and the maximum number of nodes

to be exchanged NP . The cyclic exchange operator works as follows. For each route rk, the

operator moves the node sequence Sk
i,NPk

starting with node i at a length of NPk to route

rk+1 at the former position of sequence Sk+1
j,NPk+1

(Ibaraki et al., 2005).

(a) Cyclic exchange operator (b) Sequence reinsert operator

Figure 2: Example of neighborhood operators
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An example of a cyclic exchange with three routes is shown in Figure 2(a). Note that,

if the total number of current routes is less than the number of routes to be moved, NR is

reduced accordingly. Similarly, NP is adjusted if it is greater than the number of customer

nodes on a given route. The sequence reinsert operator relocates a node sequence from one

route to another. An example of the sequence reinsert operator with two routes is shown in

Figure 2(b). Table 1 shows the neighborhood operators used in the shaking process. The

modified AVNS considers neighborhood operators that exchange up to four routes simulta-

neously and move up to 10 nodes among them. Sequence lengths of five or fewer nodes are

randomly chosen within the interval [0,min(NP, |rk|)]. Sequence lengths of more than five

nodes are assumed to be fixed.

Table 1. The shaking neighborhood structures

N.O. Type NR NP N.O. Type NR NP

1 sequence reinsert 2 1 14 cyclic exchange 3 1
2 sequence reinsert 2 2 15 cyclic exchange 3 2
3 sequence reinsert 2 3 16 cyclic exchange 3 3
4 sequence reinsert 2 4 17 cyclic exchange 3 4
5 sequence reinsert 2 5 18 cyclic exchange 3 5
6 cyclic exchange 2 1 19 cyclic exchange 3 8
7 cyclic exchange 2 2 20 cyclic exchange 3 9
8 cyclic exchange 2 3 21 cyclic exchange 3 10
9 cyclic exchange 2 4 22 cyclic exchange 4 1
10 cyclic exchange 2 5 23 cyclic exchange 4 2
11 cyclic exchange 2 8 24 cyclic exchange 4 3
12 cyclic exchange 2 9 25 cyclic exchange 4 4
13 cyclic exchange 2 10 26 cyclic exchange 4 5

Selection methods

To determine the routes and node sequences to be involved in the shaking, we perform

a route selection process and a node sequence selection process. We develop some route

and node sequence selection methods and apply several successful methods originating from

Stenger et al. (2013) to make the adaptive shaking step more effective. The developed

selection methods are based on a potential type of uncertainty associated with a vehicle

route, e.g., the largest possible vehicle load or the latest vehicle arrival time at any node.

Route selection . Given the current shaking neighborhood N shake
I , the route selection

process needs to determine NR routes that will be involved in the shaking. The first of the

NR routes is selected using one of the five route selection methods below.

1. Random. Each route has the same probability of being selected.

2. Route length. The probability of selecting a route is proportional to the route length.

The idea is to redistribute nodes on long routes into shorter routes in the hope of reducing
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the total traveling distance.

3. Largest possible vehicle load on a route. The probability of selecting a route is propor-

tional to the largest possible vehicle load on a route. This is intended to reduce the number

of routes at risk of exceeding vehicle capacity because the larger the vehicle load, the more

likely it is that the route will violate the vehicle capacity constraint.

4. Total customer slack time on a route. The probability of selecting a route is inversely

proportional to the total customer slack time on a route. The customer slack time is the

difference between the upper bound of each customer’s time window and the latest possible

vehicle arrival time at its location. The goal is to reduce time-sensitive routes because the

smaller the total customer slack time, the more likely it is that a vehicle will miss customer

time windows on its route.

5. Total number of time windows missed on a route. The probability of selecting a route is

proportional to the total number of time windows missed on a route. Since the shaking step

may generate infeasible solutions, this is intended to convert infeasible routes into feasible

routes. If all routes are feasible, one is chosen at random.

After selecting the first route, the remaining routes are chosen based on the following rule:

the next route is randomly chosen from the three spatially closest routes to the previously

selected route. The distance between any two routes is assumed to be the distance between

the gravity points of these two routes.

Node sequence selection . Once the routes involved in the shaking have been deter-

mined, the node sequence to be exchanged for each selected route is determined using one

of the following four methods.

1. Random. Each node sequence is randomly chosen.

2. Distance to the next route. The probability of selecting a node sequence is inversely

proportional to the distance between the gravity points of the node sequence and the route

they will be inserted into.

3. Customer slack time. The probability of selecting a node sequence is inversely pro-

portional to the corresponding total customer slack time of the sequence. This is intended

to remove time-sensitive nodes from the route, which may increase the route’s robustness.

4. Missed time windows. The probability of selecting a node sequence is proportional

to the total number of missed time windows in that sequence. The intention is to remove

nodes with violated time windows and reinsert them into other routes, which may result in

an overall feasible solution. If the route is feasible, the node sequence is chosen at random.

Adaptive mechanism

At each shaking step, we use the roulette wheel selection procedure described in Pisinger

and Ropke (2007) to determine the route and node selection methods. In the beginning,
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each route or node sequence selection method is assigned the same probability. Then, the

probability of each method is dynamically updated after γ main iterations based on a scoring

system. The scoring system has the following rules. If a new overall best solution is achieved

after applying a selection method, then a score of nine is added to the method. If the current

solution is improved, a score of three is added. If the solution is worse than the current one,

but accepted according to the acceptance criterion, a score of one is added to the method.

Suppose the weights of s selection methods are wi (i = 1, · · · , s) and the current score of

method i is πi. If the number of times the method was selected since the last weights update

is φi, the new weight wi can be computed by wi(1 − ρ) + ρ(πi/φi) every γ main AVNS

iterations, where ρ ∈ [0, 1]. Note that πi and φi are reset to zero once the corresponding

parameters are updated.

