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Abstract 6 

Railway track is one of the most important part of the railway system, and its condition monitoring 7 

is essential to ensure the safety of trains and reduce maintenance cost. An adaptive regularization 8 

approach is adopted in this paper to identify the parameters of the railway ballasted track system 9 

(substructure) from dynamic measurements on the in-service vehicles. The vehicle-track interaction 10 

system is modelled as a discrete spring-mass model on Winkler elastic foundation. Damage is 11 

defined as the stiffness reduction of the track due to foundation settlement, loosening in the rail 12 

fastener and lack of compaction of the ballast. Accelerometers are installed on the underframe of the 13 

train to capture the dynamic responses from which the interaction forces between the vehicle and 14 

the railway track are determined. The damage of the railway track can be detected via changes in 15 

the interaction force. Numerical results show that the proposed approach can identify all stiffness 16 

parameters successfully at a low moving speed and at a high sampling rate when measurement 17 

noise is involved.  18 

Keywords: rail substructure; adaptive regularization; time domain; interaction force; moving 19 
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Introduction 31 

Many countries have developed high-speed railroads to connect major cities especially in China. 32 

The unevenness of the railway track is important for the safety of the railway due to the high speed 33 

of the vehicle. Regular maintenance of the railway tracks has become a necessity, and monitoring 34 

on the conditions of the railway track network is conducted for early detection of damages. Some 35 

direct methods have been developed using impact hammer testing (Lam et al.,2012) and the 36 

Bayesian model updating has been used for the identification of the rail-sleeper-ballast system  37 

(Lam et al., 2017). This assessment of track is, however, expensive and difficult with the hammer 38 

impact test, and an efficient and economic inspection method is strongly in need.  39 

Several research groups have studied the use of response from the passing vehicle instead 40 

of the response of the structure for the assessment of irregularities in the track. This indirect method 41 

is more convenient and cheaper than the direct method. Ishii et al. (2006) developed a low-cost 42 

railway monitoring system with the accelerometer installed directly on the floor of the train. The 43 

field measurements are capable of monitoring the railway track irregularities because the vehicle 44 

acceleration and track irregularity has a close correlation. Mizuno et al. (2008) used the same 45 

mobile sensing unit in an experiment, and the results indicated that the critical acceleration response 46 

on the floor of a passenger vehicle is a promising tool to capture the railway track disorders. Weston 47 

et al. (2007) installed the sensors on the bogie of an in-service vehicle to estimate the mean track 48 

alignment and lateral track irregularity. With and Bodare (2009) developed a rolling stiffness 49 

measurement vehicle to investigate the track condition and the point flexibility/stiffness of the 50 

track-embankment-subsoil system could be obtained in the frequency domain. More encouraging 51 

results can also be obtained by simultaneously measuring the force applied to an axle of the 52 

measuring vehicle and the resulting acceleration response. Cantero and Basu (2015) used the 53 

vertical accelerations of a moving train to detect local track irregularities. Isolated irregularities 54 

caused by infrastructural damage can be accurately identified with a wavelet-based automatic 55 

assessment methodology. Salva dor et al. (2016) located and distinguished some track vibration 56 
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modes and singularities by the short Fourier transform of axle box accelerations. Lederman et al. 57 

(2017) presented a data-driven approach to monitor the track condition using the dynamic response 58 

of a passing train. Four features in the measured signal, i.e. the temporal frequency, spatial 59 

frequency, spatial domain and signal energy were used to detect the changes of the track. Oregui et 60 

al. (2017) monitored the bolt tightness conditions of rail joints by comparing the scalograms of 61 

measured axle box accelerations. Li et al. (2017) presented an overview of these signal-based track 62 

singularity monitoring techniques. It should be noted that all the above studies are not related to the 63 

assessment of the track and its substructure.  64 

In the forward analysis of a train-track system, most researchers used the differential equation 65 

to derive the equation of motion of the rail substructures (Zhai and Cai, 1997; Uzzal et al., 2008; 66 

Mohammadzadeh et al., 2014 ) with the modal decomposition method. The number of mode shapes 67 

is required to be greater than or equal to 60 for good convergence results. All the initial and 68 

boundary conditions are assumed zero or stationary. These assumptions, however, result in incorrect 69 

solution in the first and last few seconds of the time history.  70 

The railway substructures includes the rail fasteners, ballast and the foundation, and their 71 

condition assessment using the vehicle response will be studied. The rail is modeled as an infinitely 72 

long beam on discrete springs. Since the interaction forces exist at the wheel-rail contact points, the 73 

equations of motion of the vehicle and the track system are coupled, and it becomes possible to 74 

assess the conditions of the railway substructures by monitoring the vibration response of the 75 

vehicle. The vehicle moving on the rail track can be idealized as a series of lumped masses 76 

supported by the suspension systems (Yang and Yau, 1997). Only a half model of the vehicle is 77 

considered as the rail deformation and wheel-rail contact forces generated by the moving wheel in 78 

the two halves of the vehicle are very close to each other (Savini, 2010). The accelerometers located 79 

on the axle and body of the moving vehicle collect dynamic responses of the vehicle from which the 80 

interaction forces can be easily obtained. This time dependent interaction force is noted to be more 81 

sensitive to local system changes than other responses (Law et al., 2010). 82 



 

