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SUMMARY In recent years, intelligent transportation system (ITS) 

techniques have been widely exploited to enhance the quality of public 

services. As one of the worldwide leaders in recycling, Taiwan adopts the 

waste collection and disposal policy named “trash doesn't touch the ground”, 

which requires the public to deliver garbage directly to the collection points 

for awaiting garbage collection. This study develops a travel time prediction 

system based on data clustering for providing real-time information on the 

arrival time of waste collection vehicle (WCV). The developed system 

consists of mobile devices (MDs), on-board units (OBUs), a fleet 

management server (FMS), and a data analysis server (DAS). A travel time 

prediction model utilizing the adaptive-based clustering technique coupled 

with a data feature selection procedure is devised and embedded in the DAS. 

While receiving inquiries from users’ MDs and relevant data from WCVs’ 

OBUs through the FMS, the DAS performs the devised model to yield the 

predicted arrival time of WCV. Our experiment result demonstrates that the 

proposed prediction model achieves an accuracy rate of 75.0% and 

outperforms the reference linear regression method and neural network 

technique, the accuracy rates of which are 14.7% and 27.6%, respectively. 

The developed system is effective as well as efficient and has gone online. 

keywords: travel time prediction, arrival time prediction, intelligent 

transportation system, waste collection vehicle, data clustering. 

1. Introduction 

In recent years, intelligent transportation system (ITS) 

techniques have been widely exploited to enhance the 

quality of public services, e.g. mass rapid transit [1], railway 

traffic [2], bus system [3], bicycle-sharing system [4], and 

garbage truck fleet management [5], etc. One of these 

applications which have not been extensively studied could 

be the utilization of transportation information in waste 

collection service. As one of the worldwide leaders in 

recycling, Taiwan adopts the waste collection and disposal 

policy named “trash doesn't touch the ground”, which 

requires the public to deliver garbage directly to the specific 

locations for awaiting garbage collection during specific 

time periods. Under this effective waste collection and 

disposal system, the waste collection vehicle (WCV) 

collects garbage from the collection points (CPs) along the 

route that is defined by a specific sequence of CPs. Denote 

by CPn the n-th collection point in a considered waste 

collection route. Define the time when a WCV arrived at CPn 

by tn. Consider the route segment from CPn-1 to CPn+1 as 

shown in Figure 1. The realized travel time of WCV from 

CPn-1 to CPn is defined by xn,n+1= tn+1−tn. When the WCV 

arrived at CPn at time tn, the predicted travel time of WCV 

from CPn to CPn+1, which is denoted by x′n,n+1, can be 

generated by the travel time prediction methods [1-2, 6-11]. 

Then the predicted arrival time of WCV at CPn+1, i.e. t′n+1= 

tn+ x′n,n+1, can be obtained. Then the predicted arrival time 

t′n+1 can be announced to the public through the mobile 

application so that the public can avoid suffering a long 

waiting for garbage disposal or missing the garbage 

collection. 

 

 
Fig. 1. The WCV route segment from CPn-1 to CPn+1. 

Several approaches to travel or arrival time prediction have 

been proposed, e.g. statistical mean value (SMV) method, 

linear regression (LR) method, neural networks (NNs), etc 

[1-2, 6-11]. Although the statistical methods such as SMV 

and LR can provide the predicted information quickly, the 

accuracy of predicted information would be lowered when a 

large variation exists in historical records. The NN and deep 

learning techniques can provide relatively precise prediction, 

but a relatively high computational cost is required. To 

develop an effective and efficient WCV arrival time 

prediction system, this study devises a travel time prediction 

model utilizing the adaptive-based clustering technique 

coupled with a data feature selection procedure. Our utilized 

clustering method can effectively merge high-similarity data 

clusters to extract and analyze the characteristics of traffic 

information and further enhance the accuracy of the devised 

prediction model. The developed travel time prediction 

system consists of mobile devices (MDs), on-board units 

(OBUs), a fleet management server (FMS), and a data 

analysis server (DAS). While receiving inquiries from users’ 

MDs and relevant data from WCVs’ OBUs through the FMS, 

the DAS performs the devised travel time prediction model 
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to yield the predicted arrival time of WCV, which is then 

sent to users’ MDs via the FMS. 

The remainder of the paper is as follows. Various exiting 

travel time prediction methods are reviewed in Section 2. 

The devised travel time prediction model utilizing the 

adaptive-based clustering technique coupled with a data 

feature selection procedure is introduced in Section 3. The 

experimental results and online implementation are 

presented in Section 4. Finally, the conclusions are given in 

Section 5. 

2. Literature Reviews 

This section discusses the existing approaches for travel 

time prediction in literature and the relevant machine 

learning techniques for data clustering. The SMV, LR, NN, 

recurrent neural network (RNN) and auto-encoder (AE) 

methods are demonstrated in Subsection 2.1. The partition-

based clustering (PBC), density-based clustering (DBC), 

grid-based clustering (GBC), and adaptive-based clustering 

(ABC) methods are introduced in Subsection 2.2. 

2.1 Existing Travel Time Prediction Methods 

The SMV, LR, NN, RNN and AE methods proposed to 

estimate and predict the travel time [1,2,6-10] are discussed 

and compared as follows. 

2.1.1 Statistical Mean Value (SMV) Method 

The SMV method for travel time prediction [6] contains the 

following two steps. 

