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ABSTRACT In contrast to the traditional centralized power system state estimation approaches, this paper
investigates the optimal filtering problem for distributed dynamic systems. Particularly, the interconnected
synchronous generators are modeled as a state-space linear equation where sensors are deployed to obtain
measurements. As the synchronous generator states are unknown, the estimation is required to know the
operating conditions of large-scale power networks. Availability of the system states gives the designer
an accurate picture of power networks to avoid blackouts. Basically, the proposed algorithm is based on
the minimization of the mean squared estimation error, and the optimal gain is determined by exchanging
information with their neighboring estimators. Afterward, the convergence of the developed algorithm
is proved so that it can be applied to real-time applications in modern smart grids. Simulation results
demonstrate the efficacy of the developed algorithm.

INDEX TERMS Automatic voltage regulator, convergence analysis, distributed estimation, power systems,
synchronous generators.

I. INTRODUCTION
Generally speaking, power systems are continuously mon-
itored in order to maintain the normal and secure operat-
ing conditions. The state estimation provides an accurate
information about the power system operating conditions.
Due to the increasing size and complexity of power systems,
the traditional centralized estimation technique is not suit-
able [1]. Furthermore, the implementation of state estimation
over a whole interconnected power system is becoming a
challenging problem. Interestingly, the deregulation of the
power industry leads to appearance of multiple local util-
ities or independent system operators. In other words, the
industrial domain application becomes more and more dis-
tributed due to advancement in information and commu-
nication technology [2], [3]. As the information is locally
processed, it can handle big data with flexible remote multi-
service communication, deliver required functionality and
services in sustainable and efficient ways.

A. RELATED LITERATURE
There is a wealth of studies related to the power system state
estimation. First of all, the distributed weighted least square
state estimation method using the additive Schwarz domain

decomposition technique is proposed in [4]. This decompo-
sition divides the data set into several subsets to reduce the
execution time. The Kalman filter (KF) based state estimation
via wireless sensor networks over fading channels is pre-
sented in [5]. This kind of centralized estimation technique
generally requires massive amount of communication and
computation resources, and is vulnerable to the central point
failures. To deal with the communication impairments, the
distributed fusion based KF algorithm for sensor networks is
developed in [6] and [7]. In order to accommodate the effects
of random delay in measurements, the extended KF based
power system state estimation method is proposed in [8]. All
of the aforementioned papers consider the centralized way of
estimation approaches.

There have been numerous efforts for the state estimation
of the distributed power system. The concept of distributed
state estimation is proposed for large-scale power systems
in [9]. The two-level distributed state estimation scheme is
presented in [10] where the local states are estimated in a
distributed way and the higher level coordinates them. Unfor-
tunately, the higher coordination level needs to access all
local estimation results and the complicated communication
infrastructure is required [1]. Furthermore, the distributed
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state estimation algorithm based on the synchronized phasor
measurement is presented in [11]. In order to estimate the
microgrid states, the effective scheme for real-time operation
and protection is explored in [12]. Although the distributed
state estimations have been extensively explored, there has
been little effort to use the dynamic state estimation for inter-
connected power systems and analyze the consensus. The
consensus analysis ensures the consistency of the estimation
across the power networks.

In the distributed estimation process, the estimator
exchanges information with the neighboring connected nodes
to reach a consensus on estimation. The consensus-based
distributed state estimation algorithms for sensor networks
have been proposed in [13], [14], and [15]. Moreover, the dis-
tributed information consensus filter for simultaneous input
and state estimation is explored in [16]. However, the calcu-
lations of gain and error covariance in all preceding meth-
ods are based on the suboptimal filter. Therefore, it can be
considered that the optimal consensus analysis has not been
fully investigated as it does not trace back to the original
system in the optimal sense.Motivated by the aforementioned
research gaps in the smart grid research community, this
paper proposes a distributed dynamic state estimationmethod
with the optimal observation gain, and its convergence is
analyzed without approximations. This paper is an extended
version of work published in [3].

