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Abstract. Support vector regression (SVR) has been a hot research topic for 

several years as it is an effective regression learning algorithm. Early studies on 

SVR mostly focus on solving large-scale problems. Nowadays, an increasing 

number of researchers are focusing on incremental SVR algorithms. However, 

these incremental SVR algorithms cannot handle uncertain data, which are very 

common in real life because the data in the training example must be precise. 

Therefore, to handle the incremental regression problem with uncertain data, an 

incremental dual nu-support vector regression algorithm (dual-v-SVR) is pro-

posed. In the algorithm, a dual-v-SVR formulation is designed to handle the un-

certain data at first, then we design two special adjustments to enable the dual-

v-SVR model to learn incrementally: incremental adjustment and decremental 

adjustment. Finally, the experiment results demonstrate that the incremental du-

al-v-SVR algorithm is an efficient incremental algorithm which is not only ca-

pable of solving the incremental regression problem with uncertain data, it is al-

so faster than batch or other incremental SVR algorithms. 

Keywords: Support Vector Regression, Regression Learning Algorithm, In-

cremental Regression Problem, Uncertain Data. 

1 First Section 

1.1 A Subsection Sample 

Support vector regression (SVR) has been a hot research topic for several years be-

cause it is an effective regression learning algorithm [1-4]. It aims to minimize a 

combination of the empirical risk and a regularization term [5]. Early studies on SVR 

mostly focus on solving large-scale problems [6-8]. Nowadays, an increasing number 

of researchers are focusing on incremental SVR algorithms [9-13]. Junshui et al. in-

troduced ε-SVR and developed an accurate online support vector regression 

(AOSVR) [9]. Omitaomu et al. propose AOSVR with varying parameters that uses 

varying SVR parameters rather than fixed SVR parameters [11]. Later, Gu et al. pro-

posed an exact incremental ν-SVR algorithm (INSVR) [13]. 
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These incremental SVR algorithms require precise data for the training examples. 

However, the data in many practical applications is not precise yet represented by an 

uncertain data. For example, the height of a man is between 180 cm and 185 cm. 

Therefore, some researchers have proposed many improved SVR algorithms [14-16] 

which explicitly handle uncertain data and perform better than traditional SVRs. Hao 

et.al incorporate the concept of fuzzy set theory into the SVM regression model [15]. 

Peng proposed an interval twin support vector regression algorithm for interval input-

output data [16]. Several SVR algorithms treat uncertain data as random noise [17-

19]. By replacing the constraints in the standard ε-SVR with probability constraints, 

chance-constrained, robust regression formulations can be obtained. For example, an 

robust SVR algorithm which is robust to bounded noise was proposed in [19]. How-

ever, the quadratic programming problems (QPPs) of these algorithms is too complex 

to translate these algorithms into incremental algorithms directly. 

Hence, to handle the incremental regression problem with uncertain data, the in-

cremental dual nu-support vector regression (dual-v-SVR) algorithm is proposed. In 

the algorithm, a dual-v-SVR formulation be designed to handle the uncertain data at 

first, then we design two special adjustments to enable the dual-v-SVR model to learn 

incrementally: incremental adjustment and decremental adjustment. Finally, the ex-

periment results demonstrate that the incremental dual-v-SVR algorithm is an effi-

cient incremental algorithm which is not only capable of solving the incremental re-

gression problem with uncertain data, it is also faster than batch or other incremental 

SVR algorithms. 

The rest of this paper is organized as follows. In Section 2, we describe the formu-

lation, KKT conditions and two adjustments of the incremental dual-v-SVR algo-

rithm. The experimental setup, results and discussions are presented in Section 3. 

Section 4 provides the concluding remarks. 

2 An Incremental Dual-v-SVR 

As previously mentioned, the QPPs of many SVR algorithms are too complex to 

translate into online algorithms directly. Hence we propose a dual-v-SVR algorithm 

estimates the upper bound functions  1 1 1x w x b  ·  and lower bound functions 

 2 2 2x w x b  · at same time, and the final regression function is constructed as 

follows:  
1

2
x     1 2f x f x   . 