4.2.4 Local search

The solution generated within the shaking step Rshake is then improved by a RVND heuris-

tic. The RVND heuristic employs a set of neighborhood operators in random order and

implements the best improvement strategy to prevent poor-quality local optimal solutions.

Six neighborhood operators are used in the RVND: intra-route swap, intra-route reinsert,

intra-route 2-opt, inter-route swap, inter-route reinsert, and inter-route 2-opt. A graphic

illustration of the six neighborhood operators appears in Figure 3.
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i + 1

j - 1
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j + 1

(a) Intra-route swap

i - 1
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(f) Inter-route 2-opt

Figure 3: Six neighborhood operators
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As shown in Figure 3, the intra-route swap operator exchanges a node i with another

node j located in the same route, while the inter-route swap operator exchanges a node

i with another node j located in two different routes. The intra-route reinsert operator

removes one node i from one route and inserts it into the middle of node j − 1 and j of the

same route, while the inter-route reinsert operator removes one node i from one route and

inserts it into the middle of node j − 1 and j of another route. Note that the inter-route

reinsert operator is able to remove the only node in a route. The resulting empty route is

then deleted because it is no longer necessary. The intra-route 2-opt operator disconnects

(i− 1, i) and (j, j + 1) in one route, then reconnects (i− 1, j) and (i, j + 1). The inter-route

2-opt operator removes the connection between (i− 1, i) and (j − 1, j) where i, j are in two

different routes; and (i − 1, j) and (j − 1, i) are reconnected, which exchanges the second

sections of the two affected routes.

4.2.5 Acceptance decision

The solution generated from the local search Rsearch is compared to the current solution

Rcurrent. If Rsearch is accepted, it becomes the current solution Rcurrent and I is reset to one.

The acceptance criterion used in the heuristic was proposed by Hemmelmayr et al. (2009),

and is inspired by a simulated annealing mechanism. Specifically, if f(Rsearch) < f(Rcurrent),

Rsearch is always accepted. If f(Rsearch) ≥ f(Rcurrent), Rsearch is accepted with the probability

e
−(f(Rsearch)−f(Rcurrent))

η . η is the temperature parameter which is decreased from its initial value

η0 by factor η− after every AVNS iteration. We also reset η to η0 after ε non-improving

iterations to increase diversification of the solutions.

5 Computational experiments

In this section, we describe the design of the test instances for the considered robust version

of the VRPTW, followed by a discussion on the parameter settings for the proposed two-

stage algorithm in Subsection 5.1. Subsection 5.2 presents the results of each experiment

along with a detailed analysis.

5.1 Experiment description and parameter settings

The test instances were derived from the well-known Solomon’s instances (Solomon, 1987).

These instances were designed to test the VRPTW with deterministic customer demands

and travel times. The instances are grouped into six datasets, called R1, R2, C1, C2,

RC1, and RC2. We refer to the names of each data set and the instances they contain
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interchangeably. The R1 and R2 instances include random customer locations, the C1 and

C2 instances contain clustered customer locations, and the RC1 and RC2 instances contain

a mix of random and clustered customer locations. However, the time windows in the R1,

C1 and RC1 instances tend to be narrow whereas, in the R2, C2, and RC2 instances, they

tend to be wide. We made no changes to the customer locations and time windows from

the original Solomon’s instances. However, the customer demands and travel times in the

considered robust version of the VRPTW are uncertain and they can take any possible value

from the route-dependent uncertainty sets. Thus, descriptions of the parameter values for

the uncertainty sets Uk
q and Uk

t follow. Each nominal value qi (i ∈ N) and tij ((i, j) ∈ A) was

assumed to equal to the corresponding customer demand and travel time in each Solomon’s

instance, respectively. In addition, we assumed that the maximal demand deviation q̂i was

0.2qi, and the maximal travel time deviation t̂ij was 0.2tij. As shown in equations (11), the

uncertainty budget coefficient θq determines the uncertainty budget Γk
q , and θt determines

Γk
t as per equation (13). We assumed that θq = θt = 0.3 for all R1, C1 and RC1 instances

since the time windows in these instances are narrow. We set θq = θt = 0.2 for all R2, C2,

and RC2 instances because these instances contain wide time windows.

The proposed two-stage algorithm was coded using Matlab 2015a, and the experiments

were run on a laptop with a 2.4 GHz dual processor and 8G RAM. We conducted preliminary

tests to find the ideal parameter settings for all adapted instances. In the two-stage algo-

rithm, the modified AVNS heuristic was used to do the optimization tasks in both stages.

Therefore, we set the stopping criteria T and Iter for the modified AVNS heuristic to 1200

seconds and 200 iterations in the first stage of the algorithm, and to 2400 seconds and 400

iterations in the second stage of the algorithm. All other parameter values for the modified

AVNS heuristic were the same in both stages of the algorithm, and were set as follows: the

penalty factors were δt = 1000 and δd = 500; γ was set to 20 and ρ was set to 0.3 in the

adaptive shaking step; and η0 was set to 20, η− was set to 0.1, and ε was set to 50 for the

solution acceptance decision. All instances were tested ten times, and the best solution for

each instance was selected as the result for inclusion in Subsection 5.2.