B. KEY CONTRIBUTIONS
The key contribution of this paper is to propose a distributed
state estimation scheme for interconnected power systems
that does not need a consensus step. The major contributions
are summarized as follows:
• The distribution power systems with interconnected
synchronous generators and loads are modeled as a
discrete-time state-space equation. After modeling the
interconnected power network in a distributed way,
the sensors are deployed into the observation points to
obtain the system state information. Then information
is transmitted to the energy management system (EMS)
through a communication network where estimators run
in a distributed way.

• Based on the mean squared error principle, the optimal
gain is computed to obtain a distributed state estima-
tion. Each estimator communicates with the neighboring
nodes for reaching a consensus on estimation.

• The convergence of the proposed algorithm is proved
based on the Lyapunov method. Consequently, the esti-
mated states converge to the true states.

PAPER OUTLINE: The remainder of this paper is orga-
nized as follows. The problem is formulated in Section II.
An interconnected network with multiple synchronous gen-
erators and its state-space model are illustrated in Section III.
In Section IV, the proposed algorithm is derived and its
convergence is analyzed in Section V. Simulation test is
carried out in Section VI. This paper ends with conclusion
in Section VII.

NOTATIONS: Bold face upper and lower case letters are
used to represent matrices and vectors respectively. Super-
scripts x′ denotes the transpose of x, diag(x) denotes the
diagonal matrix, E(·) denotes the expectation operator and I
denotes the identity matrix.

II. PROBLEM FORMULATION
There is a strong drive in power industry to design, create and
analyze the system in a distributed way considering flexible
communication infrastructure [2]. In order to develop a dis-
tributed estimation algorithm, consider the following system:

xk+1 = Adxk + Bduk + nk , (1)

where xk is the system state at time instant k, uk is the control
effort and nk is process noise whose covariance matrix is Qk .
The system measurements are obtained by a set of sensors as
follows:

yik = Cxk + wik , i = 1, 2, · · · , n (2)

where yik is the observation information by the i-th estimator
at time instant k, C is the observation matrix and wik is the
measurement noise whose covariance matrix is Rik . Similar
to [13] and [17], we assume that measurements are same
but the observation noises are different from each other. The
assumption is probably due to the fact that the system oper-
ators deploy a number of similar sensors that are intercon-
nected power systems. Secondly, the designed sensors have
similar power and processing capability.

Generally speaking, the distribution power sub-system is
interconnected to each other as shown in Fig. 1. When the
estimator exchanges information with the connected neigh-
boring nodes, it is called the distributed estimation [14], [6].
In this way, each estimator reaches its consensus estimation,
so the estimated state converges to the actual state. In general,
the proposed distributed state estimator is written as follows:

x̂ ik+1|k = Ad x̂ ik|k + Bduk . (3)

x̂ ik|k = x̂ ik|k−1 + K
i
k

∑
l∈N i

(ylk − Cx̂
i
k|k−1). (4)

Here, x̂ ik|k is the updated state estimation at the i-th esti-
mator, x̂ ik|k−1 is the predicted state estimation, K i

k is the
local gain and N i denotes the set of neighboring estimators
including i. The second term in (4) is used to exchange
information with the neighboring estimators for reaching a
consensus on estimations. In the traditional distributed state
estimation methods [18], [14], it requires both of local and
consensus steps with their corresponding gain. That is, the
derived covariance expression is not scalable in the number
of estimators, so it needs to approximate leads to a suboptimal
filter [14]. Generally, including the consensus step in the filter
structure, the computational complexity of the gain and error
covariance is significantly increased.

The first problem is how to express the interconnected
power systems in a state-space model, which is easy to ana-
lyze. Our second problem is to design the optimal observer
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FIGURE 1. A framework for distributed estimations and its research
questionnaires.

gain. The next problem is to prove the convergence of the
proposed algorithm, so that the developed approach can be
applied in power systems. Generally, the consensus analysis
confirms the consistency of the estimation over the intercon-
nected networks. The problem statement is summarized as
follows:
Develop a distributed state estimation algorithm for complex
power systems such that all estimators reach the consensus
on estimation.

FIGURE 2. Synchronous generators are connected to the complex power
systems [20], [21].