 4 

This paper addresses the more practical problem of condition assessment of the track and its 83 

substructure whereby the unknown parameters to be identified are plenty and their damage effects 84 

are coupling with each other. The loosening of rail fasteners, the lack of compaction of ballast and 85 

settlement of the foundation are all modelled as stiffness change in a component of the track 86 

substructure. The Winkler elastic foundation (Vale and Calcada, 2013) is used to model the track 87 

foundation. The model on the track and its substructure is used for the first time in the system 88 

identification of the track system. Adaptive Tikhonov regularization (Li and Law, 2010) is adopted 89 

in the solution of the inverse identification problem. Numerical examples show that all these 90 

stiffness parameters can be identified satisfactory with a slow moving vehicle and a higher sampling 91 

rate with or without noise in the measurement.  92 

Vehicle and track interaction model 93 

Vehicle model 94 

A train vehicle and rail track interactive system is shown in Figure 1 (Zhai and Cai, 1997). The train 95 

travels over the track with a constant speed v. It is modeled as a series of sprung masses supported 96 

by the suspension systems (Yang and Yau, 1997). The train vehicle consist of one-axle trailer with 97 

the bogie mass 1vm  and wheel mass 2vm  connected to the suspension damper vc  and a 98 

suspension spring vk . The rolling and pitching motions of the vehicle are ignored in this quarter 99 

vehicle model. The equation of motion of the vehicle can thus be written as 100 

 1 1 1 2 1 2( ) ( ( ) ( )) ( ( ) ( )) 0v v v v v v v vm y t c y t y t k y t y t+ − + − =     (1) 101 

 0)())()(())()(()( 121222 =−+−+−+ vcvvvvvvvv FtPtytyktytyctym    (2) 102 

where 1( )v ty  and 2 ( )v ty  are the motion of vehicle bogie and wheel, respectively. )(tPc  is the 103 

wheel-rail contact force. 1 2F ( )v v vm m g= +  is the mass of the train, g  is the acceleration of 104 

gravity. It is assumed that the wheel and rail contact point lies on the vertical centerline of the wheel. 105 

Substituting Eq. (1) into Eq. (2), the contact force can be written as  106 

 )()()( 2211 tymtymFtP vvvvvc  −−=    (3) 107 
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Two accelerometers located on the bogie and wheel of the vehicle collect the corresponding 108 

vertical acceleration responses.  109 

Eqs. (1) and (2) can be combined as  110 
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vcv FtPtP +−= )()( . Then, Eq. (4) can be rewritten as 113 

 )()()()( tPttt vvvvvvv DyKyCyM =++     (5) 114 

where [ ]0 1= TD  is the mapping vector. 115 

The contact force between the wheel and the track is modeled with the linear Hertzian model 116 

which consists of the wheel and rail contact through a single linear spring. It can be expressed as 117 

(Vale and Calcada, 2013)  118 
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where HK  is the wheel and rail contact coefficient. ( )Z tδ  is the elastic wheel deformation in the 120 

vertical direction as 121 

 2( ) ( ) ( , ) ( )v rZ t y t y x t r tδ = − −    (7) 122 

where ( , )ry x t  is the vertical rail deflections. ( )r t  is the irregularities component of the wheel 123 

and rail contact surface. Many types of geometric irregularities can be adopted. This paper 124 

considers the effect of two most influential factors, i.e. the wheel flat and the rail corrugation. The 125 

wheel flat which enters the contact area between the wheel and the rail can be expressed as a cosine 126 

function (Wu and Thompson, 2002) as 127 

 1 2 ( )( ) 1 cos( )
2 f

f

z tr t D
L
π 

= − 
  

 (8a) 128 

where fD  is the flat depth, fL  the length of the flat, ( )z t  is the longitudinal position of the 129 
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contact point on the rail. If the train speed is high, loss of contact may occur with the existence of 130 

wheel flat. 131 

A sine function is used to represent a rail corrugation as (Savini, 2010) 132 

 2 ( )( ) sin x tr t A
L

π =  
 

 (8b) 133 

where A is the irregularity amplitude and L is the total length travelled by the vehicle in the 134 

analysis.  135 

The Track Model 136 

The rail in the track is modeled as an infinitely long beam on a series of discrete springs, dampers 137 

and masses. The rail is discretely supported on the track substructure consisting of the sleepers, 138 

ballast and the foundation elements as shown in Figure 1 (Zhai and Cai, 1997; Uzzal et al., 2008) . 139 

These three components form one unit of track substructure which connects to adjacent unit via the 140 

shear spring in the ballast layer. The rail beam is modeled as a free Euler-Bernoulli beam. Equation 141 

of motion of the rail can be written as 142 

 )()()()()()( ttPtttt rc
T

rrrrrr FRyKyCyM −=++     (10) 143 

where rM  rC and rK  are the mass, damping and stiffness matrices of the rail respectively. The 144 

