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Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation
error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum
holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary
levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our
approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not
involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes
for fault-tolerant quantum computation.
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I. INTRODUCTION

Quantum error correction (QEC) can protect quantum infor-
mation from detrimental noise by encoding a logical qubit with
a set of physical qubits [1–3]. Recently, remarkable progress
has been achieved in the experimental demonstration of QEC
on small-size codes [4–8]. A prototypical approach to QEC is
the surface code [9–12], defined on a two-dimensional (2D)
qubit lattice [13]. One attractive feature of these surface codes
is that only nearest-neighbor interactions are involved, which
facilitates their experimental construction. Another appealing
feature is their appreciable tolerance to local errors [14–18].
According to a recent estimation of this tolerance with a
balanced-noise model, the fidelities of every single- and two-
qubit gate for surface codes should be larger than 99.4% [19],
so as to satisfy the fault-tolerant threshold.

Current quantum control technology has made it experi-
mentally accessible to reach this surface-code threshold for
fault tolerance [5]. However, quantum gates with higher fideli-
ties are still needed since this could allow one to greatly reduce
the many number of physical qubits needed for encoding a
logical qubit. For dynamic quantum gates, stochastic Pauli
errors are important [19], but they are less important for
holonomic quantum gates because the holonomic gates are
robust against small stochastic fluctuations in the Hamiltonian
of the system (see the Appendices). Now, imperfect control of
the Hamiltonian during gate operations may become the main
source of errors in the quantum-holonomy approach. Here, we
propose holonomic surface codes where the errors caused by
imperfect control can also be suppressed.

Non-Abelian geometric phases (i.e., quantum holonomy)
[20–27] can be used to build quantum gates with higher fideli-
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ties, but existing holonomic schemes are based on multilevel
(usually three- or four-level) quantum systems [22,23,26,27].
A direct application of these schemes to surface codes is
problematic because the required projective measurement on
a multilevel quantum system can have a state collapse to the
auxiliary level, in addition to the levels used for a qubit. To
overcome this problem, here the holonomic gates are built with
the help of auxiliary qubits rather than auxiliary levels used
in the original non-Abelian methods. The required multilevel
structure is provided by the Hilbert space spanned by both
the target and auxiliary qubits together. The key advantage
of our method is that the auxiliary qubits are in their ground
states before and after each gate operation, so they are not
involved in the operation cycles of surface codes. Moreover,
the construction of a holonomic gate only needs a Hamiltonian
with nearest-neighbor XY -type interactions. This is another
advantage due to its accessibility in real systems. Thus, our
approach provides an advantageous way to implement surface
codes for fault-tolerant quantum computation.

II. DYNAMIC AND HOLONOMIC SURFACE CODES

Surface codes were studied on a square lattice of qubits
[11], with each qubit acting as either a “measurement” qubit
(open circle) or a “data” qubit (solid circle) [see Fig. 1(a)].
The measurement qubit, denoted by Z or X, has a stabilizer
Zabcd ≡ σa

z σ b
z σ c

z σ d
z or Xabcd ≡ σa

x σ b
x σ c

x σ d
x , where σ i

z (σ i
x),

with i = a,b,c,d, are Pauli operators acting on the four data
qubits adjoining the measurement qubit [Fig. 1(b)]. At the
boundary of the lattice, the stabilizer is reduced to having three
Pauli operators acting on the three data qubits adjoining the
measurement qubit. These stabilizers commute with each other
because two (zero) data qubits are shared by two neighboring
(non-neighboring) stabilizers. With projective measurements
on all the measurement qubits, the state |ψ〉 of all the data
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FIG. 1. (a) A 2D lattice implementation of dynamic surface
codes. (b) The stabilizer units (left) and syndrome extraction circuits
(right) for measurement qubits Z and X in (a). (c) A 2D lattice
implementation of holonomic surface codes, where we introduce two
types of auxiliary qubits, shown as orange solid and open circles,
respectively. (d) The stabilizer units for measurement qubits Z and X

in (c).

qubits satisfies Zabcd |ψ〉 = zabcd |ψ〉 and Xabcd |ψ〉 = xabcd |ψ〉
for all stabilizers, with zabcd , xabcd = ±1.

A Z(X) stabilizer requires a Hamiltonian with four-body
interactions. This is impossible because four-body interactions
do not occur in natural systems. Thus, a sequence of single-
and two-qubit operations, plus a projective measurement, are
utilized to achieve the stabilizer combined with the required
projective measurement [see Fig. 1(b)]. Then, as shown in
[11], logical qubits can be created by making holes (i.e.,
defects) inside the lattice, and the operations on logical qubits
for quantum computing can be decomposed into single- and
two-qubit operations on physical qubits. However, in order to
implement large-scale quantum computing with surface codes,
the fidelity threshold of any operation on physical qubits should
be above 99.4% [19]. For a large system with many qubits, this
is extremely difficult to achieve when dynamic operations are
employed.

Besides dynamic operations, one can harness the geometric
nature of the quantum system to build quantum operations (on
physical qubits) with extremely high fidelities. The implemen-
tation of surface codes involves noncommutative operations
on physical qubits, so the employed geometric quantum gates
should be constructed with quantum holonomy. In the existing
holonomic approach, multilevel quantum systems are utilized
to implement the holonomic operations on qubits. However, it
is problematic to directly apply this approach to surface codes
since the required projective measurement in surface codes
can collapse the state of the system to the auxiliary levels, in
addition to the qubit levels.

Here we propose a square lattice of qubits [Fig. 1(c)]
where, besides data and measurement qubits, some additional
qubits (shown as orange circles) are used as auxiliary qubits.
For each pair of adjacent data and measurement qubits, an
auxiliary qubit (orange solid circle) lies in between, so each
stabilizer unit contains four auxiliary qubits [Fig. 1(d)]. We
assume that the Pauli-x and Pauli-y Hamiltonian of each
single physical qubit are available. In addition, an XY -type
interaction Hamiltonian between nearest-neighbor physical
qubits is required, which reads

ĤXY
jk = Jjk

2

(
σ j

x σ k
x + σ j

y σ k
y

)
, (1)

where Jjk is the coupling strength and σ
j
x (σ j

y ) represents
the Pauli-x (-y) operator on the j th physical qubit. Also,
we assume that the Hamiltonian for each single qubit can be
tuned to zero. Moreover, we can turn on the coupling strengths
Jjk for a certain time, so as to satisfy the cyclic condition
for achieving holonomic gates. With this lattice, single- and
two-qubit holonomic operations can be implemented using
physical qubits (see Sec. III below), instead of employing
multilevel systems. This makes it possible to realize holonomic
surface codes.

III. HOLONOMIC OPERATIONS FOR SURFACE CODES

We first explain how quantum holonomy can arise in
nonadiabatic unitary evolution. Consider a quantum system
with Hamiltonian Ĥ , which spans a Hilbert space containing a
subspace L spanned by a set of basis states {|ψk〉}mk=1, where m

is the dimension ofL. We can define a projection operatorPL =∑m
k=1 |ψk〉〈ψk| for L. Then, nonadiabatic quantum holonomy

acting on L can be realized if two conditions are satisfied
[22,23]:

(i) Ĥ vanishes in the evolving subspace PL(t) =
U (t)PLU †(t).