Step 1: This method generates the predicted travel time 

x′n,n+1 based on the mean value of historical travel times from 

CPn to CPn+1 within a specific recent time period. Denote the 

realized travel time from CPn to CPn+1 in the k-th record by 

xn,n+1,k for k=1,2,…,m. Then the predicted travel time x′n,n+1 

can be estimated by Equation (1). To demonstrate the SMV 

method, we consider a real-world example from Hsinchu 

City WCV route, where n=2 and m=10 as showed in Figure 

2. The predicted travel time x′2,3 is about 364 seconds 

calculated by Equation (1). 
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Fig. 2. Ten historical travel times from CP2 to CP3 and the SMV. 

Step 2: The predicted arrival time at CP3, i.e. t′3= t2+x′2,3, can 

then be obtained. 

To evaluate the performance of the SMV method, the mean 

absolute error (MAE), i.e. the absolute value of the 

difference between the predicted and realized values, is used. 

In this Hsinchu WCV example, the MAE of the predicted 

travel time x′2,3 by the SMV method is equal to 218 seconds. 

Since the SMV method only employs the mean value of 

historical records to predict travel time, the significant 

inaccuracy of estimation would be incurred due to the 

dynamic traffic conditions. 

2.1.2 Linear Regression (LR) Method 

The application of LR method in analyzing real-time traffic 

conditions for travel time prediction can be found in 

previous studies [1,6,11]. In the setting of LR method, the 

realized travel time xn-1,n is used as the input for estimating 

the predicted travel time x′n,n+1, i.e. the output. The LR 

procedure consists of the following two steps. 

Step 1: An LR model can be defined by Equation (2), where 

the intercept parameter b and the slope parameter w can be 

calculated by Equations (3) and (4). Consider again the 

Hsinchu City WCV example with n=2 and m=10 as shown 

in Figure 3. The LR equation (5) can be obtained using 

Equations (2)-(4). 
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Fig. 3. Ten pairs of historical travel times and the LR equation. 

Step 2: Since the realized travel time x1,2 is collected as the 

input of the LR equation, the predicted travel time x′2,3 can 

be estimated by Equation (5). Then the predicted arrival time 

t′3= t2+x′2,3 can then be obtained. 

The MAE of the predicted travel time x′2,3 by the LR 

equation (5) is equal to 150 seconds. Although the accuracy 

of LR model is better than the SMV method, it could not be 

effectively applied to the practical traffic conditions with the 
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property of non-linearity.  

2.1.3 Neural Networks (NNs) 

The NN techniques were proposed to analyze the interaction 

effects among the input parameters and produce the non-

linear prediction models [2,6,10]. A NN consists of an input 

layer, hidden layers (e.g., dense layers, convolutional layers, 

or recurrent layers), and an output layer. The sigmoid 

function can be applied as the activation function for 

obtaining a non-linear model, and the gradient descent 

method can be applied in the optimization of each weight in 

the NN [12,13]. A NN model consists of the following two 

stages. 

Stage 1 (Training stage): The structure of a NN is defined 

and the NN model is trained at this stage. The realized travel 

time xn-1,n is used as the input layer of the NN, and the 

predicted travel time x′n,n+1 is set as the output layer. The 

dense layers can be defined as hidden layers for the analyses 

of the interaction effects among parameters. Then the 

historical records can be used to train the NN, and the 

optimized value of each weight in the NN model can be 

calculated by the gradient descent method.  

Stage 2 (Runtime stage): At the runtime stage, the trained 

NN model can be exploited to predict the travel time x′n,n+1 

in accordance with the input parameter xn-1,n. Then the 

predicted arrival time t′n+1= tn+x′n,n+1 can be obtained. 

Although the NN model can yield non-linear solutions, it 

does not take into account different data features, which may 

influence the accuracy of WCV travel time prediction 

according to our preliminary study.  

2.1.4 Recurrent Neural Network (RNN) 

In recent years, the RNNs and long short term memory 

(LSTM) networks have been proposed to analyse the time 

series datasets. The features of the past sequence elements 

can be encoded as several neurons (i.e. vectors) by recurrent 

layers in RNNs and LSTM networks. The records of traffic 

flow and travel time can be expressed as time series data and 

sequential vectors which can be adopted into RNNs and 

LSTM networks for extracting the significant features of 

sequence elements and improving the accuracies of traffic 

information [14-18]. However, the higher computation time 

and cost are required by RNNs and LSTM networks. 

Furthermore, the prediction results of RNNs may be the 

same as the prediction results of NNs if the length of 

sequential input vectors is short. 

2.1.5 Auto-Encoder (AE) 

For data generalization and over-fitting prevention, the AE 

method has been proposed to reduce dimensions and extract 

the significant features. For performing AE method, a 

multilayer NN model can be constructed with a hidden layer 

which has lower dimensions, and the input vectors are the 

same as the output vectors in the NN model. The input 

vectors can be encoded as significant features from the input 

layer to the hidden layer, and the significant features can be 

decoded as the output vectors from the hidden layer to the 

output layer accordance with trained NN model [18-20]. 

Therefore, the significant features of traffic information may 

be extracted and encoded by AE method for the 

improvement of prediction accuracies. However, 

performing AE method needs higher computation time and 

cost. 