III. SYNCHRONOUS GENERATORS STATE-SPACE MODEL
The power power can be represented by diverse stages of
complexity which depends on the planned applications of
the system model. Generally speaking, there are many syn-
chronous generators and loads are connected to the com-
plex power networks. To illustrate, Fig. 2 shows the typical
synchronous generators and loads which are connected to
the 8-bus distribution lines [19], [20], [3]. Basically, the ith-
synchronous generator can be represented by the following
third order differential equations as follows [20], [3], [22]:

1δ̇i = 1ωi. (5)

˙1ωi = −
Di
Hi
1ωi −

1Pei
Hi

. (6)

1Ė ′qi = −
1E ′qi
T ′doi
+
1Efi
T ′doi
+

Xdi
T ′doi

1idi −
X ′di
T ′doi

1idi. (7)

Here, δi is the rotor angle,ωi is the rotor speed,Hi is the inertia
constant, Di is the damping constant, Pe is the active power
delivered at the terminal, E ′qi is the quadrature-axis transient
voltage, Efi is the exciter output voltage, T ′doi is the direct-
axis open-circuit transient time constant, Xdi is the direct-

axis synchronous reactance, X ′di is the direct-axis transient
reactance and idi is direct-axis current [19].

Usually, the typical automatic voltage regulator (AVR) is
used to control the excitation current which leads to control
the terminal voltage [20], [21]. A second-order transfer func-
tion is used to represent the AVR whose dynamic equations
are given by [20]:

1Efi = b0iz1i + b1iz2i. (8)

˙z1i = z2i. (9)

˙z2i = −c1iz2i − c0iz1i +1vi. (10)

Here, z1i and z2i are the AVR internal states, b0i and b1i are
transfer function coefficients of the voltage control, c0i and c1i
are the transfer function coefficients of the excitation system
and 1vi is the control input signal.

If there are N generators in the system, the d-axis current
Idi and electrical power Pei are expressed as follows [21]:

Idi =
N∑
j=1

1E ′qi[Bij cos(δi − δj)− Gij sin(δi − δj)]. (11)

Pei = 1E ′qi

N∑
j=1

[Bij sin(δi − δj)+ Gij cos(δi − δj)]1E ′qj.

(12)

Here, i, j ∈ {1, · · · ,N },Gij and Bij are the real and imaginary
part of the network admittance matrix Y , which is given in the
Appendix A.

After linearizing (11) and (12), the power increment 1Pei
and current increment 1Idi are given by [3] and [19]:

1Pei =
[
∂Pei
∂δ

∂Pei
∂E ′q

]
[1δ 1E ′q]

′. (13)

1Idi =
[
∂Idi
∂δ

∂Idi
∂E ′q

]
[1δ 1E ′q]

′. (14)

Here,1δ and1E ′q are the rotor angle deviations and transient
voltage deviations. By combining (5)-(10) and (13)-(14),
the system dynamics can be written as follows:

ẋi = Aixi + Biui +
∑
j∈Ni

Aijxj. (15)

Here, the ith-generator state xi = [1δi 1ωi 1E ′qi z2i z1i]
′,

the input signal ui = 1vi,Ni denotes the set of generators that
are physically connected with the i-th generator, the system
matrices Ai ∈ R5×5, Bi ∈ R5×1 and Aij ∈ R5×5 are given
in Appendix B.

Moreover, the interconnected power system is expressed
as a linearised continuous-time state-space framework as fol-
lows:

ẋ = Ax + Bu+ n. (16)

Here, x ∈ R5N×1 and u ∈ RN×1 are the states and input
signals of all N generators, n ∈ R5N×1 is the process noise
with covariance matrixQ ∈ R5N×5N , the system state matrix
A ∈ R5N×5N and input matrix B ∈ R5N×N are given by:
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A =


A1 A12 · · ·A1N
A21 A2 · · ·A2N
...

...
...

AN1 AN2 · · ·AN

 and B = diag(B1 · · ·BN ). Now,

the above system is expressed as a discrete-time state-space
linear form as follows:

xk+1 = Adxk + Bduk + nk , (17)

where Ad = I + A1t , I is the identity matrix, 1t is the
sampling period and Bd = B1t .
In order to sense and monitor the distribution power sys-

tems, the system operators deploy a set of sensors around the
grid. The system measurements are described by (2).