(ii) The subspace L evolves in a cyclic manner
following L(t) ≡ Span{U (t)|ψk〉}mk=1, where U (t) =
T exp[−i

∫ t

0 Ĥ (t ′)dt ′], with T denoting time ordering.
To construct a holonomic single-qubit gate on a target

(either data or measurement) qubit, we need a nearby aux-
iliary qubit interacting with it via an XY-type interaction [see
Fig. 2(a)]. Specifically, we use “1” (“2”) to denote the auxiliary
(target) qubit. The Hamiltonian of the two qubits is

Ĥ1 = J1

2

(
cos βσ 1

x + sin βσ 1
y

) + J12

2

(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
, (2)
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FIG. 2. (a) Implementation of holonomic single-qubit operations.
(b) Implementation of the holonomic quantum gate Usz between
qubits M and D. (c) Implementation of the holonomic SWAP gate
between qubits M and D via three holonomic two-qubit Usz gates
(first between qubits M and B, then between qubits D and M , and
finally between qubits B and D).

where σ 1
x (σ 1

y ) is a Pauli matrix acting on qubit 1 and β

is a constant. By setting the parameters J1 = J0(t) sin θ and
J12 = J0(t) cos θ , the time-evolution operator U1(t) generated
by Ĥ1(t) can be obtained as (see Appendix A)

U1(t) =
(

V0 cos(atD)V †
0 −iV0 sin(atD)V †

1

−iV1 sin(atD)V †
0 V1 cos(atD)V †

1

)
, (3)

where at =
∫ t

0 J0(s)ds, and

V0 =
(

sin θ
2 e−iβ cos θ

2

eiβ cos θ
2 − sin θ

2

)
,

D =
(

cos2 θ
2 0

0 sin2 θ
2

)
,

V
†

1 =
(

cos θ
2 e−iβ sin θ

2

eiβ sin θ
2 − cos θ

2

)
. (4)

We divide the 4D Hilbert space of Ĥ1 into two subspaces
spanned by L0 = Span{|00〉,|01〉} and L1 = Span{|10〉,|11〉},
and accordingly define two projection operators P0 =
|00〉〈00| + |01〉〈01| and P1 = |10〉〈10| + |11〉〈11|. By choos-
ing a certain time t = τ such that sin(aτD) = diag{0,0} but
cos(aτD) = diag{−1,1} (this condition can always be satisfied
as long as θ �= 1+2n

2 π ), we obtain the final evolution operator,

U1(L0,L1) = |0〉〈0| ⊗ V (L0) + |1〉〈1| ⊗ V (L1), (5)

where

V (Lk) = −VkσzV
†
k

= (−1)k cos θσz − sin θ (cos βσx + sin βσy) (6)

is a single-qubit gate acting on qubit 2. Given that qubit 1
is initialized in |0〉, the gate on qubit 2 is a Hadamard gate
H if θ = π/4 and β = π . A single-qubit rotation around the
x axis, Rx(α) = exp(−iασx), can be obtained by applying
V (L0) twice, during which θ = π/4 and β = π/2 for the first
cycle, while θ = π/4 + α and β = π/2 for the second one.

Another rotation around the z axis, Rz(α) = exp(−iασz), is
also available since HRx(α)H = Rz(α). Note that condition
(i) is satisfied because

Pk(t)Ĥ1Pk(t) = U1(t)PkĤ1PkU
†
1 (t) = 0, (7)

where [Ĥ1,U1(t)] = 0 is used. Also, because

Lj (τ ) = U1(τ )Lj (0) = Lj (0) (j = 0,1), (8)

condition (ii) is satisfied. Thus, V (Lk) is a holonomic single-
qubit gate.

To construct a holonomic two-qubit gate on a pair of mea-
surement (M) and data (D) qubits, we introduce an auxiliary
(A) qubit lying in between and interacting with both of them
[see Fig. 2(b)]. Hereafter, qubits M,D, and A are also denoted
as qubit 1, 2, and 3, respectively. In this case, we turn off the
single-qubit Hamiltonian and turn on the interactions. Then the
corresponding Hamiltonian is

Ĥ2 = ĤXY
13 + ĤXY

23 , (9)

which has four invariant subspaces:

S1 ≡ Span{|000〉}, S2 ≡ Span{|001〉,|010〉,|100〉},
S3 ≡ Span{|110〉,|101〉,|011〉}, S4 ≡ Span{|111〉}.

Here and hereafter, for the state |ijk〉, we use i for qubit 1, j

for qubit 2, and k for qubit 3. In the subspaces S1 and S4, Ĥ2

simply reduces to ĤS1 = ĤS4 = 0, but it reduces to

ĤS2 = ĤS3 =

⎛⎜⎝ 0 J23 J13

J23 0 0

J13 0 0

⎞⎟⎠ (10)

in the subspaces S2 and S3.
We first focus on the evolution in S2 owing to ĤS2 .

We use the basis states |010〉 and |100〉 as the logical |0〉
and |1〉 to define the qubit subspace S2,q(0), and |001〉
to define the auxiliary subspace S2,a(0). Here we choose
J23 and J13 as the controllable parameters and set J23 =
	(t) sin(θ/2) and J13 = 	(t) cos(θ/2), where 	(t) describes
the envelope, and θ is a time-independent parameter. By
turning on ĤS2 , the qubit subspace S2,q(0) evolves to S2,q(t)
spanned by the ordered basis {US2 (t)|010〉,US2 (t)|100〉}, where
US2 (t) = exp[−i

∫ t

0 ĤS2 (t ′)dt ′]. Meanwhile, the auxiliary sub-
space S2,a(0) evolves to S2,a(t) spanned by US2 (t)|001〉.
With S2,q and S2,a evolved for a certain time τ , such that∫ τ

0 	(t ′)dt ′ = π , the resulting unitary operator becomes

US2 (τ ) =

⎛⎜⎝−1 0 0

0 cos θ − sin θ

0 − sin θ − cos θ

⎞⎟⎠. (11)

Thus, we obtain a negative identity operator US2,a
(τ ) = −Ia

on the subspace S2,a(0), and a quantum gate

US2,q
(τ ) = cos θσz − sin θσx (12)

on the subspaceS2,q (0). Note that condition (i) is satisfied since
US2 (t) commutes with ĤS2 , so

PS2,k
(t)ĤS2PS2,k

(t) = US2 (t)PS2,k
ĤS2PS2,k

U
†
S2

(t)

= 0 (k = a,q). (13)
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Condition (ii) is also satisfied because

S2,a(τ ) ≡ Span{US2,a
(τ )|001〉}

= Span{|001〉},
(14)

S2,q (τ ) ≡ Span{US2,q
(τ )|001〉,US2,q

(τ )|100〉}
= Span{|001〉,|100〉}.

Therefore, the gate US2 (τ ) is holonomic. Similarly, evolving
S3 for the same time interval τ , we obtain a holonomic
gate US3,a

(τ ) = −Ia on S3,a ≡ Span{|110〉}, and another holo-
nomic gate on S3,q ≡ Span{|101〉,|011〉} which reads

US3,q
(τ ) = cos θσz − sin θσx. (15)

The state of qubits M and D is generally an arbitrary two-
qubit pure state,

∑
m,n=0,1 amn|mn〉. We initialize qubit A in

|0〉. Then, the initial state of the three qubits reads

|ψ〉i = (a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉) ⊗ |0〉. (16)

When the cyclic condition is satisfied, the state of qubit A

returns to |0〉 and the final state of the three qubits becomes

|ψ〉f = [a00|00〉 + US2,q
(a01|01〉 + a10|10〉) − a11|11〉] ⊗ |0〉.