2.2 Data Clustering Methods 

Data clustering techniques are the important tool to extract 

and analyze the characteristics of traffic information. The 

clustering methods can be categorized into four classes, i.e. 

partition-based clustering (PBC) [21,22], density-based 

clustering (DBC) [23,24], grid-based clustering (GBC) 

[25,26], and adaptive-based clustering (ABC) [27,28]. 

2.2.1 Partition-Based Clustering (PBC) 

The PBC methods (e.g., the k-means clustering) can cluster 

data into several groups in accordance with the similarities 

or distances between the data and cluster centers [21,22]. 

The four steps of the PBC are shown as follows. 

Step 1: Given m data points, we determine the number of 

clusters denoted by k. Consider the example with m=10 and 

k=3 as shown in Figure 4. Each realized travel time record 

is depicted as a dot, and each cluster center is marked with a 

star. 

Step 2: Among the m data points, k points are randomly 

selected as the centers of the k individual clusters. 

Step 3: The similarity or distance between each of the m data 

points and each of the k cluster centers is calculated. 

Step 4: Each data point is grouped into a cluster in 

accordance with the highest similarity between the data 

point and cluster center. The center of each cluster is then 

updated after grouping. Steps (3) and (4) will be repeated 

until each cluster center remains unchanged. 

 
Fig. 4. PBC with m=10 and k=3 for the travel time prediction. 

Although the data records can be clustered with the 

relatively low time complexity O(mk) by the PBC, the 

outliers cannot be filtered out. Furthermore, it could be 

difficult to determine the value of k, which influences the 

clustering quality. 
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2.2.2 Density-Based Clustering (DBC) 

The DBC methods (e.g., the density-based spatial clustering 

of applications with noise) can analyze the density of each 

considered data group to determine the clusters [23,24]. The 

DBC consists of the following three steps. 

Step 1: A radius r and the minimum number of points 

denoted by q are predefined for clustering. Consider an 

example with r=60 and q=2. As shown in Figure 5, each 

travel time record is depicted as a dot and the circle of each 

data point has a radius r=60 seconds. 

Step 2: The similarity or distance between each pair of the 

m records is calculated. 

Step 3: If the number of data points in a circle is larger than 

q, the circle is marked as a significant circle. Any adjacent 

significant circles are grouped into a cluster. 

 
Fig. 5. DBC with m=10, r=60, and q=2 for the travel time prediction.  

Although outliers can be filtered out by the DBC, its time 

complexity O(m2) is relatively high. Furthermore, it again 

could be difficult to determine the values of q and r, which 

influence the clustering quality. 

 

2.2.3 Grid-Based Clustering (GBC) 

The GBC methods utilize grids to filter out the outliers and 

to reduce the time complexity [25,26]. The GBC contains 

the following four steps. 

Step 1: The grid length g and the minimum number of points 

h are predetermined for clustering. Consider an example 

with g=70 and h=2. As shown in Figure 6, each travel time 

record is depicted as a dot. 

Step 2: Denote by o the number of grids. All the m points 

can be classified into the o girds according to the grid length 

g. 

Step 3: If the number of points in a grid is larger than h, the 

grid is marked as a significant grid. Any adjacent significant 

grids are then grouped into a cluster. 

 
Fig. 6. GBC with m=10, g=70, and h=2 for the travel time prediction.  

Although the time complexity of the GBC is O(mo), the 

values of g and h would influence the clustering quality and 

determining their values is an optimization problem. 

2.2.4 Adaptive-Based Clustering (ABC) 

The ABC methods analyze the similarities or distances 

between the data and cluster centers and group these data 

into several clusters in accordance with a threshold [27,28]. 

The ABC consists of the following four steps. 

Step 1: The data can be initially grouped into v clusters 

according to the date features. Consider an example with 

v=6 using the data feature of weekdays (including Saturday) 

as shown in Figure 7. 

Step 2: A similarity threshold  is selected. Consider =90% 

in our example. 

Step 3: The similarity between each pair of clusters can be 

calculated using a similarity function. 

Step 4: If the similarity between some pair of clusters is 

higher than , they are grouped into a new cluster. Steps 3 

and 4 are repeated until all the clusters remain unchanged. 

 

Since our preliminary study indicates that some data features, 

e.g. weekdays and humidity, may influence the travel time 

prediction, the ABC would be a suitable technique for 

yielding an accurate travel time prediction model. 

 
Fig. 7. ABC with m=10, v=6, and =90% for the travel time prediction. 

3. The Proposed Travel Time Prediction System 

This study develops a travel time prediction system based 

on data clustering for providing real-time information on the 

arrival time of waste collection vehicle (WCV). The 

components of the proposed system are presented in 

Subsection 3.1, and the proposed WCV travel time 

prediction method is illustrated in Subsection 3.2. 
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3.1 Components of the Proposed System 

The architecture of the proposed system includes MDs, 

OBUs, an FMS, and a DAS as shown in Figure 8. Each 

component is introduced as follows. 

 
Fig. 8. The architecture of the proposed travel time prediction system. 

3.1.1 Mobile Devices (MDs) 

The mobile application of the WCV arrival time information 

needs to be installed in the public’s MDs. The users can send 

inquiries about the current location of WCV and the 

predicted WCV arrival time at each CP via the mobile 

application. The FMS can immediately reply with the 

relevant traffic information of WCV to MDs. 