IV. SOLUTION TO THE OPTIMAL DISTRIBUTED
ESTIMATOR
The following theorem gives the optimal gain K i

k in (4).
Theorem 1: For the given system (1), and observation (2), the
minimization of mean squared error E[(xk− x̂ ik|k )(xk− x̂

i
k|k )
′]

can be achieved, if one can obtain the optimal gain as follows:

K i
k = niPik|k−1C

′[(ni)2CPik|k−1C
′
+
∑

l∈N i Rlk ]
−1. (18)

The error covariance Pik|k = E[(xk − x̂ ik|k )(xk − x̂
i
k|k )
′] is the

solution to the following expression:

Pik|k = (I − niK i
kC)P

i
k|k−1(I − n

iK i
kC)
′
+ K i

k
∑

l∈N i RlkK
′i
k .

(19)

Here, ni = ni(N i) represents the cardinality of N i, Pik|k−1 =
AdPik−1|k−1A

′
d + Qk−1 is the predicted error covariance

matrix and Pik−1|k−1 is the error covariance matrix of the
previous step [3]. The proof is derived in Appendix C.

Analytically, finding an optimal estimator does not guaran-
tee to reach a consensus on estimation. Driven by this moti-
vation, our next problem is to confirm the consensus of the
proposed algorithm so that it can be utilized for monitoring
power systems.

V. CONVERGENCE ANALYSIS
Let ei denote the estimation error between the actual state and
estimated state of the i-th estimator, which can be expressed
as follows [3]:

eik|k = xk − x̂ ik|k . (20)

eik|k−1 = xk − x̂ ik|k−1. (21)

Let’s take the Lyapunov function as follows:

V (ek|k ) =
N∑
i=1

e
′i
k|k (P

i
k|k )
−1eik|k . (22)

The first difference of the Lyapunov function can be
expressed as follows:

E[1V (ek|k )] = E[V (ek+1|k+1)− V (ek|k )]

= E[
N∑
i=1

{e
′i
k+1|k+1(P

i
k+1|k+1)

−1eik+1|k+1

−e
′i
k|k (P

i
k|k )
−1eik|k}]. (23)

The following lemmas are used to simplify the above expres-
sion.
Lemma 1: Defining the information matrix S ik =

(ni)2C ′(
∑

l∈N i Rlk )
−1C , then Pik|k = [(Pik|k−1)

−1
+ S ik ]

−1.

Proof: See Appendix D.

Lemma 2: The following statement holds:
Pik+1|k+1 = F ik+1G

i
k+1F

′i
k+1 with the simplified terms

Gik+1 = AdPik|kA
′
d +W

i
k+1,W

i
k+1 = Qk +Pik+1|kS

i
k+1P

i
k+1|k

and F ik+1 = [I − niK i
k+1C].

Proof: See Appendix E.
Now eik+1|k+1 can be expressed as follows:

eik+1|k+1 = xk+1 − x̂ ik+1|k+1

= xk+1 − x̂ ik+1|k − K
i
k+1

∑
l∈N i

(ylk+1 − Cx̂
i
k+1|k )

= [I − niK i
k+1C][Ad (xk − x̂

i
k|k )+ nk ]

−K i
k+1

∑
l∈N i

wlk+1

= (I − niK i
k+1C)(Ade

i
k|k + nk )− Kk+1

∑
l∈N i

wlk+1.

(24)

For simplicity the convergence analysis, it is assumed that
there are no noisy terms in (24), so, it can be rewritten as
follows:

eik+1|k+1 = (I − niK i
k+1C)Ade

i
k|k

= F ik+1Ade
i
k|k . (25)

Here, F ik+1 = [I − niK i
k+1C]. For E[1V (ek|k )] expression,

(23) is used together with (25) to yield:

E[1V (ek|k )] =
N∑
i=1

e
′i
k|k [A

′
dF
′i
k+1(P

i
k+1|k+1)

−1F ik+1Ad

−(Pik|k )
−1]eik|k . (26)

Using Lemma 2, the Lyapunov function (26) can be written
as follows:

E[1V (ek|k )] =
N∑
i=1

e
′i
k|k [A

′
d (G

i
k+1)

−1Ad − (Pik|k )
−1]eik|k

=−

N∑
i=1

e
′i
k|k [(P

i
k|k )
−1
−A′d (G

i
k+1)

−1Ad ]eik|k

⇒ E[1V (ek|k )] = −
N∑
i=1

e
′i
k|k3

i
k+1e

i
k|k , (27)

where 3i
k+1 is defined as follows:

3i
k+1 = (Pik|k )

−1
− A′d (G

i
k+1)

−1Ad . (28)
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TABLE 1. Five generators G1-G5 parameters [20], [21].