(17)
The corresponding holonomic two-qubit gate on the physical
qubits M and D is given by

U2 = I00 ⊕ US2,q
⊕ (−I11), (18)

where I00(11) is an identity operator acting on |00〉 (|11〉).
Choosing θ = 3π/2, we obtain a nontrivial holonomic two-
qubit gate,

U (M,D)
sz =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞⎟⎟⎟⎠. (19)

Note that Usz transforms |0〉 ⊗ (a|0〉 + b|1〉) to (a|0〉 +
b|1〉) ⊗ |0〉, and vice versa. A SWAP gate between qubits M

and D can be realized in three steps by employing an extra
auxiliary qubit (B) initialized in |0〉, in addition to the one (A)
between qubits M and D [see Fig. 2(c)]:

U
(M,D)
SWAP = U (B,D)

sz U (D,M)
sz U (M,B)

sz . (20)

A control-Z (CZ) gate is obtained as

U
(M,D)
CZ = U (M,D)

sz U
(M,D)
SWAP . (21)

Accordingly, a control-NOT (CNOT) gate is given by

U
(M,D)
CNOT = HU

(M,D)
CZ H, (22)

where H is the Hadamard gate on qubit D.
So far, we have shown how to construct all the holonomic

single- and two-qubit gates needed for surface codes. In our
lattice [Fig. 1(c)], there is always an auxiliary qubit below every
target qubit, so we can implement holonomic single-qubit gates
on all target qubits at the same time. Also, the two-qubit gate
architecture in Fig. 2(c) exists for every pair of measurement
and data qubits in our lattice. For each measurement X (or Z)
qubit, we can implement a holonomic CNOT gate on this qubit
and its nearest-neighbor data qubit i, where i = a,b,c,d [cf.

Fig. 2(b)]. Among these eight types of CNOT gates, we can
simultaneously implement all CNOT gates of the same type.
Thus, all the X (or Z) syndrome extraction circuits can be
implemented in parallel.

IV. GATE ROBUSTNESS TO ERRORS
AND AUXILIARY-QUBIT RESETTING

In Appendix B, we show how Pauli errors spread in
holonomic quantum gates. In fact, as a distinct advantage,
holonomic quantum gates are robust against small stochastic
fluctuations (see Appendix C), including also stochastic Pauli
errors. Below we consider the area error due to imperfect
control of the Hamiltonian because now it may become the
main source of errors. When an area error δ is included,
the cyclic condition

∫ τ

0 	(s)ds = π for a holonomic Usz gate
becomes

∫ τ

0 	(s)ds = π + δ. The final state of the employed
three qubits is

|ψ (r)〉f = |ψ〉0 ⊗ |0〉 + i sin δ|ψ〉1 ⊗ |1〉, (23)

where

|ψ〉0 = a00|00〉 +
(

a01 sin2 δ

2
+ a10 cos2 δ

2

)
|01〉

+
(

a10 sin2 δ

2
+ a01 cos2 δ

2

)
|10〉 − a11 cos δ|11〉,

|ψ〉1 =
√

2

2
(a01 + a10)|00〉 +

√
2

2
a11|10〉 +

√
2

2
a11|01〉.

(24)

The lower bound of the fidelity for the holonomic Usz gate can
be written as (see Appendix D)

Fh = 1 − δ4

1 − δ2 + δ4
. (25)

For the holonomic single-qubit gate (e.g., Hadamard gate), its
fidelity is even higher (see also Appendix D).

Owing to the error δ, the two target qubits become entangled
with the auxiliary qubit in the real final state |ψ (r)〉f . To
reset the auxiliary qubit to its ground state |0〉, one needs to
implement a measurement with σz on the auxiliary qubit. When
|0〉 is obtained for the auxiliary qubit, the state of the two
target qubits is collapsed to |ψ〉0 with a very high probability.
Although |ψ〉0 ⊗ |0〉 deviates a bit from the ideal final state
|ψ (i)〉f ≡ |ψ (r)〉f |δ=0, it is perfectly correctable by surface
codes as long as δ is small enough. However, when |1〉 is
obtained for the auxiliary qubit, the state of the two target
qubits is collapsed to |ψ〉1 with a very low probability. Here,
|ψ〉1 ⊗ |1〉 is free of the area error δ and can be converted to
|ψ (i)〉f via holonomic operations (see Appendix E).

Also, we can use XY interactions between the measurement
and data qubits to directly build a dynamic iSWAP gate by
turning on

Ĥd = 	(t)

2

(
σM

x σD
x + σM

y σD
y

)
(26)

for a time t , so that
∫ t

0 	(s)ds = 3π
2 . We calculate the fidelity

of the dynamic iSWAP gate by considering the area error∫ t

0 	(s)ds = 3π
2 + δ. The corresponding lower bound of the
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FIG. 3. The lower bound of the fidelity for the holonomic CNOT

gate (blue curve) and that for the dynamic CNOT gate (green curve) vs
the area error δ. For δ � 0.152, the fidelity of the holonomic CNOT is
larger than the threshold 99.4% (marked by the red dotted line), but
it requires δ � 0.041 for the dynamic one.

gate fidelity is (see Appendix D)

Fd = 1 − δ2

2
. (27)

A holonomic CNOT gate can be constructed in ten steps,
including four Usz’s, four initializations, and two Hadamards.
With an iSWAP gate, a dynamic CNOT gate can be realized in
seven steps [28,29]. According to the balanced-noise model,
the lower bounds of the gate fidelities for holonomic and
dynamic CNOT gates are then given by (Fh)10 and (Fd )7,
respectively. Figure 3 shows the numerical results for both of
them. It is clear that the holonomic gate fidelity decreases more
slowly than the dynamic one when increasing δ, indicating that
the holonomic gate is more robust than the dynamic gate.

V. DISCUSSION AND CONCLUSION

We have proposed a method to implement surface codes
by harnessing quantum holonomy, where the holonomic gates
on target qubits are built with the help of auxiliary qubits.
After each gate operation, the measurement on the auxiliary
qubit can provide a heralding signal which can be used to
improve gate fidelity. In Ref. [26], the same Hamiltonian as in
Eq. (2) was used to achieve holonomic single-qubit gates. In
Ref. [27], the three-level systems, instead of two-level systems,
were used to realize the holonomic single-qubit gates, but only
two levels of each three-level system were used to construct the
holonomic two-qubit gates and the Hamiltonian used is also the
XY type. In our approach, all holonomic single- and two-qubit
gates are achieved by employing auxiliary qubits instead of
using three-level systems. Moreover, we focus on achieving
surface codes for fault-tolerant quantum computation via the
required holonomic single- and two-qubit gates, rather than the
holonomic quantum computation considered in, e.g., Refs. [26]
and [27].

Compared with the original surface-code lattice, our holo-
nomic scheme consumes more qubits to obtain the same code
distance. However, by paying such a price, our approach gains
a significant advantage: the holonomic two-qubit gate is much
more robust than the conventional dynamic two-qubit gate
achieved with the same interaction Hamiltonian. For example,
it follows from Fig. 3 that when δ = 0.041, the fidelity of the
dynamic CNOT gate just reaches the needed fidelity 99.4% of

the quantum gates for surface codes. However, for the same
value of δ, the fidelity of the corresponding holonomic CNOT

gate is about 99.9993%, which is much higher than 99.4%.
Moreover, even though this scheme requires an increase by
a factor of 4 of the number of physical qubits, we achieve a
reduction of error caused by imperfect control by three orders
of magnitude. This is advantageous for constructing a logical
qubit. Given that the logical error rate of a surface-code qubit
decreases roughly as ≈(p/pth)d , where d is the distance of the
code and pth ≈ 0.6% is the threshold, by reducing p to three
orders of magnitude less than pth, the required distance of the
code and hence the total number of physical qubits required
for a logical qubit will easily result in a net benefit.
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APPENDIX A: DERIVATION OF THE TIME-EVOLUTION
OPERATOR IN EQ. (3)

By setting the parameters J1 = J0(t) sin θ and J12 =
J0(t) cos θ , the Hamiltonian in Eq. (2) becomes

Ĥ1 = J0(t)

(
0 T

T † 0

)
(A1)

in the ordered basis {|00〉,|01〉,|10〉,|11〉}, where

T =
(

1
2 sin θe−iβ 0

cos θ 1
2 sin θe−iβ

)
(A2)

is a 2 × 2 time-independent matrix. Since T is invertible, there
is a unique singular value decomposition [26],

T = V0DV
†

1 , (A3)

with

V0 =
(

sin θ
2 e−iβ cos θ

2

eiβ cos θ
2 − sin θ

2

)
, (A4)

D =
(

cos2 θ
2 0

0 sin2 θ
2

)
, (A5)

and

V
†

1 =
(

cos θ
2 e−iβ sin θ

2

eiβ sin θ
2 − cos θ

2

)
. (A6)
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According to Eq. (A3), it is easy to check that

Ĥ n
1 = J n

0 (t)

(
0 V0D

nV
†

1

V1D
nV

†
0 0

)
(A7)

for odd n, and

Ĥ n
1 = J n

0 (t)

(
V0D

nV
†

0 0

0 V1D
nV

†
1

)
(A8)

for even n. Then, the time-evolution operator U1(t) generated
by Ĥ1(t) can be obtained as

U1(t) = T exp

{
−i

∫ t

0
Ĥ1(t ′)dt ′

}

=
∑

n=even

[ − i
∫ t

0 Ĥ1(t ′)dt ′
]n

n!
+

∑
n=odd

[ − i
∫ t

0 Ĥ1(t ′)dt ′
]n

n!