Evaluating the robustness of the generated solutions was an important issue in these

experiments. Therefore, we used a Monte-Carlo simulation to assess the robustness of the

final solutions. In these simulation tests, we assumed that each uncertain travel time param-

eter t̃ij ((i, j) ∈ A) followed a normal distribution with a mean equal to tij and a standard

deviation of 0.2tij. Each uncertain demand parameter q̃i (i ∈ N) was also assumed to have a

normal distribution with a mean equal to tij and a standard deviation of 0.2tij. We generated

1000 scenarios which have random travel time matrices and demand vectors. The robustness

of a solution was determined by calculating how many scenarios: succeeded in serving all
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customers; missed one customer time window at most; and missed two customer time win-

dows at most among the 1000 generated. The number of missed customer time windows for

a given solution can be counted by examining customer time windows and vehicle capacities

using the current scenario’s travel time matrix and demand vector. It is worth noting that,

although we evaluated the robustness of the solutions based on the assumption of uncertain

parameters with normal distributions, it is not necessary to know the exact distributions to

produce a robust solution with the proposed robust formulation and the two-stage algorithm.

The developed methods can tackle the VRPTW with uncertain parameters of any symmetric

distribution as long as the parameter values are drawn from the proposed route-dependent

uncertainty sets.

5.2 Computational Results

The following subsections present the results of a series of experiments we conducted to

evaluate how a range of factors affect the solutions of the considered robust version of the

VRPTW. By analyzing the effect of these factors, it is possible to investigate whether data

variations in a factor or a type of uncertainty are likely to generate riskier solutions. The

factors examined include demand and travel time uncertainty, customer location patterns,

time window length and vehicle capacity, and some key parameters of the route-dependent

uncertainty sets. A performance analysis of the proposed two-stage algorithm solving several

adapted small-sized instances has also been included.

5.2.1 The effect of demand and travel time uncertainty

To see the detailed effects of demand and travel time uncertainty on vehicle routes, we

compared the solutions of the considered robust version of the VRPTW with the solutions

of the deterministic VRPTW using the R1 instances. The results of this comparison are

shown in Table 2. For each test instance in Table 2, ”Det” row shows the details of the

deterministic solution and ”Rob” row shows the details of the robust solution. The columns

”N.V.”, ”OBJ”, and ”Increase” respectively represent the number of vehicles used, the total

travel distance, and the percentage increase in the total travel distance of the robust solution

vs. the deterministic solution in each instance. Each solution’s robustness, as measured by

the Monte-Carlo simulation test, is reported under the columns ”Total”, ”Demand”, and

”Travel time”. The columns under ”Total” show the results of the simulation tests that

consider both demand and travel time uncertainty. The columns under ”Demand” show the

results of the simulation tests that only consider demand uncertainty, while the columns

under ”Travel time” show the results of the simulation tests that only consider travel time
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uncertainty. Columns ”V0”, ”V1”, and ”V2” respectively mean the probability of serving every

customer, the probability of not serving one customer at most, and the probability of not

serving two customers at most within a solution. Note that the deterministic solutions for all

large-sized test instances were obtained by the proposed two-stage algorithm. However, we

made some small modifications to the feasibility check and objective calculation procedure

discussed in Subsection 4.2.1 because uncertainty is not considered in the deterministic

VRPTW.

Table 2. Comparison of two solution strategies on the R1 instances

Instance Type N.V. OBJ Increase
Total Demand Travel time

V0 V1 V2 V0 V1 V2 V0 V1 V2

R101
Det 19 1650.80 - 0.000 0.014 0.054 1.000 1.000 1.000 0.000 0.014 0.054
Rob 23 1763.69 6.84% 0.303 0.649 0.932 1.000 1.000 1.000 0.303 0.649 0.932

R102
Det 17 1486.86 - 0.002 0.016 0.062 1.000 1.000 1.000 0.002 0.016 0.062
Rob 20 1567.24 5.41% 0.353 0.672 0.868 1.000 1.000 1.000 0.353 0.672 0.868

R103
Det 13 1292.67 - 0.000 0.000 0.000 0.506 0.718 0.968 0.000 0.000 0.001
Rob 15 1294.21 0.12% 0.407 0.765 0.921 0.967 0.999 0.999 0.421 0.776 0.927

R104
Det 9 1008.42 - 0.000 0.001 0.003 0.437 0.678 0.930 0.000 0.002 0.006
Rob 11 1051.55 4.28% 0.664 0.904 0.966 0.983 0.992 1.000 0.677 0.910 0.969

R105
Det 14 1377.11 - 0.005 0.030 0.090 1.000 1.000 1.000 0.005 0.030 0.090
Rob 15 1434.74 4.18% 0.506 0.822 0.947 1.000 1.000 1.000 0.506 0.822 0.947

R106
Det 12 1275.73 - 0.015 0.073 0.207 1.000 1.000 1.000 0.015 0.073 0.207
Rob 13 1303.95 2.21% 0.503 0.852 0.964 1.000 1.000 1.000 0.503 0.852 0.964

R107
Det 10 1118.06 - 0.002 0.008 0.025 0.437 0.675 0.911 0.004 0.015 0.055
Rob 11 1143.74 2.30% 0.689 0.896 0.969 0.976 0.996 1.000 0.707 0.904 0.970

R108
Det 9 963.99 - 0.006 0.025 0.081 0.462 0.755 0.893 0.013 0.044 0.130
Rob 10 976.62 1.31% 0.707 0.900 0.981 0.933 0.998 1.000 0.755 0.914 0.985

R109
Det 11 1197.42 - 0.010 0.035 0.074 0.633 0.954 1.000 0.019 0.048 0.092
Rob 12 1218.79 1.78% 0.794 0.958 0.994 0.999 1.000 1.000 0.794 0.959 0.994

R110
Det 10 1126.63 - 0.011 0.038 0.095 0.723 0.910 0.989 0.013 0.044 0.107
Rob 11 1154.34 2.46% 0.675 0.891 0.954 0.995 1.000 1.000 0.678 0.892 0.955

R111
Det 10 1103.00 - 0.000 0.007 0.027 0.941 0.997 0.999 0.000 0.007 0.029
Rob 11 1142.14 3.55% 0.662 0.875 0.958 0.976 1.000 1.000 0.678 0.881 0.960

