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ABSTRACT Processes in operating systems are assigned different privileges to access different
resources. A process may invoke other processes whose privileges are different; thus, its privileges are
expanded (or escalated) due to such improper ‘‘inheritance.’’ Inter-networking can also occur between
processes, either transitively or iteratively. This complicates the monitoring of inappropriate privilege
assignment/escalation, which can result in information leakage. Such information leakage occurs due to priv-
ilege transitivity and inheritance and can be defined as a general access control problem for inter-networking
linkages. This is also a topic that is generally less studied in existing access control models. Specifically,
in this paper, we propose a lightweight directed graph-based model, LiCo, which is designed to facilitate the
authorization of privileges among inter-networking processes. To the best of our knowledge, this is the first
general access control model for inter-invoking processes and general inter-networking linkages.

INDEX TERMS Access control, privilege management, privilege transitivity, graph theory, process
management.

I. INTRODUCTION
Access control is crucial for modern day systems, as it pre-
vents unauthorized access, for example to resources in oper-
ating systems and application layers. Conventional access
control models focus on direct access control, in which an
accessor can be granted access to certain objects (resources),
based on the corresponding privileges. For example, access
control is defined directly by a tuple 〈a, o, p〉, where a is an
accessor, o is an object, and p is a privilege. An accessor can
also be assigned to a role (i.e. role-based access control), and
in suchmodel, the privileges are bind to the roles (e.g., faculty
members, department heads, and deans) [2]. These schemes
have been widely studied in the literature.

In indirect context, however, one accessor (e.g., A) may
invoke another accessor (e.g., B). This can potentially result
in an unauthorized extension of A’s privileges. For exam-
ple, A’s privilege for o is p1, but A can invoke B to gain
additional privilege for o to p2. Thus, we need a model to

formalize how and when we can permit such additional priv-
ilege extension. In social networks (e.g., Tencent QQ space),
for example, A shares a photo with her friends (e.g., B andC).
The friends may leave some comments (information) relat-
ing to the shared photo. One of the friends (e.g., B) may
access A’s QQ space to gain other friends’ information
(e.g., C’s information). How to regulate privilege abuse due
to inter-invoking linkages among accessors is a topic that is
under-explored in the existing literature.

Inter-invoking occurs when interactions among processes
are frequent, for example for collaboration (e.g., a shopping
application needs to cooperate with a transaction applica-
tion for product payment on mobile devices). While these
different processes have different privileges (e.g., the trans-
action application can access the users’ payment account
and location), security vulnerabilities may arise during the
inter-invoking processes (e.g., by invoking a process that can
directly access location information, a process may indirectly
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access the user’s location information). In addition, current
access control model for inter-invoking may regulate privi-
leges by a switch - yes or no, which is not fine-grained.

It can be challenging to define an access control model for
inter-networking linkages, as linkages can be either transi-
tively or iteratively. There may also exist an invoking loop,
and the inter-networking can be arbitrary linkage structures.
There is also a need to design access control model that
can be generalizable to different scenarios, such as social
networks. This is the gap we seek to address in this paper.
Specifically, we design a lightweight access control model
(hereafter referred to as LiCo) to facilitate the authorization of
fine-grained privileges among inter-invoking processes. The
model is based on directed graph and comprises several key
algorithms. LiCo is designed to efficiently detect privilege
collisions, raise an alert, and properly authorize the right
privileges.

The rest of the paper is organized as follows.
Sections II and III survey related work and describe the
research problem, respectively. Section IV describe our
proposed model, whose security and performance are then
evaluated in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK
In time-sharing system of 1970s, Jampson [3] proposed a
DAC model for the data protection of multiuser computer
system, mainly to set up the relationship table between the
host and the guest(s). This model defines the level of secu-
rity attributes on subject and object, to determine whether
the subject has access to the object [4]. In August 2001,
NIST [5] published the first RBAC standard, which includes
two parts: RBAC referencemodel and RBAC functional spec-
ification. It realized the logic separation between users and
permissions, simplifying authorization processes. There are
a number of other models, such as the 1997 TBAC model
of Thomas and Sandhu [6], the domain based access control
model DBAC of Shaifq et al. [7], and the uniform access
control framework of Covington et al. [8]. Petracca et al. [9]
presented an access control model to handle privacy-sensitive
permission on mobile devices. In the approach, the operation
requests of applications were verified to determine if these
requests are within the users’ expectations explicitly.