Rayleigh damping model (Bathe, 1982) 1 2r r ra a= +C M K  is adopt for the rail, where 1a  and 2a  145 

are the two Rayleigh damping coefficients. ( )r ty , ( )r ty  and ( )r ty  are rail displacement, velocity 146 

and acceleration responses, respectively. { }( ) 0,0, , ( ), ,0it t=R R   is the time-varying vector. 147 

Vector ( )i tR  is the shape functions in the ith element of the rail where the moving vehicle is 148 

located at time instant t, and it can be expressed as 149 

{ }2 2 3 2 3 2 3( ) 1 3 2 , ( 2 ) ,3 2 , ( )
T

i e et l lξ ξ ξ ξ ξ ξ ξ ξ ξ= − + − + − − +R , with ( ( ) ) /i ex t x lξ = − , ( 1)i ex i l= − , 150 

and el  is the length of the element. The rail and sleepers interface force vector is 151 

1
( ) F ( ) ( )

N

r ri i
i

t t δ x x
=

= −∑F , where N is the number of sleeper underneath the rail, ( )xδ  is the Dirac 152 
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delta function, ix  is the horizontal coordinate of the ith sleeper from the left end. F ( )ri t  is the ith 153 

interface force between the rail and the sleeper as 154 

 F ( ) ( ( , ) ( )) ( ( , ) ( ))ri pi r i si pi r i sit k y x t y t c y x t y t= − + −    (11) 155 

where pik  and pic  are stiffness and damping of the ith rail fastener respectively. ( )siy t  and 156 

( )siy t  are respectively the displacement and velocity responses of the ith sleeper in the vertical 157 

direction at time instant t. 158 

Substituting Eqs. (6), (7) and (11) into Eq.(10), we have 159 
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where rim  is the rail mass in the ith element.  164 

Equation of motion of the sleepers can be written as 165 

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( , ) 0

1,2, ,
si si pi bi si pi bi si bi bi bi bi pi r i pi r im y t c c y t k k y t c y t k y t c y x t k y x t

i N

+ + + + − − − − =

=

   


 (12) 166 

where bik  and bic  are the ith ballast stiffness and damping, respectively. For the entire length of 167 

the system model, Eq. (12) can be written as 168 
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where sim  is the mass of the ith sleeper. ( )b ty 、 ( )b ty  and ( )b ty  are the displacement, velocity 174 

and acceleration responses, respectively of the ballast.  175 

Equation of motion of the ballasts can be written as 176 
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For the entire length of the system model, Eq .(13) can be written as 179 
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where bim  is the mass of the ith ballast. wik  and wic  are the ith ballast shearing stiffness and 184 

damping, respectively. fik  and fic  are the stiffness and damping, respectively of the ith 185 

foundation component. 186 

Combining Eqs. (10) to (13), the general equation of motion of the track model can be written 187 

in the following matrix form as 188 
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mapping vector.  191 

Combining Eqs. (5), (6) and (14), the coupled equation of the motion of the vehicle-track 192 

system can be obtained as (Henchi et al., 1988) 193 
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tr v t − K L  and 196 

-
H

0
=

( )Kv tr t
 
 − 

K
L

, 
HK

v v
vv

v v

k k
k k

− 
=  − + 

K . The term H H( ) ( )K ( ) 0 K ( ) F = + 
TT

vt t r t r tLQ  is 197 

the corresponding force vector containing components of the wheel-rail contact force and the 198 

external force. The dynamic response of Eq. (15) can be calculated from the explicit Newmark-β 199 
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time-stepping integration method (Liu et al., 2014).  200 

Model of the track substructure 201 

Winkler elastic foundation 202 

The foundation shown in Figure 1 is represented by the Winkler model with a set of linear springs 203 

and dampers. A constant stiffness is assumed for the springs to represent a stable foundation as 204 

(Kacar et al., 2011) 205 

 0( )f fk x k=  (16a) 206 

For an unstable track foundation, the stiffness can be written as  Eqs. (16b) and (16c) (Kacar 207 

et al., 2011) 208 

 0( ) (1 )f fk x k xα= −  (16b) 209 

 2
0( ) (1 )f fk x k xα= −  (16c) 210 

for a linear and parabolic distributions and x is the coordinate along the rail direction. The constant 211 

[0,1]α ∈  denotes the magnitude of settlement due to the extra flexibility. Assuming that there is 212 

only one zone of foundation settlement along the track, the mid-length of the reduced stiffness 213 

distribution is dx , and the length of the settlement zone is dw . The stiffness of foundation at the 214 

middle of the zone is therefore 0 (1 )fk α− . The stiffness distribution of the foundation with this 215 

linear model can be written as 216 

 
( )
( )

0

0

0

0

, 0 2

1 2 ( 2) , 2
( , , )

1 2 ( 2) , 2

, + 2

f d d

f d d d d d d

f d d
f d d d d d d

f d d

k x x w

k x x w w x w x x
k x x w

k x x w w x x x w

k x w x L

α

α

≤ ≤ −


− − + − ≤ ≤
= 

+ − − ≤ ≤ +
 ≤ ≤

  (17a) 217 

and that for the foundation with a parabolic distribution model can be written as 218 
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( )
( )