=
(

V0 cos(atD)V †
0 −iV0 sin(atD)V †

1

−iV1 sin(atD)V †
0 V1 cos(atD)V †

1

)
, (A9)

where T denotes the time ordering and at =
∫ t

0 J0(t ′)dt ′. This
is Eq. (3) in the main text.

APPENDIX B: ERROR SPREADING DUE
TO STOCHASTIC PAULI ERRORS

In the proposed holonomic surface codes, we introduce
auxiliary qubits to construct the required quantum gates, so
more physical qubits than in the dynamic surface codes are
consumed for a given code distance. Here we show how
stochastic Pauli errors spread in holonomic quantum gates.

1. Holonomic single-qubit gate

As shown in the main text, a holonomic single-qubit gate
on a target qubit is achieved with the help of an auxiliary
qubit. Thus, it involves two physical qubits. Also, one needs
to prepare the auxiliary qubit in |0〉 before implementing the
gate operation and then perform a measurement on it after the
gate operation. The evolution operator for these two physical
qubits reads

U1(L0,L1) = |0〉〈0| ⊗ V (L0) + |1〉〈1| ⊗ V (L1). (B1)

It is evident that if the auxiliary qubit is prepared in
the orthogonal state |1〉, a similar holonomic single-qubit
gate V (L1) on the target qubit is achieved. We assume
that a stochastic two-qubit Pauli error occurs, which af-
fects the two physical qubits and can be chosen from
{Iσx,Iσy,Iσz,σxI,σxσx,σxσy,σxσz, . . . ,σzσz} (15 errors in
total) [19]. When performing a measurement on the auxiliary
qubit, if an incorrect measurement result is reported, only the
target qubit is affected and the error is not spread to other
physical qubits. Therefore, local Pauli errors do not spread out
through a holonomic single-qubit gate.

2. Holonomic two-qubit gate

Also, as shown in the main text, a holonomic two-qubit gate
on two target qubits is achieved with the help of an auxiliary
qubit. In the proposed holonomic surface codes, the basic

M

B

D H

Usz

Usz

Usz

Usz

H

FIG. 4. Quantum circuit for a holonomic CNOT gate acting on
qubits M and D, where qubit B is initially prepared in |0〉. Here we
choose qubit D as the control qubit, so there are two Hadamard gates
applied before and after the four Usz gates. On the contrary, if we
choose qubit M as the control qubit, the two Hadamard gates should
be applied to qubit M .

holonomic two-qubit gate for constructing the needed CNOT

gate is

Usz =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞⎟⎟⎟⎠. (B2)

Unlike U1, it may spread errors because it is a conditional
two-qubit gate. Below we list how local Pauli errors are spread
by Usz:

Usz(σx ⊗ I )Usz = σz ⊗ σx,Usz(I ⊗ σx)Usz = σx ⊗ σz;

Usz(σz ⊗ I )Usz = I ⊗ σz,Usz(I ⊗ σz)Usz = σz ⊗ I ;

Usz(σy ⊗ I )Usz = σz ⊗ σy,Usz(I ⊗ σy)Usz = σy ⊗ σz. (B3)

The spread relation for any other two-qubit Pauli error can be
obtained from Eq. (B3) by using the decomposition

Usz(σα ⊗ σβ)Usz = Usz(σα ⊗ I )UszUsz(I ⊗ σβ)Usz. (B4)

Here we model errors as the perfect application of a gate
followed by one of the two-qubit Pauli errors with probability
p/15. Our strategy to study the error spread is to examine how
the Pauli errors caused by the auxiliary qubit spread in a single
holonomic CNOT gate in the first place, and then to trace them
through a whole stabilizer circuit, as shown in the main text.

To implement a holonomic CNOT gate on qubits M and D,
we need to perform the quantum circuit shown in Fig. 4. Below

M

a

cb

d

B

B

B

B

M

a

b c

d

(a) (b)

FIG. 5. (a) The stabilizer unit for a measurement qubit in holo-
nomic surface codes, where the four data qubits are denoted by a, b, c,
and d . Here qubit M is the measurement qubit and each qubit B is
an auxiliary qubit. (b) The stabilizer unit for a measurement qubit in
dynamic surface codes.
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TABLE I. This table shows how the error σB
α2(i) spreads through a stabilizer circuit, where σB

α2(i) (i = a,b,c,d) is the error occurring in the
CNOT (M,i) gate between the measurement qubit M and the ith data qubit. The four CNOT gates in the left column are implemented successively
in the stabilizer circuit and the corresponding accumulated errors at both the measurement qubit M and the ith data qubit are listed in the other
columns.

Qubits
Operations M a b c d

CNOT (M,a) σB
α2(a) σB

α2(a) I I I

CNOT (M,b) σB
α2(b)σB

α2(a) σB
α2(a) σB

α2(a) I I

CNOT (M,c) σB
α2(c)σB

α2(b)σB
α2(a) σB

α2(a) σB
α2(b)σB

α2(a) σB
α2(c)σB

α2(b)σB
α2(a) I

CNOT (M,d) σB
α2(d)σB

α2(c)σB
α2(b)σB

α2(a) σB
α2(a) σB

α2(b)σB
α2(a) σB

α2(c)σB
α2(b)σB

α2(a) σB
α2(d)σB

α2(c)σB
α2(b)σB

α2(a)

we examine how Pauli errors are spread through the circuit.
For convenience, we write the initial state of the qubits M,B,
and D as |ψM〉|0〉|ψD〉, where |ψM(D)〉 is the state of qubit
M(D). Note that we write the state of qubits M and D in such
a product state because an entangled state can be expressed in
a superposition of this form and it does not change our result.
The state with error after a given gate operation is listed below.

Step 1 (H ). (σD
α1)D|ψM〉|0〉|ψD

H 〉, where |ψD
H 〉 = H |ψD〉.

Here the Pauli operator σD
α1 in (·)D is the error followed by

implementing H on qubit D. The superscript of σD
α1 denotes

the error which is originally generated on qubit D and the
subscript αi implies that the error is the Pauli-α (α = x,y,z,0)
operator generated in the ith step (here, α = 0 corresponds
to the identity operator I ). When we write the state of the
three qubits, we always put the state of qubit M in the
first place and the state of qubit B at the second place,
and so on.

Step 2 (UMB
sz ). (σM

α2)M (σB
α2)B(σD

α1)D|0〉|ψM〉|ψD
H 〉.

Step 3 (UDM
sz ). (σM

α3σ
D
α1σ

M
2pσM

α2)M (σB
α2)B(σD

α3σ
M
α2σ

D
2pσD

α1)D
|ψD

H 〉|ψM〉|0〉, where σ i
2p is an operator depending on σ i

α2
(when α2 = x or y, 2p = z; otherwise, 2p = 0).