R112
Det 9 982.14 - 0.002 0.003 0.010 0.532 0.886 0.973 0.002 0.004 0.015
Rob 10 1009.16 2.75% 0.806 0.959 0.990 0.933 0.998 0.999 0.868 0.965 0.991

In analyzing the detailed results for the R1 instances, one clear observation is that the

probability of servicing every customer with the deterministic solutions is very low. This

shows that deterministic solutions are very fragile when travel times and customer demands

are uncertain. The R1 instances contain randomly distributed customers with narrow time

windows, short scheduling horizons, and small-capacity vehicles, which is likely the reason for

this fragility. However, we observe that, in most instances, the robustness of the routes im-

proved significantly with the robust solutions. For example, in instance R112, the probability

of servicing all customers within the prescribed time window increased to 80.6% compared to
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0.2% with the deterministic solution. In instance R101, this same probability only increased

to 30.3% with the robust solution, but the probability of not serving one customer at most

increased from 1.4% to 64.9%. We consider this to be a satisfactory result given the most

of the customers with narrow time windows in the R101 instance. One interesting finding

is that travel time uncertainty seems to be the main cause of route infeasibility for most of

the R1 instances, whereas customer demand uncertainty does not appear to have a strong

impact. For example, in the deterministic solutions for the R101, R102, R105, and R106 in-

stances, the probability of serving every customer was 100% when only demand uncertainty

was considered. This may be because some of the R1 instances contain many narrow time

windows with short scheduling horizons. Hence, fewer customers are serviced on each route

and demand uncertainty can be offset by vehicle capacity, yet travel time uncertainty can

still easily result in violations to these narrow customer time windows.

5.2.2 The effect of customer location patterns

As discussed in Subsection 5.1, instances in different Solomon’s datasets contain different

customer location patterns. To show the effect of customer location patterns, we present the

details of deterministic and robust solutions for all instances of the R1, RC1, and C1 datasets

in Tables 3, 4, and 5, respectively. In these tables, the columns under ”Deterministic” show

the details of the each deterministic solution. The columns under ”Robust” show the details

of each robust solution. The columns under ”Increase” show the increase in the number of

vehicles used and the percentage increase in the total travel distance of the robust solution

vs. the deterministic solution in each instance. Note that only the results of simulation tests

that consider both demand and travel time uncertainty have been included.

Table 3. Results for the R1 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

R101 19 1650.80 0.000 0.014 0.054 23 1763.69 0.303 0.649 0.932 4 6.84%
R102 17 1486.86 0.002 0.016 0.062 20 1567.24 0.353 0.672 0.868 3 5.41%
R103 13 1292.67 0.000 0.000 0.000 15 1294.21 0.407 0.765 0.921 2 0.12%
R104 9 1008.42 0.000 0.001 0.003 11 1051.55 0.664 0.904 0.966 2 4.28%
R105 14 1377.11 0.005 0.030 0.090 15 1434.74 0.506 0.822 0.947 1 4.18%
R106 12 1275.73 0.015 0.073 0.207 13 1303.95 0.503 0.852 0.964 1 2.21%
R107 10 1118.06 0.002 0.008 0.025 11 1143.74 0.689 0.896 0.969 1 2.30%
R108 9 963.99 0.006 0.025 0.081 10 976.62 0.707 0.900 0.981 1 1.31%
R109 11 1197.42 0.010 0.035 0.074 12 1218.79 0.794 0.958 0.994 1 1.78%
R110 10 1126.63 0.011 0.038 0.095 11 1154.34 0.675 0.891 0.954 1 2.46%
R111 10 1103.00 0.000 0.007 0.027 11 1142.14 0.662 0.875 0.958 1 3.55%
R112 9 982.14 0.002 0.003 0.010 10 1009.16 0.806 0.959 0.990 1 2.75%

Average 11.9 1215.24 0.004 0.021 0.061 13.5 1255.02 0.589 0.845 0.954 1.6 3.27%
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Table 4. Results for the RC1 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

RC101 14 1696.95 0.000 0.000 0.002 16 1791.28 0.425 0.725 0.880 2 5.56%
RC102 12 1554.75 0.000 0.000 0.003 14 1657.08 0.394 0.669 0.826 2 6.58%
RC103 11 1261.67 0.000 0.000 0.000 12 1399.36 0.567 0.807 0.924 1 10.91%
RC104 10 1164.15 0.000 0.007 0.025 11 1236.34 0.521 0.776 0.918 1 6.20%
RC105 14 1548.41 0.001 0.006 0.016 15 1622.50 0.389 0.700 0.839 1 4.79%
RC106 11 1424.73 0.000 0.002 0.005 13 1460.49 0.465 0.785 0.915 2 2.51%
RC107 11 1232.26 0.003 0.021 0.058 12 1314.22 0.568 0.854 0.960 1 6.65%
RC108 10 1139.82 0.002 0.006 0.022 11 1258.93 0.505 0.823 0.943 1 10.45%

Average 11.6 1377.84 0.001 0.005 0.016 13.0 1467.52 0.479 0.767 0.901 1.4 6.51%

Table 5. Results for the C1 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

C101 10 828.94 0.030 0.107 0.263 11 1002.89 0.777 0.949 0.990 1 20.99%
C102 10 828.94 0.025 0.086 0.246 11 980.92 0.705 0.939 0.986 1 18.33%
C103 10 828.06 0.037 0.164 0.379 11 975.56 0.641 0.913 0.987 1 17.81%
C104 10 824.78 0.018 0.110 0.300 11 960.50 0.688 0.919 0.987 1 16.45%
C105 10 828.94 0.021 0.107 0.259 11 996.20 0.708 0.906 0.984 1 20.18%
C106 10 828.94 0.028 0.096 0.242 11 998.58 0.737 0.958 0.993 1 20.46%
C107 10 828.94 0.021 0.089 0.023 11 993.28 0.676 0.919 0.985 1 19.82%
C108 10 828.94 0.023 0.102 0.249 11 980.19 0.756 0.954 0.996 1 18.25%
C109 10 828.94 0.019 0.082 0.236 11 976.13 0.789 0.964 0.993 1 17.76%