0

2 2
0

2 2
0

0

, 0 2

1 4 ( 2) , 2
( , , )

1 4 ( 2) , 2

, + 2

f d d

f d d d d d d

f d d
f d d d d d d

f d d

k x x w

k x x w w x w x x
k x x w

k x x w w x x x w

k x w x L

α

α

≤ ≤ −


− − + − ≤ ≤
= 

− − − ≤ ≤ +
 ≤ ≤

 (17b) 219 

where L  is the total length of the foundation considered in the analysis. If there are m multiple 220 

zones of settlement, the central location of the settlement zones becomes [ ]1 2, , ,d d d dmx x x x=   221 

with the length of zones 1 2[ , , , ]d d d dmw w w w=  . The stiffness for the ith spring can be obtained 222 

from Eqs. (16a) to (17b) as 223 

 
( 1)

( , , )f

f

i l

fi f d di l
k k x x w dx

×

− ×
= ∫   (18) 224 

where fl  is the length of finite element and it equals to le for the rail in the present study.  225 

In the present inverse analysis, the foundation settlement can be modeled as due to local 226 

flexibility, and the foundation stiffness identification can be interpreted as the identification of a 227 

stiffness change as 228 

 (1 )fi fi fk kζ= − ,  ( 1, 2, ,i N=  )  (19a) 229 

where fk  is the ith spring stiffness of the foundation without settlement. fiζ  represents the 230 

stiffness reduction of the ith spring stiffness. 0.0fiζ ≤  indicates the undamaged condition and 231 

1.0fiζ ≥  indicates a total loss of the spring stiffness. 232 

Model of other system components 233 

For the connection between the rail and sleepers, such as the rail fastener, the local damage can be 234 

modeled as a spring stiffness reduction as 235 

 0(1 )= −pi pi pik kζ ,  ( 1, 2, ,i N=  )  (19b) 236 

where 0
pik  is the ith spring stiffness in the intact state. piζ  represents the fraction of stiffness 237 

reduction. 238 

Similar model can be used to denote the lack of compaction in the ballast associating with a 239 
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local flexibility in the media, and it can be expressed as 240 

 0(1 )= −bi bi bik kζ ,  ( 1, 2, ,i N=  )  (19c) 241 

where 0
bik  is the ith spring stiffness in the intact state and biζ  represents the fraction of stiffness 242 

reduction. 243 

The shearing stiffness and damping of ballast are assumed less significant in contributing to 244 

the vertical deformation of the substructure and are thus ignored (Lam et al., 2012) in this study. 245 

Identification algorithm 246 

A change in the track substructure can be modelled by a vector of stiffness parameters 247 

1 2 1 2 1 2=[ , , , , , , , , , , , ]p p pn b b bn f f fnζ ζ ζ ζ ζ ζ ζ ζ ζ  ζ , and thus the system identification can be 248 

treated as an optimization problem. The contact force between the track and the vehicle, meas
cP  can 249 

be obtained from the measured acceleration response of the vehicle. The contact force without 250 

settlement, ( )cal
cP ζ , can be calculated from the theoretical acceleration responses with an estimated 251 

vector of stiffness parameters ζ . The damage identification equation for the (j+1)th iteration can 252 

be defined as  253 

 j
c

jcal
c

meas
c

jj PςPPςS ∆=−=+ )(1  (20) 254 

where jζ  is the identified stiffness parameter vector in the jth iteration. jS  is the corresponding 255 

sensitivity matrix 
j

cal
c

ςξς
ςP

=
∂

∂ )( . The first partial derivative of the contact force with respect to the 256 

stiffness parameter vector can be obtained by taking the first derivative with respect to the 257 

parameter vector on both sides of Eq. (3) as 258 

 1 2
1 2

( ) ( ) ( )=
cal
c v v

v v
t y t y tm m∂ ∂ ∂

− −
∂ ∂ ∂

P  

ζ ζ ζ
 (21) 259 

where the reference to the stiffness parameter in the functions have been removed, and 1( )vy t∂
∂


ζ
 and 260 



 

 13 

2 ( )vy t∂
∂


ζ
 can be obtained by taking the first derivative with respect to the parameter vector on both 261 

sides of the coupled equation in Eq. (15) as 262 

 ( ) ( ) ( ) ( )t t t t∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
Y Y Y KM C K Y
 

ζ ζ ζ ζ
  (22) 263 

where ( )t∂
∂
Y

ζ
 contains the terms 1( )vy t∂

∂


ζ
 and 2 ( )vy t∂

∂


ζ
, and ∂

∂
K
ζ

. Then the response sensitivities 264 

( )t∂
∂
Y

ζ
 can also be calculated from the Newmark integration method.  265 

The model updating in Eq. (20) using least-squares method can be conducted by minimizing 266 

the following cost function as  267 

 
21 1

2
( )j j j j

cJ + += − ∆Pζ ζS   (23) 268 

In the adaptive Tikhonov regularization (Li and Law, 2010), the cost function can be redefine as 269 