3.1.2 On-Board Units (OBUs) 

The OBUs including the global positioning system (GPS) 

and network modules are equipped into the WCV for 

detecting and reporting the WCV location. The location 

information is then sent to the FMS via cellular networks [29] 

or vehicular ad hoc networks (VANETs) [30,31]. 

3.1.3 Fleet Management Server (FMS) 

The FMS can receive and show the location information of 

each WCV in a geographic information system. Furthermore, 

the FMS can detect the arrival events of WCVs at CPs. The 

realized arrival times are sent to the DAS for the travel time 

prediction. Then the FMS receives the predicted WCV 

arrival times from the DAS and sends the information to the 

users’ MDs. 

3.1.4 Data Analysis Server (DAS) 

Receiving the realized arrival times of WCVs at CPs, the 

DAS performs the proposed travel time prediction model to 

estimate the WCV arrival times at the next CPs. The 

predicted arrival times are then sent to the FMS for 

broadcasting. 

3.2 The Proposed Travel Time Prediction Model 

For improvement of travel time prediction, this study uses 

clustering method to evaluate and select significant features. 

Furthermore, a linear regression method is considered to be 

implemented and obtain predicted travel time for lower 

computation time and cost. The proposed travel time 

prediction model contains the three stages: (1) the pre-

training stage, (2) training stage, and (3) runtime stage, as 

shown in Figure 9. 

3.2.1 Pre-training Stage 

The pre-training stage performs the ABC method for 

clustering the historical travel time data. Two data features 

including weekdays and humidity are considered for feature 

extraction in this study. The revised chi-squared distribution 

is utilized as the similarity function. The chi-squared 

distribution can be used to test the significant difference 

between two data groups. The cumulative distribution 

function of the chi-squared distribution given in Equation (6) 

can then estimate the probability of difference [32]. We note 

that the chi-squared value between the i-th cluster and the j-

th cluster is defined as vi,j. The degree of freedom between 

the i-th cluster and the j-th cluster is denoted by di,j. 
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Fig. 9. The three stages of the proposed travel time prediction model.  
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Furthermore, the function 
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the ordinary gamma function. Therefore, the similarity si,j 

between the i-th cluster and the j-th cluster can be estimated 

by Equation (7). Moreover, the value of the similarity 

threshold  is set as 90%. The analyses of data features are 

presented in the following subsections. 
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3.2.1.1 Data Feature of Weekdays 

As aforementioned, we consider a real-world case with 

Hsinchu City WCVs, where the garbage collection days 

include Monday, Tuesday, Thursday, Friday, and Saturday. 

Thus, the historical travel time records can be initially 

grouped into five clusters. The similarity between each pair 

of clusters can be estimated by Equation (7). The results of 

the similarities in the first run are shown in Table 1. As the 

value of s2,4 is higher than the similarity threshold =90% 

and is the highest similarity, the cluster 2 and cluster 4 can 

be merged into a new cluster. The similarity results updated 

in the second run are shown in Table 2. The value of s1,3 

which is higher than =90%, so the cluster 1 and 3 can be 

merged into a new cluster. Then the third run is performed 

to update the similarity as shown in Table 3, where no 

similarity is higher than 90%. Therefore, the historical WCV 

travel time records can be grouped into three clusters, i.e. (i) 

Monday and Thursday, (ii) Tuesday and Friday, and (iii) 

Saturday. 

Table 1 The similarity results for weekdays in the first run. 
i  

 j 

1  

(Monday) 

2  

(Tuesday) 

3  

(Thursday) 

4  

(Friday) 

5  

(Saturday) 

1  

(Monday) 
- - - - - 

2  

(Tuesday) 
s1,2=0.00% - - - - 

3  

(Thursday) 
s1,3=92.84% s2,3=0.00% - - - 

4  

(Friday) 
s1,4=0.00% s2,4=99.47% s3,4=0.00% - - 

5  

(Saturday) 
s1,5=0.00% s2,5=87.35% s3,5=0.00% s4,5=0.00% - 

Table 2 The similarity results for weekdays in the second run. 
i  

 j 

1  

(Monday) 

2 

(Tuesday & Friday) 

3  

(Thursday) 

4  

(Saturday) 

1  

(Monday) 
- - - - 

2 

(Tuesday & Friday) 
s1,2 = 0.00% - - - 

3  

(Thursday) 
s1,3 = 92.84% s2,3 = 0.00% - - 

4  

(Saturday) 
s1,4 = 0.00% s2,4 = 86.31% 

s3,4 = 

0.00% 
- 

Table 3 The similarity results for weekdays in the third run. 
i  

 j 

1 

(Monday & Thursday) 

2 

(Tuesday & Friday) 

3  

(Saturday) 

1 

(Monday & Thursday) 
- - - 

2 

(Tuesday & Friday) 
s1,2 = 0.00% - - 

3  

(Saturday) 
s1,2 = 0.00% s2,3 = 86.31% - 

 

Our clustering result is exactly consistent with the practical 

insights. If the public’s behaviors are different in different 

weekdays, and the travel times in different weekdays could 

be differentiated. In our real-life instance of Hsinchu City 

WCVs, Sunday and Wednesday are the days without 

garbage collection service. It implies that relatively more 

trash would be accumulated for disposal on Monday and 

Thursday. It is then expected that a longer WCV travel time 

is required on Monday as well as Thursday, which perfectly 

explains the reason why the data of Monday and Thursday 

are grouped into Cluster 1 as shown in Figure 9. Furthermore, 

most residents may choose to travel on Saturday, so less 

trash would be collected by WCVs, which again clarifies 

why the data of Saturday individually form Cluster 3 as 

shown in Figure 9. The remaining data of Tuesday and 

Friday are grouped into Cluster 2. 