Average 10.0 828.38 0.025 0.105 0.244 11.0 984.92 0.720 0.936 0.989 1.0 18.90%

A detailed analysis of the effect of customer location patterns produces similar conclusions

to the above. The deterministic solutions for the instances in all three datasets are very

fragile, especially the solutions for the R1 and RC1 instances. For example, the average

probability of servicing every customer was only 0.4% with the deterministic solutions for

the R1 instances and 0.1% with the deterministic solutions for the RC1 instances. However,

in the robust solutions, the average number of vehicles used for the R1 instances increased by

1.6, and the average total travel distance increased by 3.27% compared to the deterministic

solutions. Additionally, the average probability of servicing every customer increased from

0.4% to 58.9%, and the average probability of not serving one customer at most increased

from 2.1% to 84.5%, which shows that the robustness of the solutions has been improved

significantly. The robust solutions for the RC1 instances show similar results. However, the

average total travel distance of the robust solutions for the C1 instances increased by nearly

19% compared to the deterministic solutions because of the one additional vehicle included in

the robust solution must travel through different customer clusters. This additional vehicle
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significantly increases the total travel distance in the robust solution for each C1 instance.

So, although the robust solution greatly reduces the risk of a missed customer time window,

decision-makers may still need to assess the trade-off between total travel distance and route

robustness in situations with clustered location patterns.

5.2.3 The effect of time window length and vehicle capacity

Contrary to the instances in the R1, C1 and RC1 datasets, the R2, RC2, and C2 instances

tend to contain wide customer time windows with a long scheduling horizon and large-

capacity vehicles. These characteristics allow many customers to be served along the same

route. To show the effect of wide customer time windows and large-capacity vehicles on the

planned routes, we present the details of the deterministic and robust solutions for the R2,

RC2 and C2 instances in Tables 6, 7, and 8, respectively.

Table 6. Results for the R2 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

R201 4 1254.80 0.138 0.469 0.791 4 1286.34 0.886 0.993 1.000 0 2.51%
R202 3 1200.40 0.061 0.200 0.390 4 1120.06 0.884 0.990 1.000 1 -6.69%
R203 3 948.14 0.262 0.711 0.937 3 969.15 0.895 0.996 0.999 0 2.22%
R204 2 833.65 0.251 0.677 0.900 2 877.51 0.925 0.996 0.999 0 5.26%
R205 3 1005.94 0.471 0.716 0.838 3 1066.75 0.976 1.000 1.000 0 6.04%
R206 3 914.10 0.367 0.810 0.968 3 937.79 0.966 0.996 1.000 0 2.59%
R207 2 900.63 0.152 0.433 0.692 3 836.95 1.000 1.000 1.000 1 -7.07%
R208 2 729.73 0.543 0.717 0.865 2 737.24 1.000 1.000 1.000 0 1.03%
R209 3 913.14 0.231 0.545 0.822 3 942.76 0.979 1.000 1.000 0 3.24%
R210 3 947.88 0.341 0.703 0.886 3 967.99 0.996 1.000 1.000 0 2.12%
R211 2 885.71 0.206 0.386 0.607 3 782.80 0.976 1.000 1.000 1 -11.62%

Average 2.7 957.65 0.275 0.579 0.791 3.0 956.85 0.953 0.997 1.000 0.3 -0.08%

Table 7. Results for the RC2 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

RC201 4 1413.52 0.256 0.551 0.784 4 1454.15 0.897 0.991 0.999 0 2.87%
RC202 3 1368.14 0.061 0.178 0.313 4 1176.55 0.956 1.000 1.000 1 -14.00%
RC203 3 1064.14 0.137 0.330 0.546 3 1129.51 0.932 0.998 1.000 0 6.14%
RC204 3 800.28 0.197 0.509 0.754 3 830.14 0.977 1.000 1.000 0 3.73%
RC205 4 1297.65 0.086 0.335 0.692 4 1346.95 0.970 1.000 1.000 0 3.80%
RC206 3 1146.32 0.166 0.474 0.718 3 1243.13 0.950 0.990 0.996 0 8.45%
RC207 3 1061.14 0.183 0.423 0.606 3 1123.11 0.903 0.990 1.000 0 5.84%
RC208 3 832.36 0.269 0.522 0.799 3 865.66 0.990 0.999 0.999 0 4.00%

Average 3.3 1122.94 0.169 0.415 0.652 3.4 1146.15 0.947 0.996 0.999 0.1 2.07%
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Table 8. Results for the C2 instances

Instance
Deterministic Robust Increase

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2 N.V. OBJ

C201 3 591.56 0.505 0.665 0.998 3 621.51 0.996 1.000 1.000 0 5.06%
C202 3 591.56 0.505 0.663 0.999 3 607.64 0.992 0.999 1.000 0 2.72%
C203 3 591.17 0.496 0.665 1.000 3 600.21 0.993 0.999 1.000 0 1.53%
C204 3 590.60 0.530 0.676 1.000 3 599.29 0.987 0.997 1.000 0 1.47%
C205 3 588.88 0.674 0.792 1.000 3 603.48 0.998 0.999 1.000 0 2.48%
C206 3 588.49 0.364 0.728 0.905 3 603.48 0.998 1.000 1.000 0 2.55%
C207 3 588.29 0.635 0.761 0.969 3 605.96 0.998 1.000 1.000 0 3.00%
C208 3 588.32 0.626 0.767 0.998 3 602.93 0.997 0.999 1.000 0 2.48%

Average 3.0 589.86 0.542 0.715 0.984 3.0 605.56 0.995 0.999 1.000 0.0 2.66%

Based on the results, it is clear that the deterministic solutions for the R2, RC2, and C2

instances are more robust than the deterministic solutions for the R1, RC1 and C1 instances.