TABLE 2. Transmission line parameters [20], [21].

In order to apply the well-known matrix inversion Lemma,
(A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 [14],
pre and post-multiplying to (28) by Pik|k yields:

Pik|k3
i
k+1P

i
k|k =P

i
k|k−P

i
k|kA

′
d (W

i
k+1 + AdP

i
k|kA

′
d )
−1AdPik|k

= [(Pik|k )
−1
+ A′d (W

i
k+1)

−1Ad ]−1. (29)

Now pre and post-multiplying to (29) by (Pik|k )
−1 leads to:

3i
k+1= (P

i
k|k )
−1[(Pik|k )

−1
+ A′d (W

i
k+1)

−1Ad ]−1(Pik|k )
−1.

(30)

It shows that3i
k|k is a symmetric and positive definite matrix.

This ensures that the Lyapunov function (27) becomes:

E[1V (ek|k )] = −
∑N

i=1 e
′i
k|k3

i
k+1e

i
k|k < 0. (31)

It shows that the Lyapunov function is less than zero, so the
estimation error dynamic is asymptotically stable [3]. This
concludes that the proposed algorithm is stable. The perfor-
mance of the aforementioned algorithm is demonstrated by
performing numerical simulations in the next section.

VI. SIMULATION RESULTS AND DISCUSSIONS
In order to simplify our discussion, here, it is assumed there
are n=4 observation stations and N=5 synchronous generators
in the distribution power networks as shown in Figs. 1-2. The
proposedwork can be easily extended to the generic case. The
simulation is implemented in Matlab where the parameters
are summarized in Tables 1 and 2 [20], [21], [3]. Moreover,
the considered process and measurement noise covariances
are diagonal matrices [19], [23], [24] and their values areQ =
000001I and R1 = 0.003I , R2 = 0.004I R3 = 0.005I , R4 =
0.006I . The sampling period for discretization is 0.0015 sec.

FIGURE 3. Rotor angle δ1 and its estimation.

FIGURE 4. Rotor speed ω1 and its estimation.

FIGURE 5. Transient voltage E ′

q1 and its estimation.

Figures 3-17 show the system’s true and estimated states
versus time step. It can be seen that the proposed method
can estimate the system states with reasonable accuracy. This
is because the developed approach can effectively solve the
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FIGURE 6. Rotor angle δ2 and its estimation.

FIGURE 7. Rotor speed ω2 and its estimation.

FIGURE 8. Transient voltage E ′

q2 and its estimation.

distributed estimation problem to find the optimal solution.
So, the estimated states reflect the true state within few steps.
For instance, it can be seen from the Fig. 3 that the explored

FIGURE 9. Rotor angle δ3 and its estimation.

FIGURE 10. Rotor speed ω3 and its estimation.

FIGURE 11. Transient voltage E ′

q3 and its estimation.

method requires 0.0150 seconds (k × 1t = 10 × 0.0015)
to estimate the rotor angle of generator 1. Similar kind of
estimation performance is obtained for other states. From the
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FIGURE 12. Rotor angle δ4 and its estimation.

FIGURE 13. Rotor speed ω4 and its estimation.

FIGURE 14. Transient voltage E ′

q4 and its estimation.

technical point of view, it means that the explored algorithm
requires much less time compared with the standard esti-
mation time of 1 second [25]. As the five generators have

FIGURE 15. Rotor angle δ5 and its estimation.

FIGURE 16. Rotor speed ω5 and its estimation.

FIGURE 17. Transient voltage E ′

q5 and its estimation.

different specifications so their true states are different which
are also well estimated by the proposed approach. Note that
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the small fluctuations come from system noise, but it does not
affect the estimation accuracy.