3.2.1.2 Data Feature of Humidity 

We then investigate whether the humidity is an appropriate 

data feature for clustering the WCV travel time records. The 

humidity can be classified into four levels, i.e. Level 1 (0%-

25%, sunny day), Level 2 (25%-50%), Level 3 (50%-75%), 

and Level 4 (75%-100%, raining day). Therefore, the 

historical travel time records can be initially grouped into 

four clusters. The similarity between each pair of clusters 

can be estimated by Equation (7), and the similarity results 

are shown in Table 4. Since there is no similarity higher than 

90%, the humidity cannot be used to perform the data 

clustering for the WCV travel time prediction. 

Table 4 The similarity results for humidity in the first run. 
I  

 j 
1 (Level 1) 2 (Level 2) 3 (Level 3) 4 (Level 4) 

1 (Level 1) - - - - 

2 (Level 2) s1,2 = 0.00% - - - 

3 (Level 3) s1,3 = 0.00% s2,3 = 0.00% - - 

4 (Level 4) s1,4 = 0.00% s2,4 = 0.00% s3,4 = 0.00% - 
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3.2.2 Training Stage 

In order to develop our model with the low computational 

complexity, we adopt the LR method to train the prediction 

model for each cluster yielded in the pre-training stage. Then 

the historical travel time records in each cluster are used to 

generate the linear regression equation according to 

Equations (2), (3), and (4). Given the data in Figure 9, the 

linear regression equations for Clusters 1, 2, 3 are yielded as 

Equations (8), (9), and (10), respectively. 

2,3 1,2(Cluster 1): 1178.4 1.46x x    (8) 

2,3 1,2(Cluster 2): 103.53 0.2353x x    (9) 

2,3 1,2(Cluster 3): 127 0.0333x x    (10) 

The travel time prediction models between each two 

consecutive CPs are trained in the training stage. For 

instance, the travel time prediction model from the n-th CP 

to the (n+1)-th CP is expressed as , 1n nx 
  (shown in 

Equation (11)) in accordance with historical records.  

, 1 , 1 , 1 1,n n n n n n n nx b w x   
     (11) 

3.2.3 Runtime Stage 

At the runtime stage, the yielded linear regression model can 

be selected according to the weekdays and thus clusters. 

Then the realized travel time x1,2 can be brought into the 

selected linear regression model to predict the travel time 

x′2,3. For instance, if on Monday the DAS receives the 

information of realized travel time x1,2=300 seconds, it 

generates the predicted travel time x2,3=740.4 seconds as 

shown in Figure 9. Furthermore, the predicted travel time 

, 1n nx 
  can be adopted into Equation (12) to predict the 

travel time +1, 2n nx 
  from the (n+1)-th CP to the (n+2)-th 

CP when the WCV arrives at the n-th CP. 

+1, 2 +1, 2 +1, 2 , 1n n n n n n n nx b w x   
     (12) 

4. Computational Experiment and Online 

Implementation 

The experimental results and discussions are provided in 

Subsection 4.1 for evaluating the proposed predicted model. 

The online implementation of the developed system is 

demonstrated in Subsection 4.2. 

4.1 Computational Experiment 

This study considers LR, NN, RNN and AE for travel time 

prediction. This section discusses the comparisons of 

accuracy and computation time in 8 cases (i.e., Case 1: LR 

without clustering; Case 2: NN without clustering; Case 3: 

RNN without clustering; Case 4: using AE in pre-training 

stage and using NN in training stage without clustering; 

Case 5: LR with clustering; Case 6: NN with clustering; 

Case 7: RNN with clustering; Case 8: using AE in pre-

training stage and using NN in training stage with 

clustering). Subsection 4.1.1 presents the accuracies of each 

case, and Subsection 4.1.2 shows the computation time of 

each case.  

4.1.1 Accuracy 

In our computational experiments, the records of the 

Hsinchu City WCV travel times from April to October were 

collected to evaluate the performance of the proposed 

prediction model. To justify the accuracy of travel time 

prediction, we adopted the accuracy formula devised by the 

Ministry of Transportation and Communications of Taiwan 

(MTOC) as shown in Equation (14). If the error ratio of a 

predicted travel time record is larger than 20%, it is labelled 

as error. Otherwise, the record is labelled as precise. This 

accuracy formula is used to calculate the ratio of precise 

records. 

, 1, , 1,

1
, 1,

'
( )

Accuracy 100% ,

m n n k n n k

k
n n k

x x
f

x

m

 






 



1,  if 20%;
where ( )

0,  otherwise.

z
f z

 
 


         (14) 

The accuracy results of the LR, NN, RNN and AE are shown 

in Tables 5 and 6. The accuracies in Cases 1, 2, 3 and 4 are 

14.7%, 27.6%, 27.6% and 75%, respectively. This study 

considered one timestamp for RNN, so the accuracy of RNN 

was the same as the accuracy of NN. For the evaluation of 

the proposed method, the accuracy results of different 

methods with clustering are showed in Table 6. The 

accuracies in Cases 5, 6, 7 and 8 are 75.00%, 76.72%, 

76.72% and 77.59%, respectively. Therefore, the accuracy 

of travel time prediction can be improved based on 

clustering method. Figures 10 or 11 show that the distances 

between actual data and the predicted equation are relatively 

large, which is reflected by the low accuracy value. Figure 

12 illustrates that the distances between actual data and the 

predicted equations are relatively small, which results in a 

high accuracy of 75%. Our computational experiment 

demonstrates that the proposed clustering method can 

effectively extract the critical data feature for data clustering. 