 
121 1 2 ,

2
1

( , )
j

j j j j i k
c

k
J λ λ

+
+ + ∗

=

= − ∆ + −∑Pζ ζ ζ ζS  (24) 270 

where λ  is the regularization parameter obtained from the L-curve method (Hansen, 1992). ,j ∗ζ  271 

is a special vector related to damaged vector. When j=0, , =0j ∗ζ , and when 0j ≥ , 272 

 ( ) 1,

1 1

0 if 0
= 1,2, ,

if 0

j
j

k ij

i j j
j j

k ki i

i n
=∗

= =

  
≥  

 = 
    <      

∑

∑ ∑
, ( )

ζ

ζ
ζ ζ

  (25) 273 

where n is the number of parameters to be identified. Therefore, in the adaptive Tikhonov 274 

regularization (Li and Law, 2010), the damaged vector 1j+ζ  can be obtained by minimizing the 275 

cost function as  276 

 ( ) 11 2 2 ,

1
( ) ( )

j
j j T j j T j j j

c
k

λ λ
−+ ∗

=

  
= + ∆ − −  

  
∑I Pζ ζ ζS S S  (26) 277 

The quality of identified results can be gauged based on the gradient of the residual and penalty 278 
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functions as 279 

 
1

1

2 2

( ) ( (( ) ) ( ) )cos
(( ) ) ( )

j T j j T j j T j

j j j T j j T j

−

−

⋅
θ =

⋅
r A A A A r
r A A A A r

 (27) 280 

where 
j

j
jλ

 
 
 

A =
I

S
, ,

1

j

j j
k j j

i
λ ∗

=

 
 

  − −    
∑

r =
ζ

ζ ζ
. The solution is considered converged with 281 

iterations when angle θ  approaches 90°.  282 

The criterion of convergence in the iterative processes can be defined as 283 

 
1

1
100% Tol

j j

j

+

+

−
× ≤

ζ ζ

ζ
  (28) 284 

where Tol  is a small prescribed value and is taken equal to 32 10−×  in the following studies 285 

unless otherwise specified.  286 

The computation algorithm described above can be implemented in the following steps:  287 

1) Set the initial value 0ζ .  288 

2) For the jth step, the sensitivity matrix jS  can be calculated from Eqs. (21) and (22).  289 

3) Using the adaptive Tikhonov regularisation technique, Eq. (24) can be solved and the parameters 290 

1+jζ  can be obtained.  291 

4) Check the convergence using Eqs. (27) and (28). Repeat Steps 2 and 3 if it is not satisfactory. 292 

Numerical Simulations 293 

The track structure studied consists of finite length resting on 101 sleepers and ballasts underneath. 294 

Adjacent sleepers has a center-to-centre spacing of 0.6m. The middle 81 sleepers and ballast 295 

elements are considered in the studies to avoid any end effects in the dynamic analysis of the 296 

train-track system. The rail is modeled as Euler-Bernoulli beam discretized into 100 equal finite 297 

elements each with spring supports at two ends. The parameters of the vehicle and the track are 298 

shown in Table 1. The modal damping of the first two vibration modes of the rail are taken equal to 299 

0.08. The irregularity amplitude of the rail corrugation is taken as 0.5mm. The vehicle moves from 300 
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the first sleeper on the left to the last sleeper on the right. Data collected when the train is on top of 301 

the middle 81 sleepers are used for the identification. 302 

The effect of measurement noise is simulated with a normally distributed random component 303 

with zero mean and a unit standard deviation added to the calculated acceleration response of the 304 

vehicle as 305 

 
1

1 1 1
2

2 2 2

var( )
var( )

polluted calculated calculated
v v p oise v
polluted calculated calculated
v v p oise v

E
E

 = + × ×
 = + × ×

N
N

  

  

y y y
y y y

  (29) 306 

where 1
polluted
vy  and 2

polluted
vy  are vectors of polluted “measured” acceleration response; 1

calculated
vy  307 

and 2
calculated
vy  are the calculated acceleration response of the vehicle; PE  is the noise level; 1

oiseN  308 

and 2
oiseN  are two different normal random vectors with zero mean and unit variance; ( )var •  is 309 

the standard deviation of the calculated acceleration response. 310 

The relative error of the identified stiffness can be defined as 311 

 Relative Error 100%
id true

true

−
= ×

k k
k

 (30) 312 

where idk  and truek  are the identified and true stiffness parameter vectors, respectively. 313 

Identification of Winkler elastic foundation 314 

Single foundation settlement 315 

Case 1: Effect of moving speed 316 

The scenarios with the vehicle moves at a constant speed of 10m/s, 30m/s and 50m/s are studied. 317 

The sampling rate in the dynamic analysis is 5000Hz. Assuming that there is only one zone with 318 

foundation settlement in the track substructure which is 12m long with the mid-length of the zone at 319 

20 meter from the left end of the system. The magnitude of stiffness reduction α  is set equal to 320 

0.2. The true foundation stiffness loss is shown in Figure 2. The foundation stiffness vector ζ  at 321 

the beginning of iteration is set equal to null. The identified results with 0%, 5% and 10% noise 322 



 