In recent years, there have been attempts to use
attributed-based encryption (ABE) in access control model.
For example, Goyal et al. [10] developed a cryptosys-
tem for fine-grained sharing of encrypted data, Key-Policy
Attributed-Based Encryption (KP-ABE). Other research on
ABE-based access control models include [11], [12] (e.g., for
cloud computing), [13], [14] (e.g., web service), and so on.
The popularity of HTML5-basedmobile applications has also
attracted the attention of access control researchers. In [15],
a fine-grained access control mechanism for HTML5-based
applications in Android system was proposed.

In addiiton to RBAC access control models, there
have been other access control models such as those
based the access decisions on contexts [16]. For example,

Bijon et al. [17] studied the differences between conventional
constraint-based access control and risk-aware approaches in
RBAC, from which a framework are built for risk-awareness
in RBAC models incorporating quantified-risks.

Access control has applications in a broad range of settings,
such as online social networks (OSNs) where user-specific
information are being shared [18]. Carminati et al. [19] pre-
sented an access control mechanism for OSNs, based on
semantic web. Specifically, the authors encoded social net-
work information (e.g., user’s profiles, relationships among
users) using an ontology, based on which the access control
model can be achieved and such mechanism can then be
adapted for other OSN platforms by modifying the ontol-
ogy. Ren et al. [20] also designed and implemented a
lightweight tree-based model called SeGoAC, which sup-
ports self-defined privilege grant and revocation, as well
as proxy-enabled and group-oriented access control for file
storage in mobile cloud computing.

FIGURE 1. An example on how a potentially malicious application can
stealthily gain access to information via inter-network invoking.

III. PROBLEM FORMULATION
Security breach is one of several consequences due to indi-
rectly invoking of processes – see Fig. 1. Although potentially
malicious application cannot directly access certain resources
such as location, camera, and microphone, such application
can indirectly gain access to these resources by invoking
another application that has been granted permission to these
resources.

Note that the above threat model can be generalized.
For example, some information accessed in one applica-
tion (e.g., app A) may expand the accessible objects of
another application (e.g., app B) who invokes this application
(i.e., app A). This situation can occur not only during process
invoking, but also in OSNs. For example, in Tecent QQ,
if one (e.g., user A) makes his/her QQ space public to say
users B and C , then users B and C may obtain additional
information of another user, say user D by accessing user A’s
QQ space. Such leakage is always ignored by users and
service providers, as it is challenging to objectively define
the type of information that is being leaked.

Despite the challenge in not being able to objectively
define leakage in such a situation, we argue that the leakage
risk can be modeled as a privilege collision problem. Once
the privileges of a subject (SA) for an object ‘‘collides’’
with the privileges of another subject (SB) with links to SA,
we should regulate the privilege that are invoked (i.e., SA)
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or invokes (i.e., SB). Thus, to enhance one’s understand-
ing, we propose a graph model for access control that can
visualize the inter-relation among accessors (e.g., processes)
and the objects (resources, such as location, camera, and
microphone) as follows:
Definition 1: Access Control Graph (ACG). It is a graph

taht consists of vertexes and directed edges. There are two
types of vertexes, namely: accessors (presented by black
points), and objects (presented by white triangles). There are
also two types of directed edges, namely: directed edges from
an accessor to another, representing invoking relations, and
directed edges from an accessor to an object, which represent
accessing relations.

We can state ACG formally as follows:

ACG ::= <V ,E>;

V = VAcc ∪ VObj;

E = EInv ∪ EAcc;

EInv ::= 〈Vfrom,Vto〉, Vfrom ∈ VAcc, Vto ∈ VAcc;

EAcc ::= 〈Vfrom,Vto〉, Vfrom ∈ VAcc, Vto ∈ VObj.