For example, the average probability of servicing every customer with the deterministic

solutions for the C2 instances was 54.2%, which indicates that these deterministic solutions

are not very fragile. In the robust solutions for the R2, RC2, and C2 instances, the total travel

distance only increased a little, and the number of vehicles used stayed the same in most of

the instances. However, the route robustness with these solutions improved significantly. For

example, the average probability of serving every customers was 95.3%, 94.7%, and 99.5%

for the R2, RC2 and C2 instances, respectively. These results indicate that the solutions

are very robust given both travel time and demand uncertainty. We can therefore conclude

that a high level of route robustness can be reached for instances with wide time windows

and large-capacity vehicles using the robust solutions at almost no additional cost (i.e., little

increase in the total travel distance and the number of vehicles used). However, failing to

serve all customers is more prevalent in deterministic solutions given instances with narrow

time windows, and ensuring a high level of route robustness is much more expensive, as

shown in Tables 3, 4, and 5.

From Tables 6 and 7, one interesting finding is that the robust solutions use more vehicles

but travel less total distance than the deterministic solutions, and yet still improve the route

robustness significantly in some of the R2 and RC2 instances. For example, in instance

R202, the robust solution used one more vehicle than the deterministic solution, but the

total travel distance was 6.69% less and the probability of serving all customers increased

to 88.4%. Instances R207, R211, and RC202 show similar results. Thus, robust solutions

may be very attractive in some instances because they can decrease the total travel distance

and increase the route robustness with the addition of only a small number of vehicles. It

is also worth noting that adding more vehicles does not necessarily decrease the total travel
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distance, but this can be effective strategy for improving the robustness of the planned

routes.

5.2.4 The effect of uncertainty set parameters

A solution’s robustness is affected by the parameters of the route-dependent uncertainty sets

outlined in equations (10)-(13). Hence, our next set of experiments were designed to analyze

the effects of the uncertainty budget coefficients θq and θt and the maximal deviation of

uncertain demand q̂i (i ∈ Nc) and travel time t̂ij ((i, j) ∈ A). Instances RC101 and RC201

were selected for analysis, and the assumptions made during these experiments follow. The

ratio νq between the maximal demand deviation q̂i and its nominal value qi stayed the same

for all customer nodes i ∈ Nc; the ratio νt between the maximal travel time deviation t̂ij and

its nominal value tij stayed the same for all arcs (i, j) ∈ A. These ratios are referred to as

the uncertainty ranges. Note that we analyzed the uncertainty ranges and the uncertainty

budget coefficients separately. When analyzing the effect of the uncertainty budgets, the

uncertainty ranges were assumed to be fixed, and were set to νq = νt = 0.2. When analyzing

the effect of the uncertainty ranges, the uncertainty budget coefficients were assumed to be

fixed, and were set to θq = θt = 0.3 for the RC101 instance and to θq = θt = 0.2 for the

RC201 instance. The robust solutions for the RC101 and RC201 instances given different

uncertainty ranges are shown in Table 9. The robust solutions given different uncertainty

budget coefficients are shown in Table 10.

Table 9. Results for instances RC101 and RC201 with different uncertainty range values

Uncertainty ranges
RC101 RC201

N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2

0 14 1696.95 0.000 0.000 0.002 4 1413.52 0.075 0.298 0.570
0.1 15 1683.06 0.039 0.163 0.350 4 1446.23 0.847 0.988 0.999
0.2 16 1791.28 0.425 0.725 0.880 4 1454.15 0.897 0.991 0.999
0.3 18 1855.76 0.761 0.930 0.972 4 1495.56 0.886 0.994 1.000
0.4 19 1906.10 0.938 0.988 0.993 4 1603.16 1.000 1.000 1.000
0.5 20 2139.63 0.983 0.996 1.000 5 1422.77 1.000 1.000 1.000

Let us first focus on the effect of different uncertainty ranges with the robust solution for

the RC101 instance, shown in Table 9. As the value of the uncertainty ranges increased from

0 to 0.5, the number of vehicles used increased from 14 to 20 and the total travel distance

increased from 1696.95 to 2139.63 with the robust solution. Instance RC101 contains many

narrow time windows, small-capacity vehicles, and a short scheduling horizon. Thus, more

vehicles need to be scheduled to meet the prescribed time windows as the value of the

uncertainty ranges increases and this results in a greater total travel distance. However, the
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effect of varying uncertainty ranges with the RC201 instance is quite different. As the value

of the uncertainty ranges increased from 0 to 0.4, the number of vehicles used stayed the

same but the total travel distance increased from 1413.52 to 1603.16 with the robust solution.

Instance RC201 contains wide customer time windows, large-capacity vehicles, and a long

scheduling horizon. Hence, the sequence in which each customer is visited along a route can

simply be reordered to achieve a high level of route robustness without increasing the number

of vehicles used when the value of the uncertainty ranges is relatively small. However, as

the value of the uncertainty ranges increased from 0.4 to 0.5, the number of vehicles used

increased by one and the total travel distance decreased from 1603.16 to 1422.77. The reason

is that one more vehicle is needed to deal with the greater levels of uncertainty and the vehicle

routes are rearranged which significantly decreases the total travel distance.