2.1 The formulation 

For cases with data uncertainties, we suppose the independent variables are per-

turbed by noise: ii ix x   , such that i  , where i  represents a bounded 

perturbation with     and ix  constructs a nominal vector  1 2, , , NX x x x . The 
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dependent variable Y is also perturbed by noise: [ , ]Y y u l   , such that   , 

where  represents a bounded perturbation with     . Thus, we can get: 

      i ii iw x w x w        (1) 

By the Cauchy-Schwarz inequality, we have: 

  i iw w w       (2) 

Hence a formulation of dual-v-SVR is:  

 
1 1 1

2

1 1 1 1 1
, ,

1

min
2i

N

i
w b

i

N
w C v b N






 
  

 
  

 s.t.  1 1 1 1i iw x w b u      , 1 0i  , i = 1,…,N (3) 

and 

 
2 2 2

2

2 2 2 2 2
, ,

1

min
2i

N

i
w b

i

N
w C v b N






 
  

 
  

 s.t.  2 2 2 2i iw x w b l      , 2 0i  , i = 1,…,N (4) 

where is a nonlinear transform: RN → F to map the data points into a higher dimen-

sional feature space F, 
2

1,2w is the regularization term, C1, C2 ≥ 0 are the regulariza-

tion parameters and 1i , 2i  are the slack variables. Parameter v1 ∈ (0, 1) controls the 

tradeoff between the minimization of b1,2 and the minimization of errors.  

 

Fig. 1. Incremental dual-v-SVR 
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2.2 KKT Conditions 

Let      ,

1 1
,i j i j i jQ k x x x x

N N
        , the dual problem of (3) 

can be written as: 

 1 1 1 1

, 1 1

1
min

2

N N

i j ij i i

i j i

Q y


  
 

   

 s.t. 1 1 1

1

N

i

i

C v N


 , 1 10 ,i C   i = 1,…,N (5) 

From equation (5), we can see the box constraints of 1i  are independent of the size 

of the training sample set. 

Then, we introduce the extended training set S, which is defined as S S  S  , 

where   1 1 1 1
, , 1

N

i i i i
S x y z


   ,   1 1 1 1

, , 1
N

i i i i
S x y z


    and iz is the label of 

the training sample  1 1,i ix y . Thus, the minimization problem (5) can be further re-

written as:  

 
2

1 1

, 1

1
min

2

N

i j ij

i j

Q


 


  

 s.t.  
2

1 1

1

0
N

i i

i

z 


 , 
2

1 1 1

1

2
N

i

i

C v N


 , 1 10 ,i C   i = 1,…,2N (6) 

The solution of the minimization problem (6) can also be obtained by minimizing 

the following convex quadratic objective function under constraints: 

 
1 1

2 2 2

1 1 1 1 1 1 1
0

, 1 1 1

1
min 2

2i

N N N

i j ij i i i
C

i j i i

W Q z C v N


     
 

  

   
      

   
    (7) 

Then by the KKT theorem, the first-order derivative of W leads to the following 

KKT conditions: 

 
2

1 1

1

0
N

i i

i

W
z 

 


 


  (8) 

 
2

1 1 1

1

2
N

i

i

W
C v N

 


 


  (9) 

  
2

1 1 1

11

:
N

i ij i i

ji

W
i S g Q z  

 


     


  

 
1

1 1

1 1

0  0
0  0
0  

i

i

i

for
for C
for C






 
  
 

 (10) 
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According to the value of the function 1ig , the extended training set S is partitioned 

into three independent sets (see Fig.2): 

           1 1 1 1Support Set | 0,0S i i iS i g x C     

     1 1 1 1Error Set | 0,E i i iS i g x C    (11) 

   1 1 1Remaining Set | 0, 0R i i iS i g x     

The function f2(x) can use the same procedure for the analyses and the KKT condi-

tion is same as equation (9). Therefore, the two functions build an insensitive zone. 

Furthermore, only errors outside the insensitive zone contribute to the cost function, 

and only those points (i.e. SVs [2]) determine the final regression model. Hence, the 

obtained regression model of dual-v-SVR is sparse. 

 

Fig. 2. The partitioning of the training samples S into three independent sets by KKT condi-

tions. (a) SS. (b) SE. (c) SR. 

2.3 Incremental & Decremental Adjustment 

From section 2.2, we know when a new sample arrives, the weights of the new sam-

ple are set to 0 initially, and then it needs to be assigned into a set to satisfy the KKT 

conditions. Hence, if the assignment violates the KKT conditions, the weights of the 

new sample will be adjusted. Furthermore, due to a conflict between equations (8) and 

(9), the adjustment of dual-v-SVR involves two steps: incremental and decremental. 

Incremental Adjustment. 