Furthermore, our proposed WCV travel time prediction 

model can fulfil the accuracy of 70% required by MTOC in 

practice. Therefore, the solutions of travel time prediction 

with clustering method can be accepted by MTOC. 

Table 5 The accuracy comparisons of different methods without 

clustering. 

  LR NN RNN AE+NN 

Accuracy 14.70% 27.60% 27.60% 37.93% 
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Table 6 The accuracy comparisons of different methods with clustering. 

  
Cluster + LR  

(the proposed model) 
Cluster+NN Cluster+RNN Cluster+AE+NN 

Accuracy 75.00% 76.72% 76.72% 77.59% 

 

 
Fig. 10. The travel time prediction equation by the LR method. 

 
Fig. 11. The travel time prediction equation by the NN. 

 
Fig. 12. The travel time prediction equation by the proposed model. 

4.1.2 Computation Time 

For the evaluation of computation time, this study used a 

server with a GPU module (i.e., GeForce GTX 1080). The 

regression and deep learning models based on TensorFlow 

and Keras libraries were implemented to obtain predicted 

travel time.  

In the runtime stage, the number of runs is 20,000 for each 

case, and the means of computation time are presented in 

Tables 7 and 8. The practical experimental results show that 

the lower computation time was needed for LR. Furthermore, 

the higher computation time is required in the cases of NN 

and RNN. The computation times in Cases 1, 2, 3 and 4 are 

15.01 milliseconds, 161.48 milliseconds, 185.31 

milliseconds, and 323.21 milliseconds, respectively. For the 

evaluation of the proposed method, the computation time 

comparisons of different methods with clustering are 

showed in Table 8. The computation times in Cases 5, 6, 7 

and 8 are 18.92 milliseconds, 165.39 milliseconds, 189.22 

milliseconds, and 327.12 milliseconds, respectively. The 

lower computation time is about 4 milliseconds for 

clustering method in the runtime stage. 

Although the accuracy in Case 8 is higher than the accuracy 

in Case 5, the computation time in Case 8 is higher than the 

computation time in Case 5. Furthermore, the accuracy in 

Case 5 which is higher than the accuracy of 70% can be 

accepted by MTOC. Therefore, the linear regression method 

with clustering can be adopted for travel time prediction 

with lower computation time and cost. 

Table 7 The computation time comparisons of different methods without 

clustering. (unit: milliseconds) 

 LR NN RNN AE+NN 

Time 15.01 161.48 185.31 323.21 

Table 8 The computation time comparisons of different methods with 

clustering. (unit: milliseconds) 

 Cluster + LR 

(the proposed model) 
Cluster+NN Cluster+RNN Cluster+AE+NN 

Time 18.92 165.39 189.22 327.12 

4.2 Online Implementation 

The proposed travel time prediction system has gone online 

for providing the arrival time information of WCVs in 

Hsinchu City, where there are 157,000 households and 

434,000 residents. The developed WCV mobile application 

which was published in the site of Google Play has been 

downloaded over 15,000 times [33]. 

The usage of the WCV mobile application includes the 

following two steps (as shown in Figure 13). 

Step 1: The mobile application can get the locations of 

proximal CPs according to user’s location. 

Step 2: The user can click the icon of CP, and the mobile 

application can show the predicted WCV arrival time at each 

CP in the selected route. 

 
Fig. 13. The user interfaces of the WCV mobile application. 

In Figure 13, the red circle indicates the user’s location and 

the blue circle illustrates the location of CP. The green circle 

indicates the current location of WCV. The user can query 

the locations of proximal CPs, and then select a suitable CP 

for obtaining the predicted WCV arrival time. When the user 

clicks the icon of CP, and the mobile application shows the 

predicated WCV arrival time at the CP. 
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5. Conclusions and Future Work 

This study developed a travel time prediction system based 

on data clustering for providing real-time information on the 

arrival time of waste collection vehicle (WCV). The 

developed system consists of MDs, OBUs, an FMS, and a 

DAS. A travel time prediction model utilizing the adaptive-

based clustering technique coupled with a data feature 

selection procedure is devised and embedded in the DAS. 

Our experiment result demonstrated that the proposed 

prediction model achieves an accuracy rate of 75.0% and 

outperforms the reference linear regression method and 

neural network technique, the accuracy rates of which are 

14.7% and 27.6%, respectively. The developed system is 

effective as well as efficient and has gone online. 

For further extension of this research, the NN model or deep 

learning techniques instead of the LR method can be utilized 

in the training stage of the devised prediction model for 

further enhancing the prediction accuracy. Moreover, our 

prediction model can be applied to different transportation 

services such as bus and logistics systems. 

Funding 

This research was funded by Fuzhou University, grant 

number 510730/XRC-18075. 

Acknowledgments 

The authors thank the Telecommunication Laboratories of 

Chunghwa Telecom Company in Taiwan for the kind 

support. 