Step 4 (UBD
sz ). (σM

α3σ
D
α1σ

M
2pσM

α2)M (σB
α4σ

D
α3σ

M
α2σ

D
2pσD

α1σ
B
3pσB

α2)B
(σD

α4σ
B
α2σ

D
3pσD

α3σ
M
α2σ

D
2pσD

α1)D|ψD
H 〉|0〉|ψM〉.

Step 5 (UMD
sz ).

(σM
α5σ

D
α4σ

B
α2σ

D
3pσD

α3σ
M
α2σ

D
2pσD

α1σ
M
4pσM

α3σ
D
α1σ

M
2pσM

α2)M
(σB

α4σ
D
α3σ

M
α2σ

D
2pσD

α1σ
B
3pσB

α2)B
(σD

α5σ
M
α3σ

D
α1σ

M
2pσM

α2σ
D
4pσB

α2σ
D
3pσD

α3σ
M
α2σ

D
2pσD

α1)D
UMD

sz |ψD
H 〉|0〉|ψM〉.

Step 6 (H ).
(σM

α5σ
D
α4σ

B
α2σ

D
3pσD

α3σ
M
α2σ

D
2pσD

α1σ
M
4pσM

α3σ
D
α1σ

M
2pσM

α2)M
(σB

α4σ
D
α3σ

M
α2σ

D
2pσD

α1σ
B
3pσB

α2)B
(σD

α6σ
D
α5σ

M
α3σ

D
α1σ

M
2pσM

α2σ
D
4pσB

α2σ
D
3pσD

α3σ
M
α2σ

D
2pσD

α1)D
UMD

sz |ψD
H 〉|0〉|ψM

H 〉.
After applying the gates in this circuit, we find that qubit

B is not entangled with qubits M and D. This implies
that we can do a measurement on qubit B without dis-
turbing the other two qubits. After the measurement, the
Pauli errors (σB

α4σ
D
α3σ

M
α2σ

D
2pσD

α1σ
B
3pσB

α2) on qubit B are elim-
inated so that it can be reset to |0〉. On the other hand,
since we use an auxiliary qubit B, the error σB

α2 induced
by qubit B is spread to qubits M and D in a CNOT-gate
circuit.

Now we check how the error σB
α2 spreads through the whole

stabilizer circuit. For simplicity, we omit the Pauli errors
induced by qubits M and D because they also occur in the

circuit for dynamic surface codes. For the holonomic stabilizer
unit shown in Fig. 5(a), we list the corresponding error-spread
path in Table I.

The possibility to form an undetectable error (d = 4) with
the Pauli errors induced by four auxiliary qubits B’s can be
calculated as 12

15 × 3
15 × 3

15 × 3
15 = 4

625 , which is quite small.
Also, it is easy to check that the error-spread path just mimics
that for dynamic surface codes. Therefore, the implementation
of the holonomic stabilizer circuit does not spread Pauli errors
worse than the implementation of the dynamic one.

APPENDIX C: ROBUSTNESS TO STOCHASTIC
FLUCTUATIONS

In this section, we show that holonomic quantum gates
are robust against small stochastic fluctuations. Let us study
a quantum system described by a Hamiltonian Ĥ which
has eigenstates {|ψk〉}. When the considered computational
subspace experiences a nonadiabatic cyclic evolution in the
total Hilbert space of Ĥ , its evolution is described by [22,23]

U (t,0) = T e−i
∫ t

0 [G(s)+D(s)]ds, (C1)

where G(t) ≡ [Gkl(t)] and D(t) ≡ [Dkl(t)], with

Gkl(t) = −i〈ψk(t)| ∂

∂t
|ψl(t)〉,

Dkl(t) = 〈ψk(t)|Ĥ |ψl(t)〉, (C2)

are owing to the geometric and dynamic contributions, re-
spectively. In the ideal holonomic scheme, Ĥ = Ĥ1 and
Ĥ2 for the single- and two-qubit gates, which are properly
designed to have zero dynamic contribution Dkl(t) = 0. Below
we consider the case with stochastic fluctuations occurring
in the Hamiltonian of the system, i.e., H̃i(t) = Ĥi + δĤ ′

i (t)
(i = 1,2), where the small perturbation δĤ ′

i (t) contains the
stochastic fluctuations, and show that the holonomic gates are
robust against the small stochastic fluctuations.

(i) For the special case with δĤ ′
i (t) = δ(t)Ĥi , there is

H̃i(t) = [1 + δ(t)]Ĥi . The corresponding dynamic contribu-
tion remains equal to zero because

Dkl(t) = 〈ψk(t)|H̃i(t)|ψl(t)〉
= [1 + δ(t)]〈ψk(t)|Ĥi |ψi(t)〉 = 0, (C3)

indicating that the stochastic fluctuations do not give rise to
dynamic contributions, and the system evolves fully quantum
holonomically. Meanwhile, the fluctuations do make the real
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cyclic path deviate a bit from the ideal cyclic path because

Gkl(t) = −i〈ψk(t)| ∂

∂t
|ψl(t)〉

= −〈ψk|Ũ †(t)H̃ (t)Ũ (t)|ψl〉, (C4)

where

Ũ (t) = T e−i
∫ t

0 H̃ (s)ds . (C5)

However, owing to the small stochastic fluctuations, the de-
viation along the whole cyclic path is averaged by the path
integration. Therefore, the net influence of the fluctuations can
be ignored if the time used for the cyclic evolution is long.

(ii) The general case is [δĤ ′
i (t),Ĥi] �= 0. In this case, Dkl(t)

does not vanish because the qubit subspace is no longer a
dark-invariant subspace for H̃i . However, for small stochastic
fluctuations, the deviation of Dkl(t) from 0 is also small. Then,
we can write the evolution operator as

U (t,0) =
∞∏

n=1

e−i
∫ tn+1
tn

[G(s)+D(s)]ds

=
∞∏

n=1

e−i
∫ tn+1
tn

G(s)dse−i
∫ tn+1
tn

D(s)ds

×e− i
2

∫ tn+1
tn

∫ tn+1
tn

[G(s),D(s ′)]dsds ′+···, (C6)

where we have used the Baker-Campbell-Hausdorff formula
[30]. When the stochastic fluctuations are small enough,
− i

2

∫ tn+1

tn

∫ tn+1

tn
[G(s),D(s ′)]dsds ′ + · · · is a higher-order small

term and U (t,0) can be approximately written as

U (t,0) ≈
∞∏

n=1

e−i
∫ tn+1
tn

G(s)dse−i
∫ tn+1
tn

D(s)ds . (C7)

Now we are going to sort out the geometric evolutions from
the dynamic ones. For any two adjoining sections n = j and
n = j + 1,

e
−i

∫ tj+1
tj

G(s)ds
e
−i

∫ tj+1
tj

D(s)ds
e
−i

∫ tj+2
tj+1

G(s)ds
e
−i

∫ tj+2
tj+1

D(s)ds

= e
−i

∫ tj+1
tj

G(s)ds
e
−i

∫ tj+2
tj+1

G(s)ds
e
−i

∫ tj+1
tj

D(s)ds

× e
−i

∫ tj+2
tj+1

∫ tj+1
tj

[G(s),D(s ′)]dsds ′+···
e
−i

∫ tj+2
tj+1

D(s)ds

≈ e
−i

∫ tj+1
tj

G(s)ds
e
−i

∫ tj+2
tj+1

G(s)ds
e
−i

∫ tj+1
tj

D(s)ds

× e
−i

∫ tj+2
tj+1

D(s)ds
, (C8)

where we have again ignored the higher-order small term.
When the stochastic fluctuations are small enough, following
the same procedure, we can approximately write the evolution
operator as

