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Abstract. Distributed model predictive control explores an array of
local predictive controllers that synthesize the control of subsystems in-
dependently yet they communicate to efficiently cooperate in achiev-
ing the closed-loop control performance. Distributed model predictive
control problems naturally result in sequential distributed optimization
problems that require real-time solution. This paper presents a collective
neurodynamic approach to design and implement the distributed model
predictive control of linear systems in the presence of globally coupled
constraints. For each subsystem, a neurodynamic model minimizes its
cost function using local information only. According to the communica-
tion topology of the network, neurodynamic models share information to
their neighbours to reach consensus on the optimal control actions to be
carried out. The collective neurodynamic models are proven to guarantee
the global optimality of the model predictive control system.

Keywords: Collective neurodynamic optimization - Recurrent neural
networks - Distributed optimization - Model predictive control.

1 Introduction

Model predictive control (MPC) is a popular optimization-based control tech-
nique. It iteratively predicts and optimizes control performances based on a sys-
tem model. Dynamic feedback control actions are computed by solving online
sequential optimization problems. As MPC can naturally deal with multivariable
control problems and can explicitly take account of system constraints, it has
been attracting much attention in many areas in recent years [13,22].

Many real-world control plants such as waste-to-energy facilities [8] and smart
grid [18] usually consist of linked units that can be grouped into subsystems.
These subsystems are connected through a network and each subsystem can
transmit certain local information to the others. As a result, the control tech-
nology can be implemented in a distributed fashion which takes the advantage
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of the plant structure to improve reliability and reduce cost. In distributed con-
trol, each subsystem computes its control action by considering its local plant
information as well as the effect of local control actions on all subsystems in the
network [19]. Correspondingly, a distributed optimization problem arises in the
setting of distributed MPC [4]. A challenging issue is distributed MPC lies in
constraint satisfaction of coupled subsystems where local constraints are affected
by the network topology.

Real-time optimization plays an increasingly important role in a range of con-
trol problems [7]. The success and performance of an MPC system are largely
determined by the deployed optimization algorithm. Conventional optimization
methods may not be sufficiently efficient for real time MPC implementation for
problems with very large dimensions and fast sampling frequency. In the past two
decades, neurodynamic optimization using recurrent neural networks (RNNs)
emerged as a promising computational approach to real time optimization [21].
The essence of neural optimization lies in its inherent nature of parallel and dis-
tributed information processing and the availability of hardware implementation.
Various RNN models have been presented for solving constrained optimization
problems, such as the one-layer neural network with a hard-limiting activation
function [15], the improved dual network [9], the finite-time convergent neural
network [16], the neural network for nonsmooth optimization [17], the neural
network for pesudoconvex optimization [6], the neural network for invex opti-
mization [14], the collective neural networks for global optimization [24], and the
neural network for distributed optimization [12]. These RNNs have shown good
performance in terms of global convergence and low model complexity.

Neural networks have demonstrated advantages to the design and analysis of
MPC methods. Due to their capabilities to approximate any continuous function
mapping, many studies on incorporating neural networks with MPC synthesis
have been carried out. Generally speaking, the use of neural networks fall into
three categories: (1) using neural networks for system identification and model-
ing [23], (2) using neural networks for real time optimization [3], (3) using neural
networks for off-line control law approximation [1]. In these works, distinct ad-
vantages of neural networks are exploited in MPC design.

In this paper, a distributed MPC scheme is proposed for linear systems with
coupled constraints. The distributed MPC problem is formulated to distributed
convex optimization with globally coupled constraints. The overall performance
index to be minimized is the summation of local convex objectives. Cooperative
neurodynamic models are applied to collectively solve the distributed optimiza-
tion problems in real-time. One salient feature this work is that the optimization
algorithm is designed by exploring the characteristics of the control problem,
which greatly improves the scalability and reduces the computational cost. The
rest of this paper is organized as follows. Section 2 discusses some preliminar-
ies. Section 3 describes the distributed MPC formulation. Section 4 presents a
collective neurodynamic optimization approach. Section 5 provides simulation
results. Finally, Section 6 concludes this paper.
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2 Preliminaries

In this section, some basic concepts and results from the algebraic graph theory
are introduced [5].