References 

[1]. Chen, S.L., Hsu, S.C., Tseng, C.T., Yan, K.H., Chou, H.Y., Too, T.M., 

Analysis of rail potential and stray current for Taipei Metro. IEEE 

Transactions on Vehicular Technology 2006, 55(1): 67-75. Doi: 

10.1109/TVT.2005.861164 

[2]. Corman, F., Meng, L., A review of online dynamic models and 

algorithms for railway traffic management. IEEE Transactions on 

Intelligent Transportation Systems 2015, 16(3): 1274-1284. Doi: 

10.1109/TITS.2014.2358392 

[3]. Chen, C.H., An arrival time prediction method for bus system. IEEE 

Internet of Things Journal 2018, early access. Doi: 

10.1109/JIOT.2018.2863555 

[4]. Schlote, A., Chen, B., Shorten, R., On closed-loop bicycle availability 

prediction. IEEE Transactions on Intelligent Transportation Systems 

2015, 16(3): 1449-1455. Doi: 10.1109/TITS.2014.2365492 

[5]. Chen, C.H., Yang, Y.T., Chang, C.S., Hsieh, C.M., Kuan, T.S., Lo, 

K.R., The design and implementation of a garbage truck fleet 

management system. South African Journal of Industrial Engineering 

2016, 27(1): 32-46. Doi: 10.7166/27-1-982 

[6]. Karlaftis, M.G., Vlahogianni, E.I., Statistical methods versus neural 

networks in transportation research: differences, similarities and some 

insights. Transportation Research Part C: Emerging Technologies 

2011, 19(3): 387-399. Doi: 10.1016/j.trc.2010.10.004 

[7]. O'Sullivan, A., Pereira, F.C., Zhao, J., Koutsopoulos, H.N., 

Uncertainty in bus arrival Time predictions: treating heteroscedasticity 

with a metamodel approach. IEEE Transactions on Intelligent 

Transportation Systems 2016, 17(11): 3286-3296. Doi: 

10.1109/TITS.2016.2547184 

[8]. Yu, H., Wu, Z., Chen, D., Ma, X., Probabilistic prediction of bus 

headway using relevance vector machine regression. IEEE 

Transactions on Intelligent Transportation Systems 2017, 18(7): 1772-

1781. Doi: 10.1109/TITS.2016.2620483 

[9]. Moreira-Matias, L., Mendes-Moreira, J., de Sousa, J.F., Gama, J., 

Improving mass transit operations by using AVL-based systems: a 

survey. IEEE Transactions on Intelligent Transportation Systems 2015, 

16(4): 1636-1653. Doi: 10.1109/TITS.2014.2376772 

[10]. Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T., Big data analytics in 

intelligent transportation systems: a survey. IEEE Transactions on 

Intelligent Transportation Systems 2018, early access. Doi: 

10.1109/TITS.2018.2815678 

[11]. Chen, W.J., Chen, C.H., Lin, B.Y., Lo, C.C., A traffic information 

prediction system based on global position system-equipped probe car 

reporting. Advanced Science Letters 2012, 16(1): 117-124. Doi: 

10.1166/asl.2012.2192 

[12]. Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning 

representations by back-propagating errors. Nature 1986, 323: 533-

536. Doi: 10.1038/323533a0 

[13]. LeCun, Y., Bengio, Y., Hinton, G.E., Deep learning. Nature 2015, 521: 

436-444. Doi: 10.1038/nature14539 

[14]. Pang, J., Huang, J., Du, Y., Huang, Q., Yin, B. Learning to predict bus 

arrival time from heterogeneous measurements via recurrent neural 

network. IEEE Transactions on Intelligent Transportation Systems 

2018, early access. Doi: 10.1109/TITS.2018.2873747 

[15]. Wu, L., Chen, C.H., Zhang, Q. A mobile positioning method based on 

deep learning techniques. Electronics 2019, 8(1), Article ID 59. Doi: 

10.3390/electronics8010059 

[16]. Mackenzie, J., Roddick, J.F., Zito, R. An evaluation of HTM and 

LSTM for short-term arterial traffic flow prediction. IEEE 

Transactions on Intelligent Transportation Systems 2018, early access. 

Doi: 10.1109/TITS.2018.2843349 

[17]. He, P., Roddick, J.F., Zito, R. Travel-time prediction of bus journey 

with multiple bus trips. IEEE Transactions on Intelligent 

Transportation Systems 2018, early access. Doi: 

10.1109/TITS.2018.2883342 

[18]. Duan, P., Mao, G., Liang, W., Zhang, D. A unified spatio-temporal 

model for short-term traffic flow prediction. IEEE Transactions on 

Intelligent Transportation Systems 2018, early access. Doi: 

10.1109/TITS.2018.2873137 

[19]. Chen, C.H. Reducing the dimensionality of time-series data with deep 

learning techniques. Science 2018, eLetter. Available online: 

http://science.sciencemag.org/content/313/5786/504/tab-e-letters 

(accessed on 12 January 2019). 