U (t,0) =
∞∏

n=1

e−i
∫ tn+1
tn

G(s)dse−i
∫ tn+1
tn

D(s)ds

≈
∞∏

n=1

e−i
∫ tn+1
tn

G(s)ds

∞∏
n=1

e−i
∫ tn+1
tn

D(s)ds

= Pe−i
∮

G(s)dsT e−i
∫ t

0 D(s)ds, (C9)

where P denotes the path-integral ordering. While Dkl(t) = 0
in the ideal holonomic scheme, the real dynamic contributions

Dkl(t) become

Dkl(t) = 〈ψk(t)|[Ĥi + δĤ ′
i (t)]|ψl(t)〉

= 〈ψk(t)|δĤ ′
i (t)|ψl(t)〉 = 〈ψk|δÂ(t)|ψl〉, (C10)

with

δÂ(t) = Ũ †(t)δĤ ′
i (t)Ũ (t). (C11)

Because δĤ ′
i (t) fluctuates stochastically around zero, Dkl(t)

behave like errors which also fluctuate stochastically around
zero. Therefore, the dynamical evolution T e−i

∫ t

0 D(s)ds is
related to the average of stochastic errors over time, which
goes to zero (i.e., the dynamical evolution is reduced to an
identity operator) for a long-time interval used for the whole
cyclic path. For the geometric evolution Pe−i

∮
G(s)ds , owing

to the stochastic fluctuation δĤ ′
i (t), the real path stochastically

fluctuates around the ideal loop with δĤ ′
i (t) = 0. However, the

deviation from the ideal geometric evolution is averaged by the
path integration along the whole cyclic path, which also goes to
zero when using a long-time interval for the cyclic evolution.

To explicitly show that the stochastic Pauli errors considered
in the previous section can be regarded as special cases of
the stochastic fluctuations, let us consider, for example, the
Hamiltonian in Eq. (2), i.e.,

Ĥ1 = J1

2

(
cos βσ 1

x + sin βσ 1
y

) + J12

2

(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
.

(C12)

When stochastic fluctuations occur, Ĥ1 becomes H̃1(t) =
Ĥ1 + δĤ ′

1(t), where the fluctuation term can be generally
written as

δĤ ′
1(t) = δ

(x)
1 (t)σ 1

x + δ
(y)
1 (t)σ 1

y + δ
(x)
12 (t)σ 1

x σ 2
x + δ

(y)
12 (t)σ 1

y σ 2
y .

(C13)

The evolution operator of the system is

Ũ1(t) = T e−i
∫ t

0 [Ĥ1(s)+δĤ ′
1(s)]ds . (C14)

When the stochastic fluctuation δĤ ′
1(t) is small enough, we

can write the evolution operator as

Ũ1(t) ≈ T e−i
∫ t

0 Ĥ1(s)dsT e−i
∫ t

0 δĤ ′
1(s)ds

≈ T e−i
∫ t

0 Ĥ1(s)ds

[
1 − i

∫ t

0
δĤ ′(s)ds

]
. (C15)

The first term in Eq. (C15) corresponds to the ideal unitary
evolution of the system U1(t) = T e−i

∫ t

0 Ĥ1(s)ds , and the second
term corresponds to the errors due to δĤ ′(t). For instance,
when U1(t) = σ 1

x , the second term in Eq. (C15) becomes

−iσ 1
x

∫ t

0
δĤ ′(s)ds = −i

∫ t

0
δ

(x)
1 (s)ds + σ 1

z

∫ t

0
δ

(y)
1 (s)ds

− iσ 2
x

∫ t

0
δ

(x)
12 (s)ds + σ 1

z σ 2
y

∫ t

0
δ

(y)
12 (s)ds.

(C16)

It gives rise to the Pauli error σz ⊗ I on qubit 1, the Pauli
error I ⊗ σx on qubit 2, and the Pauli error σz ⊗ σy on both
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qubit 1 and qubit 2. When higher-order terms in the expansion
of T e−i

∫ t

0 δĤ ′
1(s)ds are included, each of them, together with

U1(t) = σ 1
x , will also give rise to the Pauli errors of the types

σα ⊗ I, I ⊗ σβ , and σα ⊗ σβ , where α,β = x, y, or z.

APPENDIX D: FIDELITIES OF THE HOLONOMIC
AND DYNAMIC TWO-QUBIT GATES

As explained above, holonomic quantum gates are robust
against small stochastic fluctuations in the Hamiltonian of the
system. This is a distinct advantage of the quantum-holonomy
scheme. Below we further consider the area error due to the
imperfect control of the parameters in the Hamiltonian because
it may now become the main source of errors in the holonomic
quantum gates.

1. Dynamic two-qubit gate

For a dynamic two-qubit iSWAP gate built on a pair of
measurement and data qubits coupled directly via an XY -type
interaction, the Hamiltonian reads

Ĥd (t) = 	(t)

2

(
σM

x σD
x + σM

y σD
y

)
. (D1)

By turning on Ĥd for a time τ so that
∫ τ

0 	(s)ds = 3π
2 , the

corresponding time-evolution operator turns out to be an iSWAP

gate,

UiSWAP = e−i
∫ τ

0 Ĥd (t)dt =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

⎞⎟⎟⎟⎠, (D2)

in the ordered basis {|00〉,|01〉,|10〉,|11〉}. In the presence of
an area error δ, we replace

∫ τ

0 	(s)ds = 3π
2 with

∫ τ ′

0 	(s)ds =
3π
2 + δ. With respect to the iSWAP gate in Eq. (D2), the

corresponding gate with this area error can be written as

Ud (τ ′) =

⎛⎜⎜⎜⎝
1 0 0 0

0 sin δ i cos δ 0

0 i cos δ sin δ 0

0 0 0 1

⎞⎟⎟⎟⎠. (D3)

For a given initial state |ψ〉i = a00|00〉 + a01|01〉 +
a10|10〉 + a11|11〉, where a00,a01,a10, and a11 are complex
numbers that satisfy the normalization condition, when the
iSWAP gate in Eq. (D2) is applied, the ideal final state can be
obtained as

|ψ (i)〉f = a01|00〉 + ia10|01〉 + ia01|10〉 + a11|11〉. (D4)

Given the same initial state, when the corresponding gate in
Eq. (D3) is applied, the real final state is given by

|ψ (r)〉f = a00|00〉 + (a01 sin δ + ia10 cos δ)|01〉
+ (ia01 cos δ + a10 sin δ)|10〉 + a11|11〉. (D5)

Therefore, the fidelity between the ideal and real final states
can be obtained as

F ≡ |〈ψ (i)|ψ (r)〉f | = ∣∣1 − 2 sin2 δ

2
(|a01|2 + |a10|2)

− i sin δ(a∗
01a10 + a01a

∗
10)

∣∣. (D6)

Note that |a01|2 + |a10|2 ∈ [0,1]. When a01 = 1 and a10 = 0,
the fidelity reaches its lower bound that reads

Fd = 1 − δ2

2
, (D7)

up to second order in sin δ.