VII. CONCLUSION AND FUTURE WORK
This paper presents a distributed algorithm for estimating
the synchronous generator states for complex and large-scale
power systems. Different from the distributed estimation in
the literature, a key feature of the proposed method is that
it does not require consensus step, which incurs the com-
putational burdens. The simulation results demonstrate the
validity of the analytical approach. The results point out
the applicability of the proposed scheme for estimating the
multiple synchronous generator states. Finally, the consen-
sus of the explored algorithm is also proved so that it can
be applied to practical applications in modern smart grids.
Consequently, these contributions are valuable for design-
ing the distributed smart energy management system as it
provides precise estimation performance and requires less
computational resources in the estimation process. Further
investigations include the following aspects:

• Designing a suitable distributed feedback control frame-
work to stabilize the system.

• Testing the proposed estimation algorithm considering
the bad data in the measurements.

APPENDIX A (NETWORK ADMITTANCE MATRIX)
The network admittance matrix is given by [3] and [20]:

Y = Yrr − YreY−1ee Y
′
re. (32)

Here, the simplified term Yrr = diag[Y17 + jB17,Y26 +
jB26,Y36 + jB36,Y46 + jB46,Y56 + jB56], where the mutual
admittance is computed as follows as an example: Y17 =
1/(R17 + jX17), R17 is the resistance between node 1 and 7,
X17 and B17 are it’s reactance and susceptance, respectively.
The second simplified term Yre is given by:

Yre =


0 −Y17 0
−Y26 0 0
−Y36 0 0
0 0 −Y48
−Y56 0 0

 . (33)

The last simplified term Yee is given by:

Yee =

 Y66 −Y67 0
−Y67 Y77 −Y78
0 −Y78 Y88

 , (34)

where Yii is the self-admittance which is the sum of admit-
tances connected to it in the network.

APPENDIX B (SYSTEM MATRICES)

Ai=



0 1 0 0 0

−
1
Hi

∂Pei
∂δi

−
Di
Hi

−
1
Hi

∂Pei
∂E ′qi

0 0

Xi
∂Idi
∂δi

0 −
1
T ′doi
+ Xi

∂Idi
∂E ′qi

b1i
T ′doi

boi
T ′doi

0 0 0 −c1i −c0i
0 0 0 1 0


,

Aij =



0 0 0 0 0

−
1
Hi

∂Pei
∂δj

0 −
1
Hi

∂Pei
∂E ′qj

0 0

Xi
∂Idi
∂δj

0 −
1
T ′doi
+ Xi

∂Idi
∂E ′qj

b1i
T ′doj

boi
T ′doj

0 0 0 0 0
0 0 0 0 0


,

B = [0 0 0 1 0]′ and Xi =
Xdi − X ′di
T ′doi

.

APPENDIX C (PROOF OF THEOREM 1)
Let ni = ni(N i) represents the cardinality of N i. Now substi-
tuting (4) into (20), and using (2) one can obtain the following
error expression [3]:

eik|k = xk − x̂ ik|k−1 − K
i
k

∑
l∈N i

(ylk − Cx̂
i
k|k−1)

= (I − niK i
kC)(xk − x̂

i
k|k−1)− K

i
k

∑
l∈N i

wlk

= (I − niK i
kC)e

i
k|k−1 − K

i
k

∑
l∈N i

wlk . (35)

Now the state estimation error covariance Pik|k is defined by:

Pik|k = E(eik|ke
′i
k|k ). (36)

Substituting (35) into (36), one can obtain:

Pik|k = (I − niK i
kC)P

i
k|k−1(I − n

iK i
kC)
′
+ K i

k

∑
l∈N i

RlkK
′i
k .

(37)

Here, the error covariance Pik|k−1 = E(eik|k−1e
′i
k|k−1). The

following partial derivatives are used to obtain the optimal
expression of the gain K i

k . For any two compatible matrices
X and Y , the following partial derivatives holds:

∂tr(YX )
∂X

= Y ′. (38)

∂tr(XYX ′)
∂X

= X (Y + Y ′). (39)

In order to find the optimal gain K i
k , taking the partial deriva-

tive of Pik|k in (37) with respect to K i
k and applying (38) and

(39) yields:

∂[trPik|k ]

∂K i
k

=−2niPik|k−1C
′
+2K i

k [(n
i)2CPik|k−1C

′
+

∑
l∈N i

Rlk ].