In the incremental adjustment step, we need to ensure all the samples satisfy the 

KKT conditions, but the restriction 1 1

1

2
N

i

i

C vN


  does not need to hold for all the 

weights, so we have the following linear system: 

 1 1 1 0
S

i j ij i c ic

j S

g Q z Q   


         (12) 

 1 1 1 1 0
S

j j c c

j S

z z 


     (13) 
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where 1 j , 1 jz ,   and  1ig  denote the corresponding variations. Then we define 

 1, ,1
S

T

Se   as the sS  dimensional column vector with all ones, let 

1,S S

T

S Sz z z 
  , and let 

S SS SQ denote the matrix, the above liner system can be fur-

ther rewritten as: 

 

\
\

1 1
0 z 0

S

S S SS S S

T

S c c

S S c SS S S

h
Q

z

Q ez Q




 

 



        
                 

 (14) 

where \Q   is the abbreviation of the matrix above the under brace, \h   is also the 

abbreviation which is defined in the same way. 

Let 
1

\R Q 



  and 0  , then the linear relationship between \h   and 1c  can 

be easily solved as follows: 

 

\

1

\ 1

S S S

c

c

c

cc
S S c S

z
h R

Q












 

    
         

       

 (15) 

where \

c

  stands for the dimension corresponding to   in the vector \

c

 . 
S

c

S  is 

the vector with the same meaning of \

c

 . Accordingly, let \ 0c

  , then the relation-

ship between \h   and c can also be defined as: 

 c
ch         (16) 

By substituting (15) and (16) into (12), we can get the linear relationship between 

1ig  and c  as follows: 

 1 1 1 1

S

c cc c
i j ij i ic c i c

j S

g Q z Q      


 
        

 
 , i S   (17) 

Obviously Si S  , so we have 1 0c

i  . Thus, for each incremental adjustment, 

we can compute the maximal increment of 1c  (here denoted as max
1c ), update α, 

g, SS, SE, SR and the inverse matrix R, similar to the approaches in [20]. 

Decremental Adjustment. 
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In the decremental adjustment step, we gradually adjust 1ii S


   to restore the 

equality 1 2 ( 1)ii S
Cv N


  , so that the KKT conditions are satisfied by all the 

samples. For each adjustment of 1ii S


 , in order to ensure all the samples satisfy 

the KKT conditions, the weights of the samples in SS, the Lagrange multipliers   and 

  should also be adjusted accordingly, and these have the following linear system: 

 
1 1 1 0

S

i j ij i

j S

g Q z  


       , Si S   (18) 

 
1 1 0

S

i j

j S

z 


   (19) 

 
1 0

S

j

j S

   


      (20) 

where   is the introduced variable of adjusting 1ii S


 ,   is any negative num-

ber, and    is incorporated in (20) as an extra term. Using this extra term can pre-

vent the recurrence of conflicts between equations (8) and (9). The above linear sys-

tem can also be further rewritten as: 

 

0 0 0

0 1

0

S

S

SS S S S

T

S

T

S

SS S S S

h
Q

z

e

z e Q



  





     
     

        
          

 (21) 

Let 1R Q , then the linear relationship between h and   can be obtained as 

follows: 

 

0

1

0
S

S

S
S

h R









  

 

                                 

 (22) 

From equation (20), we have  1 1ii S   

     , which implies that the 

control of the adjustment of 1ii S



  is achieved by  . 

Finally, substituting equation (20) into equation (16), we can also get the linear re-

lationship between 1ig  and   as follows: 
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 1 1

S

c
i j ij i i

j S

g Q z       


 
       

 
 , i S   (23) 

Obviously, Si S  , and we also have 1 0i  . However, the decremental adjust-

ments cannot be used directly to obtain the optimal solution to the minimization prob-

lem (6). Hence, to solve this problem, we need to compute the adjustment quantity 
*  for each decremental adjustment such that a certain sample migrates among the 

sets SS, SR and SE. If 1 2 ( 1)ii S
Cv N


  , we will compute the maximal adjustment 

quantity max  and let *  = max ; otherwise, we will compute the minimal ad-

justment quantity min  and let  *  = min . 

3 Experiment Result 

3.1 Experiment setup 

In this section, we validate the performance of the proposed incremental dual-v-SVR 

algorithm (IDVSVR) through several experiments which compare our algorithm with 

standard TSVR [22], AOSVR [9], and INSVR [12]. All regression models are imple-

mented in MATLAB 2016a version on Windows 7 running on a PC with system con-

figuration Intel Core i5 processor (2.40 GHz) with 8-GB RAM. We also use cadata, 

and Friedman data sets. Cadata [12] is a real data set, Friedman is an artificial data 

set [21]. The details of the three data sets are shown in Table 1. 