Let a triplet G = (V, €, A) denote a graph, where V = {vy,...,v,,} denotes
a set of vertexes of order m. Each vertex corresponds to an agent, £ CV x V
denotes a set of edges, and A = {a;;} is a nonnegative m x m matrix called the
adjacency matrix satisfying a;; > 0 if and only if v; and v; are connected, i.e.,
(vi,vj) € € If a;; > 0, then it indicates that the two corresponding agents can
exchange information. The graph G is undirected if

Vi, vp €V (v, v5) €€ 4 (vj,14) €&,

Correspondingly, A becomes a symmetric matrix. Moreover, an undirected graph
G is connected if for any pair of vertexes v; and v}, ¢, 5 = 1,...,m, there is a path.
In this paper, the following assumption holds.

Assumption 1 The graph G = (V, &, A) is undirected and connected. Moreover,
no self-connection ezists in the graph; i.e., a; =0,i =1,...,m.

Given a graph G = (V, £, A), a diagonal matrix D = {deg(v1), ..., deg(vm)} €
Fmxm ig called the degree matrix where deg(v;) = Z;-n:l’j# a;j(i=1,..,m). In
view of it, the Laplacian matrix of the graph is defined as L = D — A. According
to the Assumption 1, the Laplacian matrix has the following properties [18]:

1. L is positive semidefinite and symmetric.
2. 0 is a simple eigenvalue of L.

3 Problem Formulation

Consider a network of M discrete-time subsystems where each subsystem is
described as follows:

o' (k+1) = f'(2'(k), u' (k) + g (u), (1)

where ¢ € R" is the state vector of the ith subsystem, x = [z!;--- ;2™] is the
state vector of the network, u’ € ™ is the input vector of the ith subsystem,
u = [ul;--- ;u™] is the input vector of the network, f? is the model of the ith
subsystem, and g° denotes the coupling effects on the subsystem i caused by
inputs of its neighbouring systems in the network.

In (1), 2%(k), u'(k) are required to fulfill the following constraints:
z'(k) € X' ui(k) e U, Vk >0, (2)

where X* and U* are closed compact convex sets. It is assumed that both X
and U* contain the origin as an interior point. In addition, the control system
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(1) is sometimes subject to coupling constraints which denote communication
structures and requirements among subsystems [19]:

(2t 27 ut u?) <0, (3)
An MPC law is supposed to optimize a performance index iteratively over a
predicted future horizon via the explicit use of the system model (1). In MPC,
the control inputs are obtained by solving a constrained optimization problem
during each sampling interval, using the current state as an initial state. For
each subsystem i, the following performance index is considered:
N—-1
JH(u' (k) = ) a'(k+qlk) Q" (k + qlk)
a=

u'(k + qlk)T R’ (k + qk)

0
N-1
+
q=

0
+ 28 (k + N|k)T Pizi(k + N|k) (4)

where 2%(k + g|k) denotes the predicted state vector, u’(k + g|k) denotes the
predicted input vector, N is the prediction horizon, Q?, R* are weighting matrices
with compatible dimensions, and P’ is designed for closed-loop stability.

In many distributed MPC settings, each subsystem 4 independently mini-
mizes the performance index (4) subject to its local constraints (1)-(3) to obtain
the optimal control input u®* (k). In this paper, we consider a performance index
of the overall control system as follows:

M . .
DEDIFACIO) 6

where J¢(u’(k)) is defined as (4). Correspondingly, the MPC problem is formu-
lated as follows:

min
ul(k), uM (k)

2

i(k) e X, ui(k) e Ui Vk>0,i=1,-- M,

zt
x
o' (z' 27 ut u?) <0,i=1,--- , M. (6)
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The optimization problem (6) offers a framework for subsystems to cooperatively
solve the MPC problem in a distributed manner. It differs from centralized MPC
in that all parameters in (6) are designed based on the structures and charac-
teristics of the corresponding subsystems. As a result, the objective functions
J, .-+, JM in optimization problem (6) are separable, which makes it suitable
to be tackled by distributed optimization methods. However, it is worth noting
that the presence of coupling effects g(u) and ¢(z,w) result in globally coupling
constraints, which posts challenges for the design and implementation of dis-
tributed optimization algorithms. In this paper, we focused our attention on a
special case of (6).