(40)
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Now putting
∂[trPik|k ]

∂K i
k
= 0 in (40), the optimal gainK i

k is given

by:

K i
k = nikP

i
k|k−1C

′[(ni)2CPik|k−1C
′
+
∑

l∈N i Rlk ]
−1. (41)

This finishes the proof of the Theorem 1.

APPENDIX D (PROOF OF LEMMA 1)
Substituting K i

k (41) into Pik|k (37) and after simplifying
matrix manipulations, we have [3]:

Pik|k = Pik|k−1 − n
iK i
kCP

i
k|k−1

= Pik|k−1 − n
i
{niPik|k−1C

′[(ni)2CPik|k−1C
′

+

∑
l∈N i

Rlk ]
−1
}CPik|k−1. (42)

Using the matrix inversion Lemma, A−1 − A−1B(C−1 +
DA−1B)−1DA−1 = (A + BCD)−1, right hand side of (42)
can be written as follows:

Pik|k = [(Pik|k−1)
−1
+ (ni)2C ′(

∑
l∈N i

Rlk )
−1C]−1

= [(Pik|k−1)
−1
+ S ik ]

−1. (43)

Here, S ik = (ni)2C ′(
∑

l∈N i Rlk )
−1C .

APPENDIX E (PROOF OF LEMMA 2)
Generally speaking, the stability and convergence study
deals with an infinite time horizon. So, throughout this
proof without loss of generality, we adopt a notation
that is free of the time index k and the updated vari-
able xk+1 is denoted by x+. Inspired by [14], the opti-
mal gain (18) can be written in the information form as
follows:

K i
= niPiC ′[(ni)2CPiC ′ +

∑
l∈N i

Rl]−1

= [(Pi)−1 + (ni)2C ′(
∑
l∈N i

Rl)−1C]−1niC ′(
∑
l∈N i

Rl)−1

= niM iC ′(
∑
l∈N i

Rl)−1. (44)

Here, from Lemma 1 the error covariance matrix M i
= Pik|k

in the information form is given by:

M i
= [(Pi)−1 + S i]−1. (45)

The information matrix S i is described as follows:

S i = (ni)2C ′(
∑
l∈N i

Rl)−1C . (46)

Utilizing (44) and (46), the simplified term F i becomes:

F i = I − niK iC = I − (ni)2M iC ′(
∑
l∈N i

Rl)−1C

= I −M iS i. (47)

Motivated by (45), the identity matrix can be expressed as
follows:

[(Pi)−1 + S i]−1[(Pi)−1 + S i] = I

⇒ M i[(Pi)−1 + S i] = I

⇒ M i(Pi)−1 = I −M iS i = F i. (48)

Using (35), (44), (46), and (48), the error covariance matrix
(19) can be rewritten as follows:

M i
+ = F i+P

i
+F
′i
+ + K

i
+

∑
l∈N i

Rl+K
′i
+

= F i+(AdM
iA′d + Q)F

′i
+ + [niM i

+C
′(
∑
l∈N i

Rl+)
−1]

(
∑
l∈N i

Rl+)[n
iM i
+C
′(
∑
l∈N i

Rl+)
−1]′

= F i+(AdM
iA′d + Q)F

′i
+ + (ni)2M i

+C
′(
∑
l∈N i

Rl+)
−1CM i

+

= F i+(AdM
iA′d+Q)F

′i
++M

i
+S

i
+M

i
+

= F i+(AdM
iA′d + Q)F

′i
+ + F

i
+P

i
+S

i
+P

i
+F
′i
+

= F i+(AdM
iA′d + Q+ P

i
+S

i
+P

i
+)F

′i
+

⇒M i
+=F

i
+G

i
+F
′i
+. (49)

Here, the simplified terms are: Gi+ = AdM iA′d + W i
+ and

W i
+ = Q+ Pi+S

i
+P

i
+. The proof is completed.
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