Table 1. Data sets used in the experiments 

Data set #training set # attributes 

cadata 20000 8 

Friedman 40000 10 

For simplicity, the Gaussian radial basis function kernel is adopted for all exam-

ples.  We set the model parameters C1 = C2 = C and v1 = v2 = v. The values of parame-

ter C, q, ε,  v are, respectively, selected from the sets {10i | i = 0, 1, ... , 6}, {2i | i = 

−9,−8,  ..., 2}, {0.01, 0.02, ..., 0.4}, and {0.01, 0.02, ..., 0.6}. As for uncertainty, as the 

aforementioned data sets are not noisy, we artificial introduce a noisy ei into predictor 

variable X and dependent variable Y, and ei is drawn from a uniform distribution on 

U(-k, k). Here, U(-k, k) represents the uniformly random variable in [-k, k]. 

3.2 Performance Evaluation 

In the first experiment, we compare their trends in relation to regression risk on 

noisy data when the data size N is increased. We use RMSE [22] to represent the ac-

curacy where a smaller RMSE represents a lower risk. Fig.3 shows the comparison 

result for different data sets, different data size N and different k. 
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                         (a). k=0.0, cadata                                              (b). k=0.0, Friedman 

 

                           (c). k=0.5, cadata                                            (d). k=0.5, Friedman 

 

                            (e). k=1.0, cadata                                            (f). k=1.0, Friedman 

Fig. 3. Comparison result of RMSE 
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From Fig.3, we can see that when the data size N is increased, no matter how much 

k is, the RMSE of any regression is gradually decreasing. When k = 0, IDVSVR and 

INSVR have the better performance. These results identify that both IDVSVR and 

INSVR have the advantage of using parameter v to control the bounds on the fraction 

of SVs and errors. However, when k increases, or in other words, when the data is 

perturbed by noise, the IDVSVR still has the better performance, as the performance 

of INSVR is very poor. Furthermore, Fig.3 also shows that the accuracy of IDVSVR 

remains relatively stable even when k=1. Hence, a major advantage of the proposed 

IDVSVR over the other algorithms is its effectiveness in handling uncertain data. 

In the second experiment, we compare the training speed on noisy data when the 

data size N is increased. In the previous experiment, we know TSVR has the worst 

generalization ability. Hence, we only test the training time of AOSVR, INSVR, and 

IDVSVR. Fig.4 shows the comparison results in terms of time for the different data 

sets, different data size N and different k. 

 

              (a). k=0.0, cadata                                                 (b). k=0.0, Friedman 

 

                      (c). k=0.5, cadata                                                 (d). k=0.5, Friedman 
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                         (e). k=1.0, cadata                                               (f). k=1.0, Friedman 

Fig. 4. Comparison result of training speed. 

Fig.4 demonstrates that the learning speed of the IDVSVR algorithm is generally 

much faster than the other online SVR algorithms when data size N increases. One 

reason for this is that in IDVSVR, the two nonparallel functions are estimated by 

solving two SVR-type QPPs of smaller size at the same time, so the learning speed of 

IDVSVR is faster. The second reason is using an extra term to prevent the recurrence 

of conflicts between the equation (8) and (9) and reduce the number of adjustment. 

Fig.4 furthermore suggests that the prediction speed of IDVSVR model remained 

relatively stable in different k. But the training speed of other online SVR algorithms 

becomes slower with the k increased. 

4 Concluding remarks 

As there is no effective SVR algorithm which can handle incremental regression 

problem with uncertain data, we design an incremental dual-ν-SVR algorithm in this 

paper. Our proposed incremental dual-v-SVR has good robustness against uncertainty 

and can handle the incremental regression problem efficiently. Furthermore, there are 

a total of five advantages of our proposed incremental algorithm: (1) the learning 

speed of incremental dual-v-SVR algorithm is fast; (2) the sparsity of incremental 

dual-v-SVR algorithm is improved; (3) the incremental dual-v-SVR algorithm has 

good generalization performance; (4) the incremental dual-v-SVR algorithm also can 

use parameter v to control the bounds on the fractions of SVs and errors; and (5) in 

incremental dual-v-SVR algorithm, the box constraints are independent of the size of 

the training sample set. The experimental results also prove our conclusion. 
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