 16 

level are shown in Figure 3. Accurate identified results can be obtained when there is no noise effect. 323 

This verifies the accuracy of the proposed inverse analysis. However, when measurement noise is 324 

involved, a lower vehicle travelling speed may lead to more accurate identified result. Table 2 325 

shows that the parameter cosθ  is very close to zero when there is noise effect. This indicates that 326 

the identified results cannot be further improved with more iteration as indicated by the property of 327 

cosθ  in Eq. (27). It is also noted that the parameter cosθ  is relative large when there is no noise 328 

effect indicating further improvement in the identified results can be made probably with a smaller 329 

threshold of acceptance in Eq. (28). However, the computation stops when the convergence 330 

threshold is achieved. 331 

Case 2: Effect of sampling rate 332 

The sampling rate of 2000Hz、5000Hz and 10000Hz are studied to check on the effect different 333 

sampling rates. The vehicle moves at 30m/s. Other parameters are the same as for last study. Results 334 

in Figures 3(b) and 4 show that the accuracy of identification increases with the sampling rate. 335 

When the sampling rate is 2000 Hz, the location of the settlement zone can be identified 336 

successfully but with a poor estimate on the magnitude of damage when there is measurement noise. 337 

Therefore a higher sampling rate of 10000 Hz is adopted in the following studies. 338 

Multiple foundation settlement 339 

The foundation settlement is associated with flexibility at the same location. Three zones of 340 

settlement are considered, and the three zones of foundation flexibility are assumed overlapping in 341 

the track substructure. The first one has a linear distribution starting at 12m from the left end of the 342 

system considered with a length of 8m. The second and third ones have parabolic distributions 343 

centered at 20m and 27m from the left side respectively with a length of 12m or 20m, respectively. 344 

The true foundation stiffness distribution is shown in Figure 5. The magnitude of stiffness change, 345 
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α , at mid-length of the three zones are respectively 10%, 20% and 18%. The vehicles is assumed to 346 

move on the track at 30m/s and the sampling rate is 10000 Hz. Results in Figure 6 show that the 347 

distribution of stiffness changes can be identified successfully after 14, 30, and 24 iterations with 348 

0%, 5% and 10% measurement noise. The relative error of the identified results is smaller at lower 349 

noise level with the maximum error of 7.44% at spring 32 when there is 10% measurement noise. 350 

Condition identification of rail fasteners 351 

The local damage due to a loosened rail fastener is simulated as a reduction of the corresponding 352 

elemental connection spring stiffness between the rail and sleeper. Multiple damages in the rail 353 

fasteners are simulated with 50%, 25%, 20%, 10% and 12% stiffness loss at the springs 18, 25, 46, 354 

67 and 81. The sampling rate is 10000Hz and the moving speed is 30m/s. Other parameters are the 355 

same as for last study.  356 

The identification results with 1%, 5% and 10% noise level are shown in Figure 7. Damage in 357 

the rail fasteners can be identified successfully even with 10% noise level. Figure 8 shows that the 358 

value of cosθ  approaches a minimum after only a few iterations indicating convergence of the 359 

identified results. Such convergence is particularly noted in the scenario with 10% noise level with 360 

the adaptive Tikhonov regularization. Results converged after 12, 14 and 92 iterations with the 361 

maximum relative error of 1.6%, 3.0% and 5% as shown in Figure 8 for the scenarios with 1%, 5% 362 

and 10% noise level respectively. 363 

Identification of ballast damage  364 

Multiple local zones of loosely compacted ballast are assumed in the track substructure. These 365 

zones are modeled with 8%, 10%, 15% and 20% stiffness loss at the springs 21, 36, 53 and 75. 366 

Other parameters are the same as those in last study. The identification results are shown in Figure 367 

10. The damage location can be identified successfully for all noise level studied. However, the 368 



 

 18 

identified damage extent is satisfactory only when the noise level is equal or less than 5%. Figure 369 

11 shows the evolution of the converging results. Results converged after 9, 19 and 41 iterations 370 

with the maximum relative error of 0.6%, 1.0% and 10% as shown in Figure 12 for the scenarios 371 

with 1%, 5% and 10% noise level respectively. 372 

 373 

Assessment of the track substructure including all types of defects 374 

Identification with different noise levels 375 

Different types of defects may coexist in the track substructure. The different defects studied in this 376 

section include: (a) two damaged rail fasteners with 15% and 10% stiffness loss at springs 25 and 377 

67; (b) two ballasts units with 20% and 15% stiffness loss at springs 41 and 53; and (c) one zone of 378 

foundation flexibility as described in the section “Single foundation settlement”. The damage vector 379 

contains the stiffness change in units 11 to 91 with 243 unknown spring stiffness changes. 380 

Measurements with 0%, 1% and 5% noise are studied.  381 

The identified results and the associated relative errors are shown in Figures 13 and 14. 382 

The local stiffness changes can be identified accurately when there is no noise effect as shown in 383 