The design of ACG is motivated by differentiating acces-
sors and relations. An abstract model presented by a graph
has the following advantages: it is general for diverse applica-
tions, it is easy to describe, and it is easy to understand. More-
over, some concepts in graph theory can be used to convey
ideas, such as transitive closure, cyclic graph, and clusters.
Graph algorithms are also be available as a basic tool.

FIGURE 2. An ACG example.

IV. PROPOSED SCHEME
A. ACCESS CONTROL MODEL
Fig. 2 presents a simple ACG, which comprises acces-
sors (processes) that can access objects (resources) by both
direct and indirect means. There are, however, situations
where a processor may require indirect information from
another process (e.g., a shopping application may request
for location data) and the inter-networking process is one
attack vector that may be exploited (e.g., Fig. 1). In our
approach, the goal is to detect privilege collisions due to
such indirect paths that may lead to the abuse of privileges
(e.g., gain additional access privileges without permission),
and to mitigate such collisions.

Specifically, ACG can be defined as follows:
1) ACG ::= 〈V ,E〉, where V is a set of vertexes and E is

a set of edges.
2) V = VAcc ∪ VObj, where VAcc is a set of accessors and

VObj is a set of objects.

3) E = EInv ∪ EAcc, where EInv is a set of invoking edges
and EAcc is a set of accessing edges.

4) EInv ::= 〈Vfrom,Vto〉,Vfrom ∈ VAcc,Vto ∈ VAcc.
5) EAcc ::= 〈Vfrom,Vto,P〉,Vfrom ∈ VAcc,Vto ∈ VObj,

P ∈ Pri.
6) ∀e ∈ EAcc, e = 〈from, to, p〉 where from ∈ VAcc,

to ∈ VObj, p = [p1, p2, . . . , pn] ∈ {0, 1}n, n = |Pri|.
7) ∀e ∈ EInv, e = 〈from, to 〉 where from ∈ VAcc,

to ∈ VAcc.
8) Pri is a set of privileges. Pri ::= 〈pri1, pri2, . . . , prin〉,

where |Pri| = n. E.g., Pri ::= 〈read,write, update〉.
9) ∀e ∈ EAcc, if pi = 1, then accessor e.from can access

object e.to with privilege prii ∈ Pri. Otherwise, pi =
0 means e.from access e.to without prii. For example,
p = 110 means read and write; p = 101 means read
and update.

Given an accessor, all accessors that can be invoked,
directly or indirectly by this accessor, are of interest and they
can be modeled as a closure. A closure process (denoted
asClsa) that returns all invoked accessors for a given accessor
is defined as follows:
Definition 2: Closure process Clsa : a ∈ VAcc →

A ⊂ VAcc. Clsa takes as input an accessor a ∈ VAcc
and outputs a set of invoked accessors A ∈ VAcc. Initially,
A = {a}. Next, let A ⇐ {v|∀a ∈ A, e ∈ EInv, a = e.from,

v = e.to} ∪ A. Note that the above process is recursive.
Given an accessor, all objects that can be accessed directly

by this accessor are of interest. A closure function (denoted
as Clso) that returns all directly accessible objects for a given
accessor is defined as follows:
Definition 3: Closure function Clso : a ∈ VAcc →

O ⊂ VObj. Clso takes as input an accessor a ∈ VAcc and
outputs a set of accessed objects O ⊂ VObj. That is, O =
{v|∀a ∈ VAcc, e ∈ EAcc, a = e.from, v = e.to}.

Given an accessor, all objects that can be accessed directly
or indirectly can be returned by the following function,
denoted as Clsao. It relies on Clsa(·) as a subfunction.
Definition 4: Closure function Clsao : a ∈ VAcc →

O ⊂ VObj. Clsao takes as input an accessor a ∈ VAcc
and outputs a set of accessed objects O ⊂ VObj. That is,
O = {v|∀a′ ∈ Clsa(a), e ∈ EAcc, a′ = e.from, v = e.to}.