2. Holonomic single-qubit gate

In our approach, a holonomic single-qubit gate involves
two physical qubits, with one designed as the target qubit
and the other as the auxiliary qubit. Thus, its fidelity can be
compared directly with that of a dynamic two-qubit gate. As
shown in the main text, one needs to turn Ĥ1 on for some
time t to realize the holonomic single-qubit gate, so that the
cyclic condition can be satisfied, i.e., at cos2 θ

2 = (2n + 1)π
and at sin2 θ

2 = 2nπ . Also, the auxiliary qubit should be
initially prepared in the state |0〉. In the presence of an area
error δ, the real cyclic condition becomes a′

t cos2 θ
2 = (2n +

1)π + δ cos2 θ
2 and a′

t sin2 θ
2 = 2nπ + δ sin2 θ

2 . The matrix
elements in the evolution operator U1 [see Eq. (3)] are now
given by

V0 cos(a′
tD)V †

0 =
(− sin2 θ

2 cos
(
δ cos2 θ

2

) + cos2 θ
2 cos

(
δ sin2 θ

2

) − 1
2e−iβ sin θ

[
cos

(
δ cos2 θ

2

) + cos
(
δ sin2 θ

2

)]
− 1

2eiβ sin θ
[

cos
(
δ cos2 θ

2

) + cos
(
δ sin2 θ

2

)] − cos2 θ
2 cos

(
δ cos2 θ

2

) + sin2 θ
2 cos

(
δ sin2 θ

2

)),

V0 sin(a′
tD)V †

1 =
(

1
2 sin θ

[
sin

(
δ sin2 θ

2

) − sin
(
δ cos2 θ

2

)]
e−iβ

[
sin2 θ

2 sin
(
δ cos2 θ

2

) + cos2 θ
2 sin

(
δ sin2 θ

2

)]
−eiβ

[
sin2 θ

2 sin
(
δ sin2 θ

2

) + cos2 θ
2 sin

(
δ cos2 θ

2

)]
1
2 sin θ

[ − sin
(
δ cos2 θ

2

) + sin
(
δ sin2 θ

2

)] )
,

V1 cos(a′
tD)V †

1 =
(− cos2 θ

2 cos
(
δ cos2 θ

2

) + sin2 θ
2 cos

(
δ sin2 θ

2

) − 1
2e−iβ sin θ

[
cos

(
δ cos2 θ

2

) + cos
(
δ sin2 θ

2

)]
− 1

2eiβ sin θ
[

cos
(
δ cos2 θ

2

) + cos
(
δ sin2 θ

2

)] − sin2 θ
2 cos

(
δ cos2 θ

2

) + cos2 θ
2 cos

(
δ sin2 θ

2

)). (D8)
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Assume that the initial state of the two physical qubits is (a|0〉 + b|1〉) ⊗ |0〉, where |a|2 + |b|2 = 1 and the auxiliary qubit is in
the ground state |0〉. With U1 applied to these two qubits, the real final state reads

|ψ (r)
1 〉 =

{
a

[
− sin2 θ

2
cos

(
δ cos2 θ

2

)
+ cos2 θ

2
cos

(
δ sin2 θ

2

)]
− b

2
e−iβ sin θ

[
cos

(
δ cos2 θ

2

)
+ cos

(
δ sin2 θ

2

)]}
|00〉

−
{

a

2
eiβ sin θ

[
cos

(
δ cos2 θ

2

)
+ cos

(
δ sin2 θ

2

)]
− b

[
cos2 θ

2
cos

(
δ cos2 θ

2

)
− sin2 θ

2
cos

(
δ sin2 θ

2

)]}
|01〉

− i

{
a

2
sin θ

[
sin

(
δ sin2 θ

2

)
− sin

(
δ cos2 θ

2

)]
− be−iβ

[
sin2 θ

2
sin

(
δ sin2 θ

2

)
+ cos2 θ

2
sin

(
δ cos2 θ

2

)]}
|10〉

− i

{
aeiβ

[
sin2 θ

2
sin

(
δ cos2 θ

2

)
+ cos2 θ

2
sin

(
δ sin2 θ

2

)]
+ b

2
sin θ

[
− sin

(
δ cos2 θ

2

)
+ sin

(
δ sin2 θ

2

)]}
|11〉.

(D9)

Without the area error (δ = 0), the ideal final state is∣∣ψ (i)
1

〉 = (a cos θ − be−iβ sin θ )|00〉
− (aeiβ sin θ + b cos θ )|01〉. (D10)

For the holonomic Hadamard gate, θ = π
4 and β = 0. The

fidelity of this holonomic single-qubit gate can be obtained
as

F ≈ 1 − δ4

32
(1 − |ab|). (D11)

In particular, when |a| = |b| = 1√
2
, the fidelity reaches its

lower bound,

Fh = 1 − δ4

64
, (D12)

which is much better than the fidelity of the holonomic two-
qubit gate given below [see Eq. (D18)].

3. Holonomic two-qubit gate

In contrast to the dynamic iSWAP gate, when the holonomic
Usz gate in Eq. (4) is applied, the initial state |ψ〉i ⊗ |0〉 of the
three qubits, where |0〉 is the state of the auxiliary qubit, is
transformed to

|ψ (i)〉f = (a00|00〉 + a10|01〉 + a01|10〉 − a11|11〉) ⊗ |0〉.
(D13)

When including the area error δ, the cyclic condition∫ τ

0 	(s)ds = π becomes
∫ τ ′

0 	(s)ds = π + δ. Given the same
initial state |ψ〉i ⊗ |0〉, the real final state of the three qubits
can be obtained as

|ψ (r)〉f = |ψ〉0 ⊗ |0〉 + i sin δ|ψ〉1 ⊗ |1〉, (D14)

where

|ψ〉0 = a00|00〉 +
(

a01 sin2 δ

2
+ a10 cos2 δ

2

)
|01〉

+
(

a10 sin2 δ

2
+ a01 cos2 δ

2

)
|10〉 − a11 cos δ|11〉,

|ψ〉1 =
√

2

2
(a01 + a10)|00〉 +

√
2

2
a11|10〉 +

√
2

2
a11|01〉.

(D15)

Since δ is a small quantity, we replace cos δ with 1 − δ2/2
and sin δ with δ (up to second order). Thus, the fidelity of the
considered holonomic two-qubit gate can be written as

F = 1 − αδ2

1 − αδ2 + αδ4
, (D16)

where

α = 1
2 (|a01|2 + |a10|2 + a∗

01a10 + a01a
∗
10). (D17)

It is clear that F decreases when increasing α. Also, it is
important to note that α ∈ [0,1] because a01 and a10 must
satisfy the normalization condition. Therefore, the lower bound
of the fidelity for the holonomic gate Usz is given by

Fh = 1 − δ4

1 − δ2 + δ4
≈ 1 − δ4, (D18)

which corresponds to α = 1 (a01 = a10 =
√

2
2 ) in Eq. (D16).

APPENDIX E: TWO DIFFERENT MEASUREMENTS
ON THE AUXILIARY QUBIT

1. Measurement with σz

Owing to the area error δ, the two target qubits become
entangled with the auxiliary qubit in the real final state |ψ (r)〉f
given in Eq. (D14). Therefore, we need to implement a
measurement on the auxiliary qubit, so as to reset the auxiliary
qubit to its ground state |0〉. If we implement this measurement
with σz, there are two possible outcomes. When |0〉 is obtained
for the auxiliary qubit, the state of the two target qubits is
collapsed to |ψ〉0 with a very high probability, while the state
of the two target qubits is collapsed to |ψ〉1 with a very
low probability when |1〉 is obtained for the auxiliary qubit.
Although |ψ〉0 ⊗ |0〉 deviates a bit from the ideal final state
|ψ (i)〉f , it is perfectly correctable by surface codes, as long as
δ is small enough. Here, |ψ〉1 ⊗ |1〉 is free of the area error δ,
but we need to have it recovered to |ψ (i)〉f .

For convenience, we write the coefficients aij of the
initial state |ψ〉i ≡ a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉) as
|aij |eiφij . Our strategy is to complete the state recovery task for
|ψ〉1 in two steps (see Fig. 6): First, we recover the population
of each basis |ij 〉, so as to transfer |ψ〉1 to |ψ̃〉1 ≡ |a00||00〉 +
|a10||01〉 + |a01||10〉 − |a11||11〉. Then, we recover the phase

022335-10
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(a)

(b)

(c)

FIG. 6. Quantum circuit for the state recovery of |ψ〉1 to |ψ〉f =
a00|00〉 + a10|01〉 + a01|10〉 − a11|11〉. (a) The recovery is divided
into two steps, i.e., the population recovery and the phase recovery,
both of which are also accomplished with holonomic gates. (b)
Explicit circuit for the population recovery. (c) Explicit circuit for
the phase recovery.

factors eiφij by converting |ψ̃〉1 to |ψ〉f ≡ a00|00〉 + a10|01〉 +
a01|10〉 − a11|11〉. Here we will only use the holonomic single-
and two-qubit gates achieved in the main text for these two
steps.