[20]. Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T. Big data analytics in 

intelligent transportation systems: a survey. IEEE Transactions on 

Intelligent Transportation Systems 2019, 20(1): 383-398. Doi: 

10.1109/TITS.2018.2815678 

[21]. Huang, Z.H., Li, N., Rao, K.F., Liu, C.T., Huang, Y., Ma, M., Wang, 

Z.J., Development of a data-processing method based on Bayesian k-

means clustering to discriminate aneugens and clastogens in a high-

content micronucleus assay. Human & Experimental Toxicology 2017, 

37(3): 285-294. Doi: 10.1177/0960327117695635 

[22]. Khanmohammadi, S., Adibeig, N., Shanehbandy, S., An improved 

overlapping k-means clustering method for medical applications. 

Expert Systems with Applications 2017, 67: 12-18. Doi: 

10.1016/j.eswa.2016.09.025 

[23]. Ni, L., Li, C., Wang, X., Jiang, H., Yu, J., DP-MCDBSCAN: 

Differential privacy preserving multi-core DBSCAN clustering for 

network user data. IEEE Access 2018, 6: 21053-21063. Doi: 

10.1109/ACCESS.2018.2824798 

[24]. Ienco, D., Bordogna, G., Fuzzy extensions of the DBScan clustering 

algorithm. Soft Computing 2018, 22(5): 1719-1730. Doi: 

10.1007/s00500-016-2435-0 



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

10 

[25]. Wu, B., Wilamowski, B.M., A fast density and grid based clustering 

method for data with arbitrary shapes and noise. IEEE Transactions 

on Industrial Informatics 2017, 13(4): 1620-1628. Doi: 

10.1109/TII.2016.2628747 

[26]. Deng, C., Song, J., Sun, R., Cai, S., Shi, Y., GRIDEN: An effective 

grid-based and density-based spatial clustering algorithm to support 

parallel computing. Pattern Recognition Letters 2018, 109: 81-88. Doi: 

10.1016/j.patrec.2017.11.011 

[27]. Ferstl, F., Kanzler, M., Rautenhaus, M., Westermann, R., Time-

hierarchical clustering and visualization of weather forecast ensembles. 

IEEE Transactions on Visualization and Computer Graphics 2017, 

23(1): 831-840. Doi: 10.1109/TVCG.2016.2598868 

[28]. Liu, A.A., Su, Y.T., Nie, W.Z., Kankanhalli, M., Hierarchical 

clustering multi-task learning for joint human action grouping and 

recognition. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 2017, 39(1): 102-114. Doi: 

10.1109/TPAMI.2016.2537337 

[29]. Chen, C.H., Lin, J.H., Kuan, T.S., Lo, K.R., A high-efficiency method 

of mobile positioning based on commercial vehicle operation data. 

ISPRS International Journal of Geo-Information 2016, 5(6), Article 

ID 82. Doi: 10.3390/ijgi5060082 

[30]. [a23] Huang, R., Wu, J., Long, C., Zhu, Y., Li, B., Lin, Y.B., SPRCA: 

Distributed multisource information propagation in multichannel 

VANETs. IEEE Transactions on Vehicular Technology 2017, 66(12): 

11306-11316. Doi: 10.1109/TVT.2017.2726159 

[31]. Su, D., Ahn, S., In-vehicle sensor-assisted platoon formation by 

utilizing vehicular communications. International Journal of 

Distributed Sensor Networks 2017, 13(7): 1-12. Doi: 

10.1177/1550147717718756 

[32]. Cui, H., Yan, G., Song, H., A novel curvelet thresholding denoising 

method based on chi-squared distribution. Signal, Image and Video 

Processing 2015, 9(2): 491-498. Doi: 10.1007/s11760-014-0685-9 

[33]. Chunghwa Telecom Co. Ltd. Waste collection vehicle mobile 

application. Google Play 2018. Available online: 

https://play.google.com/store/apps/details?id=com.cht.cleanbuspublic

&hl=zh_TW (accessed on 12 January 2019). 

 

 

 

 Chi-Hua Chen serves as a professor (a 

Minjian scholar and a Qishan scholar) for the 

College of Mathematics and Computer 

Science at Fuzhou University in China. He 

received his Ph.D. degree from the 

Department of Information Management and 

Finance of National Chiao Tung University 

(NCTU) in 2013. He has published over 200 

journal articles, conference articles, and 

patents. His recent research interests are in the 

Internet of things, big data, deep learning, 

cellular networks, data mining and intelligent 

transportation systems. 

 

 

 

 F.J. Hwang received his Ph.D. degree in 

Information Management from NCTU in 

2011. He is the Senior Lecturer of Operational 

Research at the School of Mathematical and 

Physical Sciences, Transport Research 

Centre, University of Technology Sydney. 

His research interests center around 

Operations Research, Industrial 

Optimization, Management Information 

Science, Data Science, Intelligent 

Transportation and Logistics, and 

Computational Intelligence. 

 

 

 Hsu-Yang Kung received his BS degree from 

Tatung University, MS degree from National 

Tsing-Hwa University, PhD degree from 

National Cheng-Kung University, Taiwan, all 

in computer science and information 

engineering. He is currently a professor and 

Dean of College of Management, National 

Pingtung University of Science and 

Technology, Taiwan. Prof. Kung published 

more than 200 academic papers and obtained 

several the best paper and thesis wards. Prof. 

Kung dominated more than 100 industrial and 

academic research projects and owned 25 

patens. Prof. Kung received the distinguished 

professor 6 times and the Excellent Research 

Group Awards 5 times from Ministry of 

Science and Technology. His research 

interests include IoT middleware, cloud 

computing, wireless and mobile 

communications, and embedded multimedia 

applications. 

 

 