3.1 Linear systems with coupled constraints

For each subsystem ¢ it is assumed that its state space model independent of
other subsystem j in the network, however, the states and control inputs are
required to satisfy coupled constraints [20].

o' (k+1) = A'z' (k) + Bu'(k),

¢'(w,u) <0. (7
Assumption 2 The constraint @' (x,u) is conver and linearly separable, i.e.,
¢ (2, u) = 3 ¢5(a!, u?).
This assumption is valid in many scenarios, especially when ¢'(x,u) is linear,

ie., ¢'(x,u) = C'z + D'y < 0, it is convex and linearly separable.
Denote the following vectors as the predicted system information:

7' (k) = [a' (k); ' (k + 1);--- 2’ (k + N)];
a'(k) = [u'(k);u' (k +1);--- s’ (k+ N)];
Au' (k) = [Au'(k); Aui(k +1); -+ ; Aul(k + N)];
where u?(k) = u'(k — 1) + Au’(k)

Using (7) as the prediction model, the predicted states and control inputs of
the subsystem ¢ can be obtained

(k4 1) = Szt (k) + M AT (k) + Viu(k — 1), (8)
where
[A”; B
|4 (A" + I)B!
St — ) c %Nnxn7 V= : c éRNnXm,
LAY ANy 4B
[ B ... 0
(A"+I)B’ .. 0
M _ : . : c %NnXNm’
(AT L+ DB ... BY)
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The corresponding distributed MPC problem can be correspondingly formu-
lated as follows

M
}}i(g)v] = IS (k) + M° AT (k) + Vu(k — 1))|[3, + 1 AT (k)| %,
E i=1

sitoul s < MY(AT (k) + Viu(k — 1)) <l

M
D CH(S (k) + M Aw (k) + Viu(k — 1)) + DY (Aw' (k) + Viu(k — 1)) <0

Aul < Aut(k) < Adl (9)

min =

The optimization problem (9) is a distributed convex program, whose solution
provides optimal control increments for all subsystems. Equivalently, (9) can be
put into a compact form as follows:

M

1 . S 4 .
min J = 54@” WiAG +p' AG
v i=1

M
sty E'Au 4+ <0,

1
M
S HAw +q' <0, H' =0, ¢7' =0, j=1,..,..., M,

Aul < AT < Al (10)

max’?

where Wi = 2M1 QM + R!, p' = 2M1" Q!(Sizi(k) + +Viu(k — 1)), Bl =
CiMi + D, b = CH(Sia (k) + Viu(k — 1)) + DI(Viu(k — 1)), H' = [M*;—M?],
¢ = [MViu(k —1) —ul f = MWiu(k — 1))

max’ Ymin

4 Collective Neurodynamic Optimization Model

In this section, we propose a collective neurodynamic optimization model de-
scribed by cooperative recurrent neural networks to solve the optimization prob-
lem (10) in a fully distributed fashion. Each recurrent neural network is employed
by a subsystem to minimize its local cost function. Their collective efforts, guided
by the topology of the network, enforce satisfaction of coupled constraints. The
recurrent neural networks share information if and only if the two subsystems
are connected. For each subsystem i, the corresponding recurrent neural network
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is modeled as follows:

d o
i = Progo: (87~ Wig' = p' — [ES HITA) -

d, S |
)\ — 1 Ez 13 1.H2 (3 A i i yin+ v
dt)\ AN+ [EB 4+ b H' B+ q'] § (7' =9 4+ X = M) = A

jEE?

d . o
= Z_()\‘ —X) (11)
JEET
At each time instant k, the output of the neurodynamic model in its equilibrium
state 3% is equal to the optimal control increment vector Awu’(k). The optimal
control input at k is obtained by implementing the first control action of the
predicted vector: u'(k) = u'(k — 1) + Aui(k).

Intuitively, the neurodynamic model (11) exploits local information of each
subsystem to reach consensus with the help of information sharing over the
network. Denote &' as the vertex set of the neighbors of the subsystem 4. It can
be viewed that A’ is driven toward the average of A by a proportional-integral
controller » . o, J(A" = M). Thereafter, (\* — A7) is expected to converge to 0.
Next, we proceed to show that \? is equivalent to the Lagrange multiplier vector
of (10).

Let 8 denote [Au';--- ; AuM] and ¢(8) = [2M EiAw + b, M HIAw' + ¢]
for simplicity. The following lemma can be obtained.