The procedures for population recovery are listed as follows
[see Fig. 6(b)]:

(i) We perform a holonomic two-qubit gate,

U2(θ1) = I00 ⊕
(

cos θ1 − sin θ1

− sin θ1 − cos θ1

)
⊕ −I11,

where θ1 = 5
4π . After this, |ψ〉1 is transformed to

a01 + a10

a
|00〉 +

√
2a11

a
|10〉, (E1)

where a =
√

|a01 + a10|2 + 2|a11|2 is a normalization factor
and we write a01 + a10 = |a01 + a10|eiφ01+10 .

(ii) We perform a single-qubit gate,

U1 =
(

e
i
2 (φ11−φ01+10) 0

0 e− i
2 (φ11−φ01+10)

)

×
(

cos θ sin θei(−φ11+φ01+10)

sin θei(φ11−φ01+10) − cos θ

)
(E2)

on the first target qubit, where θ = arccos(|a00|) +
arctan (

√
2|a11|

|a01+a10| ). Then, the state is transformed to

|a00||00〉 +
√

|a01|2 + |a10|2 + |a11|2|10〉. (E3)

(iii) We perform another two-qubit gate,

U2(θ2) = I00 ⊕
(

cos θ2 − sin θ2

− sin θ2 − cos θ2

)
⊕ −I11,

where θ2 = π + arctan (
√

|a01|2+|a10|2
|a11| ). The state is transformed

to

|a00||00〉 +
√

|a01|2 + |a10|2|01〉 + |a11||10〉. (E4)

(iv) We perform a CNOT gate on the two target qubits, which
transforms the state to

|a00||00〉 +
√

|a01|2 + |a10|2|01〉 + |a11||11〉. (E5)

(v) We perform a two-qubit gate,

U2(θ3) = I00 ⊕
(

cos θ3 − sin θ3

− sin θ3 − cos θ3

)
⊕ −I11,

where θ3 = − arctan ( |a01|
|a10| ). The state is then transformed to

|ψ̃〉1 = |a00||00〉 + |a10||01〉 + |a01||10〉 − |a11||11〉. (E6)

The procedures for phase recovery are listed as follows [see
Fig. 6(c)]:

(i) For convenience, we define

m = φ11 + φ01

2
− φ0,

n = φ11 − φ01

2
, (E7)

p = φ01 + φ10 − 2φ0,

where 4φ0 = φ00 + φ01 + φ10 + φ11. We perform single-qubit
phase-shift gates,

R1 =
(

e−im 0

0 eim

)
, R2 =

(
e−i(n+ p

2 ) 0

0 ei(n+ p

2 )

)
,

on target qubits 1 and 2, respectively. After this, |ψ̃〉1 is
transformed to

e−i(m+n+ p

2 )|a00||00〉 + ei(−m+n+ p

2 )|a01||01〉
+ ei(m−n− p

2 )|a10||10〉 + ei(m+n+ p

2 )|a11||11〉. (E8)

(ii) We perform a sequence of CNOT, R′
2, and CNOT gates,

where

R′
2 =

(
e−i

p

2 0

0 ei
p

2

)
is a phase-shift gate on the target qubit 2. The state is
transformed to

|ψ〉f = a00|00〉 + a10|01〉 + a01|10〉 − a11|11〉, (E9)

up to a global phase e−iφ0 . Then, we recover |ψ (i)〉f ≡ |ψ〉f ⊗
|0〉 from |ψ〉1 ⊗ |1〉, by mapping |1〉 of the auxiliary qubit to
|0〉 via a holonomic single-qubit rotation.

Note that several procedures are needed when recovering
|ψ (i)〉f from |ψ〉1 ⊗ |1〉, but actually these will rarely be used
because |ψ (r)〉f in Eq. (D14) collapses to the state |ψ〉1 ⊗ |1〉
with very low probability when implementing a measurement
on the auxiliary qubit with σz.

2. Measurement with σx

The real final state in Eq. (D14) can also be rewritten as

|ψ (r)〉f = 1√
2

[(|ψ〉0 + i sin δ|ψ〉1) ⊗ |+〉

+ (|ψ〉0 − i sin δ|ψ〉1) ⊗ |−〉], (E10)

where |+〉 and |−〉 are two eigenstates of σx , corresponding
to the eigenvalues +1 and −1, respectively. By implement-
ing a measurement on the auxiliary qubit with σx , the real
final state collapses to |ψ (r)〉f = 1√

2
(|ψ〉0 ± i sin δ|ψ〉1) ⊗

|±〉. Here each of the states |±〉 of the auxiliary qubit can
be reset to |0〉 by a single-qubit rotation based on the outcome.
When this is performed, the resulting final state is |ψ (r)〉f =
(|ψ〉0 ± i sin δ|ψ〉1) ⊗ |0〉, which is close to the ideal final state
in Eq. (D13) for a small area error δ.
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Note that the module of the wave function |ψ〉0 ± i sin δ|ψ〉1 is

||ψ〉0 ± i sin δ|ψ〉1| = a00a
∗
00 + i

√
2

2
sin δa00(a∗

01 + a∗
10) − i

√
2

2
sin δa∗

00(a01 + a10) + 1

2
sin δ2(a01 + a10)(a∗

01 + a∗
10)

+
(

a01 sin2 δ

2
+ a10 cos2 δ

2

)(
a∗

01 sin2 δ

2
+ a∗

10 cos2 δ

2

)
+ i

√
2

2
sin δa11

(
a∗

01 sin
δ

2
+ a∗

10 cos
δ

2

)
− i

√
2

2
sin δa∗

11

(
a01 sin

δ

2
+ a10 cos

δ

2

)
+ 1

2
sin2 δa11a

∗
11

+
(

a10 sin2 δ

2
+ a01 cos2 δ

2

)(
a∗

10 sin2 δ

2
+ a∗

01 cos2 δ

2

)
+ i

√
2

2
sin δa11

(
a∗

10 sin
δ

2
+ a∗

01 cos
δ

2

)
− i

√
2

2
sin δa∗

11

(
a10 sin

δ

2
+ a01 cos

δ

2

)
+ 1

2
sin2 δa11a

∗
11 + a11a

∗
11 cos2 δ. (E11)

After the measurement on the auxiliary qubit with σx , the fidelity of the two-qubit gate can be written as

F = |〈ψ (i)|(|ψ〉0 ± i sin δ|ψ〉1) ⊗ |0〉|
||ψ〉0 ± i sin δ|ψ〉1|

= 1

||ψ〉0 ± i sin δ|ψ〉1|
[
a00a

∗
00 + sin2 δ

2
(a∗

10a01 + a∗
01a10) + cos2 δ

2
(a∗

10a10 + a∗
01a01) + a∗

11a11 cos δ

+ i
1√
2

sin δ(a∗
00a01 + a∗

00a10 + a∗
10a11 + a∗

01a11)

]
. (E12)

As an estimation, we consider the case with real aij ’s and then
have

F = 1 − δ4

24 |a01a10|
1 − 5

24δ4(a2
10 + a2

01 + 2a10a01)
, (E13)

where both sin δ ≈ δ and cos δ ≈ 1 − δ2

2 are taken. Using the
lower bound condition a01 = a10 = 1√

2
, we obtain the lower

bound of the two-qubit gate fidelity,

Fh = 1 − δ4

48

1 − 5
12δ4

≈ 1 − 19

48
δ4, (E14)

which is larger than Fh = 1 − δ4

1−δ2+δ4 ≈ 1 − δ4 in Eq. (D18).
Thus, this measurement improves the fidelity of the two-qubit
gate.
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