The following function, denoted as HD, returns the ham-
ming distance that can reveal whether collision occurs
between two privileges.
Definition 5: Hamming distance function HD : p1 ∈
{0, 1}n × p2 ∈ {0, 1}n → n ∈ Z. HD takes as input
p1, p2 ∈ {0, 1}n, and outputs n which is a Hamming Distance
of p1 and p2.
The following function (denoted as Clla) returns collisions

between privileges for the same objects - privileges granted
initially and privileges gained by transitively invoking.
Definition 6: Privilege collisions for closure function

Clla : a ∈ VAcc → n ∈ Z. Clla takes as input an
accessor a ∈ VAcc and outputs an integer number n =
max({HD(p1, p2)|e1 ∈ E1, e2 ∈ E2, p1 = e1.p, p2 =
e2.p, e1.to = e2.to}), where E1 = {e1|e1 ∈ EAcc,
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e1.from = a, e1.to ∈ Clso(a), E2 = {e2|e2.from ∈

Clsa(a), e2.to ∈ Clsao(a)}).
We will now present the theorem relating to the detection

of privilege breaches.
Theorem 1: ∀a ∈ VAcc, if Clla(a ∈ VAcc) 6= 0 or

Clsao(a) ∩ Clso(a) 6= ∅, then this results in privacy breach
due to inter-networking linkages.
Proof 1: For any accessor a in accessors, the objects that

a can access are Clso(a). The accessors that are invoked
by a are Clsa(a). Any privileges for a originally are e1.p,
where e1.from = a, e1.to ∈ Clso(a). Any privileges for
accessors invoked by a are e2.p, where e2.from ∈ Clsa(a) and
e2.to ∈ Clsao(a). Their differences are HD(e1.p, e2.p), where
the maximal is Clla(a). If Cll(a) 6= 0, then there is a privacy
breach due to the invoking between accessors.
Alternatively when Clsao(a) ∩ Clso(a) 6= ∅, there exists

an object that cannot be accessed by a originally but can be
accessed by an accessor invoked by a. �

Privilege collision is related to the definition of individual
privilege and the relation among them. For example, if each
privilege is independent, then collision will occur once there
exist differences. If privilege is dependent (e.g., subset rela-
tion), then the collision will be more complicated. We will
now define a simple function (denoted as Pric) on privilege
collision, based on hamming distance.
Definition 7: Privilege collision function Pric : p1 ∈
{0, 1}n × p2 ∈ {0, 1}n → b ∈ {0, 1} takes as input p1, p2 ∈
{0, 1}n and outputs b = 0 if HD(p1, p2) 6= 0 (which means
collision occurs). Otherwise, b = 1.
Privileges may, however, not collide with each other. For

example, write does not collide with update. That is, privi-
leges between each other are not entirely exclusive. In this
situation, we need to extend Pric(·, ·) to a more general
version, Pri′c(·, ·), which specifies whether collision occurs
for the given pairwise privileges. It is described as follows:
Definition 8: Privilege collision function Pri′c : p1 ∈ Pri×

p2 ∈ Pri → b ∈ {0, 1} takes as input p1, p2 ∈ Pri and
outputs b = 0 if p1 collides with p2 (depending on concrete
application logics). Otherwise, b = 1.
We can map a privilege array consisting of 0, 1

(e.g., [1, 0, . . . , 1, 0]) to represent individual concrete priv-
ileges. We, thus, define a new process (denoted as A2PSet) to
compute this mapping.
Definition 9: Array maps to privilege process A2PSet :

p ∈ {0, 1}n → pri1, pri2, . . . , prin ∈ Pri, n = |Pri|. A2P
takes as input p ∈ {0, 1}n and outputs a set of privileges,
in which Prii is included if the i-th bit in array p is 1.
Otherwise, Prii is excluded from the set.