Lemma 1. * is an optimal solution to (10) if and only if there exists \* such
that

8" = Progo (8" — (WB* +p) — [E; H'\")

A= (N + [EB* + b HB* +q)) 7.
Proof. Tt can be seen that the optimization (10) is convex since the objective
is a convex function and the feasible domain is a convex set. According to the
KKT conditions, variational equality conditions, and projection theorems [11],

under the complementary conditions [2], * is an optimal solution to (10) if and
only if there exist (8*, \*) such that

B* = Progg,(8* — (VJ(B*) + Vo' (B*)XY)), B* € 12 (12)
ST (B*) <0, A* >0, \* ¢(B*)A* =0. (13)
where 2 ={p e R" : I < pp < hp} and

Iyt <lps
Progg (i) = S tk, Ik < pie < s
hi, pre > hi;

Moreover, (13) can be equivalently put into \* = (A* + ¢(8*))™, where

0, pp <0
+ — ) 9
() {Hk, pr > 0.



8 7. Yan et al.

Therefore, it is shown that A in (11) is equal to the Lagrange multiplier. [J

The distributed MPC approach based on the collective neurodynamic opti-
mization models is summarized as follows:

1. Let £ = 1. Set MPC parameters including the control time terminal T,
prediction horizon N, sampling period ¢, weight matrices ) and R.

2. Compute parameters of the optimization model including W, p, F, b, H, q.

3. Solve the distributed optimization problem using the proposed neurody-
namic models to obtain the optimal control increment vector Au(k).

4. Compute and implement the optimal control action u(k).

5. If k< T,let k=k+ 1, go to Step 2; otherwise terminate.

5 Simulation Results

In this section, the formation control of flying robots which aim to form and
maintain desired relative position and orientation is considered. The coupled
constraints arise due to the considerations for collision and obstacles avoidance
[10]. For each mobile robot i, its state space model is

2tk +1) 1002 07 [«i(k) 0 0

“(k+1) 01 0 02| |y'(k) 0 0| [ul(k)

gi(kJrl) “ o001 0 gi(/g) oz o {u;(k)] (14)
g k+1)] (000 1[5k 0 02

where [27,y] denotes the position coordinates of the robot i, [i*, 7] denotes a
vector of velocity components along z-axis and y-axis, and [u},u!] denotes a
vector of acceleration components along z-axis and y-axis.

The distributed MPC of the flying mobiles seeks the solution to the problem
(6) via the neurodynamic model (11) based on the formulation (9). The linear
constraints on states and inputs of every flying robots are || < [100; 100; 24; 24]
and |u] < [2;2]. The coupled constraints are introduced to ensure flying robots
cannot enter protection zones of each other, and they are represented as || (xiQ +
y'?) = (@97 + ) oo < 2.

We consider a scenario of three flying robots formed a formation in a structure
shown in Fig. 1. The initial conditions of the three robots are 2 (0) = [1; —3;0; 0],

!
o—o0 o

Fig. 1. Formation structure of three robots

22(0) = [10; -3;0;0], 23(0) = [15;—3;0;0]. The final conditions are x'(T) =
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[6;5;0;0], %(T) = [11;5;0;0], 23(T) = [3;5;0;0]. The protection zone of each
robot is 0.3m. The controlled result is depicted in Fig. 2. The control inputs are
shown in Figs. 3-4. It is shown that flying robots can effectively form the desired
formation with guaranteed input and safety constraints satisfaction.

*  Agentl
O  Agent2|
Agent 3

o
:
0O O O O OEIDIN

y-coordinate (m)
*
o

*
Oo o o o

0 5 10 15
x-coordinate (m)

Fig. 2. Formation trajectory

6 Conclusion

This paper presented a model predictive control approach to linear systems with
coupled constraints in a fully distributed fashion. The global cost function took
an additive form of each local cost functions. The model predictive controllers
of each subsystem were designed based on local information only, and were com-
puted by using a neurodynamic model in real time. The collective efforts of neu-
rodynamic models forced the local controllers to reach consensus at the global
optimal control with theoretically guaranteed optimality. optimality were given.
An illustrative example on the formation control of flying robots was provided to
demonstrate the effectiveness of the approach. Future research will be directed
to uncertain systems involving more complex network topologies.
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