Figure 13(a). When there is only 1% noise effect, rail fasteners 41 and 53 are identified incorrectly 384 

with the damage information from the stiffness change in the ballast unit transmitted into the rail 385 

fasteners. The location of damage in the rail fasteners and the ballast cannot be correctly identified 386 

with 5% noise effect. This is because of the coupling of the spring stiffnesses from the rail fasteners, 387 

the ballast and the foundation as they are modeled in series. The identification of stiffness from the 388 

rail fasteners, damaged ballast and foundation settlement has been greatly affect by this coupling 389 

when measurement noise is involved. However, the zone of foundation defect can still be identified 390 

satisfactory with 5% noise effect but with large relative error up to 18%. The number of iteration 391 

required for convergence is 28, 41 and 39 as noted in Figure 15 for the scenarios with 0%, 1% and 392 

5% measurement noise respectively. 393 

Effect of wheel flat 394 
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The last study is conducted again in this section including the effect of wheel flat with the 395 

parameters given in Table 1. Other parameters are the same as those in last study. The identification 396 

results for the scenarios of 0% and 5% noise level after 45 and 92 iterations respectively are shown 397 

in Figure 16. Both the damage location and extent are noted not able to be identified satisfactory 398 

using the proposed approach. It may be concluded that the identification of the track substructure 399 

with coupling components is not feasible with a detailed discrete model as shown in Figure 1. 400 

Identification of an equivalent track substructure 401 

The coupling effect of the different springs in each unit is further studied with the track and 402 

substructure modeled by equivalent units each including the rail fasteners, the ballast and the 403 

foundation. The equivalent stiffness of the ith element can be written as 404 

1

2
111

−












+
++=

wifisipi
ei kkkk

k         (31) 405 

The stiffness and damping of the equivalent units are computed for the track model studied in the 406 

last two sections, and the simplified model is shown in Figure 17. The boundaries of the equivalent 407 

unit at the bottom and at the two adjacent ballast are assumed fixed. The mass of the sleeper and the 408 

ballast are ignored and there is no interaction between two adjacent elements. The equivalent 409 

damping of the ith element can be obtained similarly to the equivalent stiffness. The stiffness 410 

reduction of the ith element can be obtained as 411 

1001
0

×







−=

e

ei
i k

kζ          (32) 412 

where 0ek  is the equivalent stiffness of the intact element.  413 

All the parameters are the same as for the section “Identification with different noise level”. 414 

The identified results for the scenarios with 0%, 1% and 5% noise in the measurement are shown in 415 

Figure 18. Comparison with Figure 13 show that the identification results from equivalent track 416 

model is slightly better than those from the refined model when there is measurement noise. 417 

However, the identified foundation parameters from the equivalent model is not very distinct when 418 
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there is noise effect. 419 

Discussions 420 

(a) There may be a concern with the higher sampling rate of 10000 Hz and a low speed of 30m/s as 421 

adopted in the above studies. This combination of parameters would mean 200 data will be 422 

collected within the time duration when the vehicle moves over the distance of 0.6m from one 423 

sleeper to another. All the numerical results suggest more data included in the analysis could 424 

cancel the effect due to measurement noise giving better results. The best combination studied 425 

in this paper is sampling at 5000 Hz at vehicle speed at 10km/s gives 300 data within this time 426 

duration. This combination may be changed to have 400 data or 600 data which would mean 427 

sampling at 10000Hz with the vehicle moving at 15m/s and 10m/s respectively. These speeds 428 

are equivalent to 54 km/s and 36 km/s which is normal when the train vehicle moves over 429 

section of track under maintenance operation according to current safety practices.  430 

(b) The complexity of the train vehicle (e.g. with 2-DOFs) and its mass have been reported (Bu et 431 

al., 2006) to have effect on the condition assessment of bridge deck using measurement on deck. 432 

This study, however, addresses the problem with realistic standard vehicle recognized by all 433 

other researchers. Any change with parameters of the vehicle would lead to unrealistic results 434 

and therefore no attempt has been made to study these two factors. 435 

Conclusions 436 

A system identification methodology is proposed for the condition assessment of the railway track 437 

and its substructure with measurement from the moving vehicle. Finite element model with discrete 438 

elements representing different components of the structure is formulated, and the solution of the 439 

identification equation is solved with the adaptive regularization technique. Numerical studies show 440 

that all the damage parameters can be identified accurately when there is no measurement noise. 441 

But when measurement noise is included, more data collected from using a higher sampling rate 442 

and a lower moving speed can yield satisfactory results in the scenario of having a single damage. 443 
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When there are damages of different types to be identified, the identified results are not reliable as 444 

the discrete components in the different layers of the track structure are conne4cted in series and 445 

their changes in stiffness are coupling with each other. The identification with an equivalent track 446 

model, however, can give slightly better results in the case with noisy measurement. 447 
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Table 1 - Mechanical parameters of the vehicle and track 519 

Vehicle model parameters (Vale 
and Calcada, 2013) 

Track model parameters 
(Zhai and Cai, 1997) 