By using the above mapping process (i.e., A2PSet(·)),
we can define a generalized collision detection function
(denoted as A2C) that can handle different relation types
between underlying individual privileges. It is described as
follows:
Definition 10: Privilege collision by array function A2C :

p1 ∈ {0, 1}n × p2 ∈ {0, 1}n → b ∈ {0, 1} takes as input
p1, p2 ∈ {0, 1}n and outputs a b = 0 if ∀pa ∈ A2PSet(p1),

∃pb ∈ A2PSet(p2) such that Pri′c(pa, pb) = 0. If b = 1, then
no privilege collision occurs.

By using the above generalized version of collision detec-
tion function (i.e.,A2C), we can define the following function
called Cll ′a.
Definition 11: Privilege difference for closure function

Cll ′a : a ∈ VAcc → b ∈ {0, 1} takes as input an accessor
a ∈ VAcc and outputs

b =
∏

∀e1∈E1,∀e2∈E2,e1.to=e2.to

A2C(e1.p, e2.p),

where E1 = {e1|e1 ∈ EAcc, e1.from = a, e1.to ∈ Clso(a)},
and E2 = {e2|e2.from ∈ Clsa(a), e2.to ∈ Clsao(a)})}.
If b = 0, then collision occurs; otherwise, there is no privilege
collision.

We will now present a general conclusion.
Corollary 1: ∀a ∈ VAcc, if Cll ′a(a ∈ VAcc) = 0 or

Clsao(a) ∩ Clso(a) 6= ∅, then privacy breaches due to
inter-networking linkages.
Proof 2: Straightforward due to Theorem 1. �
Usually, ∀pri1, pri2 ∈ Pri, pri1 < pri2, where < means

‘‘implied by’’. For example, ‘‘read’’ is implied by ‘‘write’’,
that is, read < write. Suppose Pri = [pri1, . . . , prin], and
pri1 < pri2 < . . . < prin. Thus, we can map privileges into
ordered integers, such as 1, 2, . . . , n. Clearly, only the largest
one is sufficient to denote privileges. Thus, ∀e ∈ EAcc, e =
〈from, to, p〉 where from ∈ VAcc, to ∈ VObj, p ∈ Z. For this
situation, we introduce Cll ′′a (·) as follows:
Definition 12: Privilege difference for closure function

Cll ′′a : a ∈ VAcc → b ∈ {0, 1} takes as input an accessor
a ∈ VAcc and outputs

b =
∏

∀e1∈E1,∀e2∈E2,e1.to=e2.to

IsLEQ(e2.p, e1.p),

where E1 = {e1|e1 ∈ EAcc, e1.from = a, e1.to ∈ Clso(a)},
E2 = {e2|e2.from ∈ Clsa(a), e2.to ∈ Clsao(a)})}, and
IsLEQ(c ∈ N, d ∈ N) returns 1 if c ≤ d and returns
0 otherwise. If b = 0, then collision occurs. Otherwise,
no privilege collision occurs.
We can simplify the conclusion to the following:
Corollary 2: ∀a ∈ VAcc, if Cll ′′a (a ∈ VAcc) = 0 or

Clsao(a)∩Clso(a) 6= ∅, then privacy breaches due to linkage.
Proof 3: Straightforward due to Theorem 1. �

B. PROPOSED AUTHORIZING RULES
Next, we will propose relevant access control rules, based on
the basic model described in the preceding section.
Proposition 1: Regulating Privileges of Invoked Processes

from an Accessor (Rule I: Privilege is non-increasing for an
invoking edge). Suppose e ∈ EInv and invoking from accessor
e.from. If e′1.to = e′2.to, where e

′

1, e
′

2 ∈ EAcc, e.from =
e′1.from, e.to = e′2.from, then let e′2.p = e′1.p. Otherwise,
let e′2.to =⊥.
In other words, the above rule states that if an accessor