Table 10. Results for instances RC101 and RC201 with different uncertainty budget
coefficient values

Uncertainty budget RC101 RC201
coefficients N.V. OBJ V0 V1 V2 N.V. OBJ V0 V1 V2

0 14 1696.95 0.000 0.000 0.002 4 1413.52 0.075 0.298 0.570
0.2 16 1763.69 0.252 0.537 0.806 4 1454.15 0.897 0.991 0.999
0.4 16 1800.56 0.402 0.741 0.908 4 1477.13 0.915 0.993 0.999
0.6 16 1814.30 0.491 0.797 0.900 4 1477.13 0.915 0.993 0.999
0.8 17 1770.82 0.494 0.812 0.907 4 1477.13 0.915 0.993 0.999
1 17 1792.92 0.562 0.869 0.962 4 1477.13 0.915 0.993 0.999

Next, we turn to the effect of the uncertainty budget coefficients with the robust solution

for the RC101 instance, shown in Table 10. As the value of uncertainty budget coefficients

increased from 0 to 0.2, the number of vehicles used increased by two and the total travel

distance increased from 1696.95 to 1763.69. Since instance RC101 contains many narrow

time windows, more vehicles are needed to serve customers on time when the value of the

coefficients increases by a small amount. However, as the value of the uncertainty budget

coefficients increased from 0.2 to 0.6, the number of vehicles used stayed the same and the

total travel distance slightly increased. The reason is that the sequence of customer visits

within each route can be rearranged to handle the greater levels of uncertainty without

adding more vehicles. As the value of the coefficients increased from 0.6 to 0.8, the number

of vehicles used increased from 16 to 17 and the total travel distance decreased from 1814.30

to 1770.82. When the coefficient value reached 1, the number of vehicles used stayed with 17

and the total travel distance increased by a small amount with the robust solution. Compared

to the RC101 instance, the uncertainty budget coefficients do not have as strong an effect

on the robust solution of the RC201 instance. As shown in Table 10, the number of vehicles
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used stayed the same and the total travel distance increased from 1413.52 to 1477.13 as the

value of the uncertainty budget coefficients increased from 0 to 0.4, after which the robust

solution stayed the same in all respects. Although, notably, the resulting solution with a

90% probability that every customer will be served had a high level of route robustness.

Based on the above analysis, we can conclude that adjusting the uncertainty ranges

and/or the uncertainty budget coefficients can affect the solutions generated for the con-

sidered robust version of the VRPTW. The results also highlight two insights for decision-

makers: (1) decision-makers should select routing strategies with a high level of robustness

for practical applications characterized by wide customer time windows and large-capacity

vehicles; and (2) decision-makers may have to balance the total travel distance and the num-

ber of vehicles used (i.e., the cost) with the robustness of the planned routes when selecting

an ideal routing strategy for practical applications characterized by narrow customer time

windows and small-capacity vehicles.

5.2.5 Algorithm performance

To test the performance of our proposed two-stage algorithm, we adapted 24 of Solomon’s

instances by selecting the first ten customers in each instance. Given the vehicle capacity

of each Solomon’s instance is too large to be meaningful, we reset the vehicle capacity to 75

for the R1 and R2 instances, to 100 for the C1 and C2 instances, and to 150 for the RC1

and RC2 instances. We also reset the uncertainty budget coefficients to θq = θt = 0.6. The

stopping criteria T and Iter for the modified AVNS heuristic were set to 50 seconds and 20

iterations in both stages of the two-stage algorithm due to the small size of the instances.

We retained the values described in Subsection 5.1 for all other parameters of the modified

AVNS heuristic. We tested the proposed two-stage algorithm ten times with each instance

and compared the resulting solutions to the optimal solutions generated by solving the robust

formulation outlined in Subsection 3.2. The comparison results are shown in Table 11. Note

that the column-and-row generation algorithm discussed in Agra et al. (2013) was adapted to

solve the robust formulation. The algorithm was coded in GAMS software with the CPLEX

12.3 solver. To further assess the quality of the proposed algorithm, we solved a robust

version of the VRP with deadlines under demand and travel time uncertainty discussed by

Lee et al. (2012). Lee et al. (2012) developed an exact algorithm to solve the problem with

the adapted small-sized Solomon’s R1 instances. However, the robust version of the VRP

with deadlines considers only one objective and different uncertainty sets. Thus, we adapted

the modified AVNS heuristic described in Subsection 4.2 to solve the problem. Each instance

was also tested ten times. The comparison between the exact algorithm in Lee et al. (2012)

and the modified AVNS heuristic is shown in Table 12.
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Table 11. Comparison results for the adapted Solomon’s instances with 10 customers

Instance
AC&RG algorithm Two-stage algorithm

N.V. Optimal Time (s) N.V. Best Avg Time avg (s)

R101 4 287.34 0.94 4 287.34 287.34 8.72
R102 4 262.19 393.83 4 262.19 262.19 6.35
R111 2 237.40 2.61 2 237.40 237.40 7.46
R112 2 198.21 11.17 2 198.21 198.21 7.13
R201 2 259.58 0.69 2 259.58 259.58 6.42
R202 2 198.21 10.58 2 198.21 198.21 6.67
R210 2 198.21 2.36 2 198.21 198.21 7.57
R211 2 198.21 12.34 2 198.21 198.21 7.34
C101 2 90.19 1.09 2 90.19 90.19 8.26
C102 2 90.19 422.04 2 90.19 90.19 8.14
C108 2 89.87 0.95 2 89.87 89.87 7.21
C109 2 89.87 25.93 2 89.87 89.87 8.36
C201 2 176.49 3.06 2 176.49 176.49 8.13
C202 2 162.36 37.71 2 162.36 162.36 9.12
C207 2 176.49 3.64 2 176.49 176.49 7.54
C208 2 168.84 4.18 2 168.84 168.84 7.21

RC101 3 239.31 6.78 3 239.31 239.31 6.53
RC102 2 203.91 220.52 2 203.91 203.91 8.39
RC107 2 202.30 212.55 2 202.30 202.30 7.29
RC108 2 202.68 252.49 2 202.68 202.68 7.37
RC201 2 212.33 4.79 2 212.33 212.33 7.14
RC202 2 203.91 499.22 2 203.91 203.91 7.65
RC207 2 204.80 152.23 2 204.80 204.80 8.23
RC208 2 202.30 583.42 2 202.30 202.30 6.82

In Table 11, the columns under ”AC&RG algorithm” show the details of the solutions

obtained by adapting the column-and-row generation algorithm discussed in Agra et al.