1 5600kgvm =  151.5kg.mrm −=  
2 2003kgvm =  6 24.2 10 NmEI = ×  

6 14.80 10 Nmvk −= ×  0.6msL =  
5 11.08 10 Nsmvc −= ×  273kgsim =  

9 1
HK 1.3964 10 Nm−= ×  683kgbim =  

0.4mmfD =  8 11.2 10 Nmpik −= ×  
52mmfL =  5 11.24 10 Nsmpic −= ×  
420mmwR =  8 12.4 10 Nmbik −= ×  

 4 15.88 10 Nsmbic −= ×  
 7 16.5 10 Nmfik −= ×  
 4 13.12 10 Nsmfic −= ×  
 7 17.84 10 Nmwik −= ×  
 4 18.0 10 Nsmwic −= ×  

 520 
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Table 2 - Identification results at different moving speed 521 

Scenarios 
10m/s 30m/s 50m/s 

Nil 5% 10% Nil 5% 10% Nil 5% 10% 
Parameter λ 5.77e-6 5.79e-6 5.81e-6 8.25e-6 2.19e-5 2.78e-5 1.84e-5 3.29e-5 3.73e-5 

cos θ 0.997 0.023 0.014 0.812 0.052 0.051 0.690 0.126 0.053 
Max. RE. (%) 8.40e-5 -3.24 -8.03 4.19e-3 -5.93 -11.99 6.54e-5 -7.01 -13.29 
Iteration No. 9 16 15 16 33 37 8 98 92 

Noted: Max. RE. denotes the maximum relative error for all the elements; Iteration No. denotes the number 522 
of iteration required for convergence 523 

 524 
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Table 3 - Identification results with different sampling rate when moving at 30m/s 525 

Scenario 
2000Hz 10000Hz 

Nil 5% 10% Nil 5% 10% 
Parameter λ 1.84e-5 1.17e-5 2.27e-5 3.83e-6 6.68e-5 4.48e-6 

cos θ 0.829 0.041 0.104 0.814 0.026 0.040 
Max. RE. (%) 4.8e-3 -8.45 -13.78 4.64e-3 -0.73 -3.42 

Iter. No. 16 67 95 15 13 78 

Note: Results for 5000 Hz sampling rate is referred to Table 2. 526 

 527 
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 528 

Figure 1: Train vehicle and rail track system model  529 
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Figure 2: True foundation stiffness loss in each element with single settlement zone 531 

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

-10

-5

0

5

10

15

20

St
iff

ne
ss

 L
os

s 
(%

)

Spring Number

 No noise
 5% noise
 10% noise

(a)

11

 532 
 533 

x

1vm

2vm
vk vc

1( )vy t

2 ( )vy t

v

( )r t

bogie

wheel

( )c tP

rail

sleeper

ballast

foundation

pik pic

bik bic

wik
fik fic

sim
( , )ry x t

( )siy t

( )biy t

wic

bim

rail fastener 



 

 28 

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

5

10

15

20

25

St
iff

ne
ss

 L
os

s 
(%

)

Spring Number

 No noise
 5% noise
 10% noise

(b)

11

 534 
 535 

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

5

10

15

20

25

St
iff

ne
ss

 L
os

s 
(%

)

Spring Number

 No noise
 5% noise
 10% noise

(c)

11

 536 

Figure 3: Identification results at different moving speed: (a) 10m/s; (b) 30m/s; (c) 50m/s 537 
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Figure 4: Identification results with different sampling rate: (a) 2000HZ; (b) 10000HZ 540 
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Figure 5: True foundation stiffness loss in each element with multiple settlement zones 542 
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Figure 6: Multiple damage identification results 544 
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Figure 7: Identification results of rail fastening 546 
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Figure 8: Evolution of cos θ value                   Figure 9: Relative Error  550 
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Figure 10: Identification results of damaged ballast 552 
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Figure 11: Evolution of cos θ value      Figure 12: Relative Error 554 
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(a) Identified results from measurements without noise 556 
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(b) Identified results with 1% measurements noise 558 
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(b) Identified results with 5% measurements noise 561 

Figure 13: Identification results of the whole substructure 562 
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(a) Identified results without the measurements noise 565 
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(b) Identified results with 1% measurements noise 567 
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(b) Identified results with 5% measurements noise 569 

Figure 14: Relative error of the whole substructure 570 
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Figure 15: Evolution of cos θ values with or without the measurement noise 572 
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(a) Identified results without measurement noise 574 
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(b) Identified results with 5% measurement noise 576 

Figure 16 Identification of track substructures with coupling components 577 
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Figure 17 The simplified train vehicle model 580 
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(a) Identification results without measurement noise 583 

20 40 60 80 100
0

2

4

6

8

St
iff

ne
ss

 L
os

s 
(%

)

Spring Number

 1% noise

 584 
(b) Identification results with 1% measurement noise 585 
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(c) Identification results with 5% measurement noise 587 

Figure 18 Identified results with the equivalent track model 588 
 589 


	where  is the identified stiffness parameter vector in the jth iteration.  is the corresponding sensitivity matrix . The first partial derivative of the contact force with respect to the stiffness parameter vector can be obtained by taking the first d...
	where the reference to the stiffness parameter in the functions have been removed, and  and  can be obtained by taking the first derivative with respect to the parameter vector on both sides of the coupled equation in Eq. (15) as