(e.g., process A) invokes another accessor (e.g., process B),
then the privilege of invoked accessor (i.e., process B)
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must be less than or equal to the privilege of invoking accessor
(i.e., process A) once the same object is accessed. The access
control unit will normalize the privilege of invoked process B
when B is invoked by A.
Definition 13: Invoking Path. If ∃e1, e2, . . . , en ∈ EInv,

n ≥ 2 such that e1.to = e2.from, e2.to = e3.from, . . . ,
ei.to = ei+1.from, . . . , en−1.to = en.from, then we denote
this invoking path as PathInv = [e1, e2, . . . , en].
Proposition 2: Regulating Privileges of Invoked Processes

from an Accessor (Rule II: Privilege is non-increasing across
an invoking path). Suppose PathInv = [e1, e2, . . . , en], n ≥
2 exists and invoking is from accessor e1.from. If ∃i, j ∈
{1, 2, . . . , n}, i < j such that e′i.to = e′j.to, where e

′
i, e
′
j ∈

EAcc, ei.from = e′i.from, ej.from = e′j.from, then let e′j.p =
e′i.p. If e

′
i.to 6= e′j.to, then let e

′
j.to =⊥ .

That is, the above rule states that if an accessor (e.g., pro-
cess A) invokes multiple accessors sequentially (e.g., pro-
cesses B1, B2,. . . ,Bn), then the privilege of invoked accessor
(i.e., Bi, i = 2, . . . , n) must be less than or equal to the
privilege of invoking accessor (i.e., Bi−1) once the same
object is accessed. The access control unit will normalize the
privilege of invoked process Bi when Bi is invoked by Bi−1
(for i = 2, 3, . . . , n). For i = 1, B1 is invoked by A, which is
degenerated to Rule I.
Definition 14: Invoking Loop. If ∃e1, e2, . . . , en ∈ EInv,

n ≥ 2 such that e1.to = e2.from, e2.to = e3.from, . . . ,
ei.to = ei+1.from, . . . , en−1.to = en.from, en.to = e1.from,
then denote this invoking loop as LoopInv = [e1, e2, . . . , en].
Proposition 3: Regulating Privileges of Invoked Processes

from an Accessor (Rule III: Privilege is minimized in an
invoking loop). Suppose LoopInv = [e1, e2, . . . , en], n ≥ 2
exists and invoking is from any accessor in {a|ei.from =
a, i = 1, 2, . . . , n}. If ∃i, j ∈ {1, 2, . . . , n}, i < j such
that e′i.to = e′j.to and e

′
i.p > e′j.p, where e

′
i, e
′
j ∈ EAcc,

ei.from = e′i.from, ej.from = e′j.from, then let e′i.p = e′j.p.
If e′i.to 6= e′j.to, then e

′
j.to =⊥ .

In other words, the above rule states that if an acces-
sor (e.g., process A) invokes multiple accessors sequen-
tially (e.g., processes B1, B2,. . . ,Bn), and forms a loop
(i.e., Bn invokes A, then the privilege of invoked accessor
(i.e., Bi, i = 1, 2, . . . , n) must be less than or equal to the
privilege of invoking accessor (i.e., A) once the same object
is accessed by all. The access control unit will normalize the
privileges of all invoked processes Bi, i = 1, 2, . . . , n to the
least among them.
Proposition 4: Regulating Privileges of Invoking Pro-

cesses from an Accessor (Rule IV: Privilege must be
non-decreasing for invoking processes). Suppose ∃e ∈ EInv.
If e.to is invoked by e.from, and e1.to = e2.to, where e1, e2 ∈
EAcc, e.from = e1.from, e.to = e2.from, then let e1.p = e2.p.
If e1.to 6= e2.to, then e1.to =⊥.
In other words, the above rule states that if an accessor

(e.g., process A) is invoked by an accessor (e.g., process B),
then the privilege of invoking accessor (i.e., process B)
must be larger than or equal to the privilege of invoked

accessor (i.e., process A). The access control unit will nor-
malize the privilege of process B to be larger than or equal to
that of A.