(2013). The columns ”N.V.”, ”Optimal”, and ”Time” represent the number of vehicles used,

the optimal objective value, and the computation time of the algorithm for each instance,

respectively. Similarly, the columns under ”Two-stage algorithm” show the details of the

solutions obtained using the proposed two-stage algorithm. The columns ”Best”, ”Avg”, and

”Time Avg” represent the best objective value, the average objective value, and the average

computational time of ten runs, respectively. Table 11 shows that the proposed two-stage

algorithm was able to find the optimal solution for the considered robust VRPTW with

each small-sized instance. The two-stage algorithm was very stable in terms of computation

time, taking less time to generate solutions than the adapted column-and-row generation

algorithm for more than half the test instances. However, the adapted column-and-row

generation algorithm was faster when solving several instances including R101, R111, R201,

R210, C101, C108, C201, and RC201. The reason is related to the instance structures.

For example, the R101 and C101 instances contain many narrow time windows and small-
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capacity vehicles. This type of instance structure is particularly suited to the CPLEX solver,

and hence it is able to find an optimal solution in every iteration of the algorithm very quickly.

For instances with many wide time windows and large-capacity vehicles such as instances

R201, C201 and RC201, the adapted column-and-row generation algorithm only requires a

few iterations to generate the optimal robust solution.

Table 12. Comparison results for the instances in Lee et al. (2012)

Instance
Lee et al. (2012) Modified AVNS

Optimal Time (s) Best Avg Time avg (s)

R101 464.4 3.62 464.4 464.4 9.14
R102 444.7 201.09 444.7 444.7 8.36
R103 417.3 1440.65 417.3 417.3 7.89
R104 407.9 3517.91 407.9 407.9 10.47
R105 446.6 41.14 446.6 446.6 7.23
R106 426.3 465.82 426.3 427.9 6.57
R107 408.3 3600 408.3 408.3 8.05
R108 399.3 836.41 399.3 399.5 7.32
R109 429.4 1095.92 429.4 430.9 11.95
R110 409.0 471.67 409.0 409.0 9.26
R111 417.3 3600 417.3 417.3 12.02
R112 399.3 2573.76 399.3 399.5 11.57

In Table 12, the columns under ”Lee et al. (2012)” show the details of the solutions

obtained by the exact algorithm proposed in Lee et al. (2012). The columns ”Optimal”

and ”Time” represent the optimal objective value and the computation time of the exact

algorithm for each instance, respectively. The columns under ”Modified AVNS” summarize

the details of the solutions obtained by the modified AVNS heuristic. The columns ”Best”,

”Avg”, and ”Time Avg” represent the best objective value, the average objective value, and

the average computational time of ten runs, respectively. Table 12 clearly shows that the

best solution produced by the heuristic is the same as the optimal solution generated by the

exact algorithm for each instance. Moreover, with the exception of the first instance, the

modified AVNS heuristic was much faster than the exact algorithm.

6 Conclusions

In this paper, we considered a robust version of the VRPTW with demand and travel time

uncertainty. To address the problem, we assumed the uncertain parameters took values from

the route-dependent uncertainty sets and adapted a robust mathematical formulation. Due

to the complexity of the problem, the adapted robust model was only able to tackle small-

sized instances using standard solvers. To solve large-sized instances, we proposed a two-
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stage algorithm based on a modified AVNS heuristic. Extensive computational experiments

were conducted using modified versions of Solomon’s benchmark instances. The results show

that the two-stage algorithm was able to produce optimal solutions for small-sized instances

and the planned routes generated for large-sized instances were significantly more robust at

the cost of a small increase in the total travel distance and the number of vehicles used.

We performed a comprehensive analysis of the results and several managerial insights are

revealed as follows:

(1) Generating vehicle routes without considering demand and travel time uncertainty

yields very fragile routing strategies that often result in missed time windows.

(2) Incorporating more vehicles into a routing schedule and reordering the sequence of

customer visits within each vehicle route can sometimes increase the robustness of a given

routing strategy.

(3) Highly robust routing strategies can be generated for settings characterized by wide

customer time windows and large-capacity vehicles at little additional cost.

(4) Failing to serve a customer within the prescribed time window in situations character-

ized by narrow time windows and small-capacity vehicles is more prevalent when the routing

strategy is generated with a deterministic model. And reaching a high level of robustness is

much more expensive - more vehicles and much longer travel distances are required.
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Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time windows, Part II:

Metaheuristics. Transportation science, 39(1):119–139.

Caceres, H., Batta, R., and He, Q. (2017). School bus routing with stochastic demand and

duration constraints. Transportation Science.

Chang, M.-S. (2005). A vehicle routing problem with time windows and stochastic demands.

Journal of the Chinese institute of engineers, 28(5):783–794.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for

vehicle routing problems with time windows. Journal of the Operational research society,

52(8):928–936.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management

science, 6(1):80–91.

Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elementarity,

and generalized k-path inequalities for the vehicle routing problem with time windows.

Transportation Science, 42(3):387–404.
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