Proposition 5: Regulating Privileges of Inter-network
Invoking Process Closure from an Accessor (Rule V: Privilege
for process closure is non-increasing). Suppose ∃e ∈ EInv.
If ∃v ∈ Clsa(e.from), e1.to = e2.to, where e1, e2 ∈ EAcc,
e.from = e1.from, v = e2.from, then let e2.p = e1.p.
If ∃v ∈ Clsa(e.from), e2.to 6= e1.to, where e1, e2 ∈ EAcc,
e.from = e1.from, v = e2.from, then e2.to =⊥ .

The above rule states that if an accessor (e.g., process A)
invokes another accessor in its invoking closure set (e.g., pro-
cessB), then the privilege of invoked accessor (i.e., processB)
must be less or equal to the privilege of invoking accessor
(i.e., process A). Access control unit will normalize the privi-
lege of process B to be less than or equal to that of process A.

Proposition 6: Regulating Privileges Container (Rule VI:
Privilege container). Given any v ∈ VInv, if ∃e1 ∈∈
EInv, e2, e3 ∈ EAcc such that e1.from = f , e1.to = t ,
e2.from = f , e2.to = o, e3.from = t , e3.to = o, then let
e3.p⇐ e2.p or e3.p ≤ e2.p.
The above rule is iterative for any inter-networking pro-

cesses, which becomes a container for regulating the maxi-
mum privilege for any invoking processes.

C. PROPOSED ALGORITHMS
We will now present our algorithms to achieve the above
directed graph based access control model. Although our
model can formally specify the rationale in access control
mechanisms, these proposed algorithms can facilitate the
understanding of programmers in their implementations.
Algorithm 1 returns all invoking accessors given any acces-

sor in ACG. It can be considered the instantiation of Clsa(·).
Using this function, all invoked accessors, directly or indi-
rectly, can be returned and further examined.

Algorithm 1 Compute All Accessors Invoked by Any
Given Accessor v ∈ VAcc
Data: ACG, v ∈ VAcc
Result: A = Clsa(v).

1 A⇐ {v};
2 while A 6= ∅ do
3 Select a ∈ A;
4 while ∃e ∈ EInv such that e.from = a do
5 A⇐ A ∪ {e.to};
6 end
7 A⇐ A− {a};
8 end
9 return A;

Algorithm 2 is a recursive algorithm that can obtain
all accessible objects, directly and indirectly. It can be
considered an instantiation of Clsao(·). In this algorithm,
e.to denotes the objects that e.from can access with
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corresponding privileges e.pri. v.visit ∈ {0, 1}, visit is a label
to denote whether a vertex has been visited.

Algorithm 2 Compute All Accessible Objects and
Corresponding Privileges That e.from Possess
Data: ACG, v ∈ VAcc
Result: < o, pri >, o ∈ O ⊂ VObj, pri ∈ Pri where

o ∈ O, ∃e ∈ EAcc, e.to = o, e.pri ∈
Pri, e.from ∈ Clsa(v).

1 for each v′ in Clsa(v) do
2 if v′.visit 6= 1 then
3 v′.visit ⇐ 1; /∗ denote the current vertex v′ has

been visited ∗/
4 /∗ add all of those objects and their

corresponding privileges belonged to
v′ ∈ Clsa(v) to a list ∗/

5 find e ∈ EAcc where e.from = v′;
6 result ⇐ result ∪ {e.to, e.pri};
7 end
8 end
9 return result;

Algorithm 3 can detect privilege collisions for a given
access control graph. In other words, once inter-networking
relations are given as well as the original accessible privi-
leges, the privilege collisions due to inter-process invoking
can be detected by this algorithm.

Algorithm 3 Detect Privilege Collisions
Data: ACG
Result: Yes,No

1 for each v in VAcc do
2 if v.visit 6= 1 then
3 v.visit = 1; /∗ denote the current vertex v has

been visited ∗/
4 find e1, e2 ∈ EAcc where

e1.from = v, e2.from ∈ Clsa(v);
5 if (e1.to = e2.to and

e1.pri 6= e2.pri) or (e1.to 6= e2.to) then
6 return Yes;
7 end
8 end
9 end
10 return No;

Algorithm 4 can regulate privileges for a given access
control graph. In other words, it can be implemented as an
access control module to regulate concrete accessing policies
and avoid privilege breaches.

Examples.
Example I: Process A invokes another process (e.g., pro-

cess B) in order to access object o. The control unit will detect
privilege collisions and decide whether process A can expand
its privileges to that of process B or process A has to limit the
privileges to its own.

Algorithm 4 Regulate Privileges
Data: ACG
Result: ACG′

1 for each v in VAcc do
2 if v.visit 6= 1 then
3 v.visit = 1; /∗ denote the current vertex v has

been visited ∗/
4 find e1, e2 ∈ EAcc where

e1.from = v, e2.from ∈ Clsa(v);
5 if e1.to = e2.to and e1.pri 6= e2.pri then
6 e2.pri = e1.pri;
7 end
8 if e1.to 6= e2.to then
9 e2.to = NULL;

10 end
11 end
12 end
13 return ACG′;

Example I can take place in operating system, web
services, application programming interface, dynamic link
library, developing frameworks, remote process calling, and
so on.
Example II: Process A is invoked by another process

(e.g., B) in order to access object o. Process A will consult
the control unit to check the original privileges of process B
for o and then process A is limited to these privileges.

The distinction between Examples I and II is in the control
domain of the control unit, that is, the former is at invoking
whilst the latter is at the invoked process.
Example III (A General Case): In OSN applications

(e.g., Facebook or QQ), if one user (e.g., user A) shares
some information such as a photo or video with others, these
other users may comment on the shared material. User A can
access such user-generated comments, say of users B and C .
However, in some context, we need to determine whether
user B can access the comments from user C and vice versa,
as the comments may reveal information about the comment
originator.

V. SECURITY AND PERFORMANCE ANALYSIS
In this section, we will evaluate the security of Lico.
Proposition 7: Algorithm 1 returns all invoking processes

that link to a given process.
Proof 4: The proof is straightforward. The algorithm

returns the closure set of a given accessor node in ACG. �
Proposition 8: All objects that can be accessed directly or

indirectly, and their corresponding privileges can be com-
puted by Algorithm 2.
Proof 5: The proof is straightforward. Algorithm 2 can

return all directly and indirectly accessed objects and their
corresponding privileges by iterative searching. �
Proposition 9: The privilege collision can be detected by

Algorithm 3 and avoided by Algorithm 4.
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Proof 6: Algorithm 3 can return privilege collisions
(or privilege breaches) by detecting the non-property of
accessing objects or the distinction of accessing privileges
for identical objects. Thus, privilege abuse can be detected
and avoided. �
The following proposition states the security of the

proposed model.
Proposition 10: Lico is secure against privilege breaches

from inter-process invoking among inter-networking
processes.
Proof 7: The risks from process invoking comes from

object or privilege transition among processes. Proposition 8
proves that the proposed model can search all accessible
objects and corresponding privileges, which will be regulated
automatically by the system, or will be alerted by the users
(e.g., administrators) and they can take certain mitigation,
such as explicitly rejecting the permission. �

We will now evaluate the performance of the proposed
model.
Proposition 11: The proposed model is lightweight.
Proof 8: The proof is straightforward. The model is for-

malized by ACG and instantiated by lightweight algorithms,
whose performance is O(|VAcc|), where where VAcc is the
number of accessor vertexes in ACG. �

VI. CONCLUSION
In this paper, we proposed a lightweight graph-based model
for access control among inter-networking processes. Our
design is motivated by the observation that privilege mis-
uses can occur due to inter-invoking among processes. The
proposed model is designed to be generalizable and can be
applied for access control in inter-networking linkages. This
extends conventional access control models such as RBAC.
The proposed graph-based model is also lightweight, and the
cost is only O(n), where n is the number of accessor vertexes
in the access control graph.

Future research includes a more comprehensive eval-
uation of its security and performance in a real-world
implementation.
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