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By developing a continuous-time heterogeneous agent financial market model of multi-assets

traded by fundamental and momentum investors, we provide a potential mechanism for generating

time-varying dominance between fundamental and non-fundamental in financial markets. We show

that investment constraints lead to the coexistence of a locally stable fundamental steady state and

a locally stable limit cycle around the fundamental, characterized by a Bautin bifurcation. This pro-

vides a mechanism for market prices to switch stochastically between the two persistent but very

different market states, leading to the coexistence and time-varying dominance of seemingly con-

troversial efficient market and price momentum over different time periods. The model also gener-

ates other financial market stylized facts, such as spillover effects in both momentum and

volatility, market booms, crashes, and correlation reduction due to cross-sectional momentum trad-

ing. Empirical evidence based on the U.S. market supports the main findings. The mechanism

developed in this paper can be used to characterize time-varying economic dominance in econom-

ics and finance in general. Published by AIP Publishing. https://doi.org/10.1063/1.5021141

In this paper, a continuous-time heterogeneous agent

model (HAM) of multi-assets traded by fundamental and

momentum investors is formulated. Bifurcation analysis

is carried out by center manifold theorem and normal

form theory, and the results indicate that this nonlinear

model tends to have a locally stable steady state and a

limit cycle simultaneously. Triggered by random shocks,

the solutions may switch stochastically between these two

attractors. Empirical evidence based on U.S. market sup-

ports the main findings. The model provides a potential

mechanism in generating time-varying dominance

between fundamental and non-fundamental in financial

markets and also generates other financial market styl-

ized facts. This paper is closely related to the momentum

and heterogeneous agent model (HAM) literature and we

conduct an analysis of global dynamics, which comple-

ments the local stability analysis well documented in the

HAM literature. This provides a better understanding of

the complexity and the underlying economic mechanism

of market behavior.

I. INTRODUCTION

The coexistence of puzzling and even controversial

financial market anomalies and hypotheses is well docu-

mented. This is perfectly reflected by different views of the

2013 Nobel Laureates Eugene Fama and Robert Shiller on

efficient market hypothesis. As one of the most important

paradigms in finance, the efficient market theory argues that

information is incorporated into prices efficiently (Fama,

1970; 2014). In contrast, Shiller (2003; 2014) views financial

markets from a broader social science perspective, including

psychology and sociology, and develops a behavioral

approach to explaining inefficiency of financial markets such

as bubbles, crashes, and excess volatility. This stands in

sharp contradiction to much of the efficient market theory.

Very often, we observe a time-varying dominance among

the two controversial views; financial markets are more effi-

cient over certain time periods but less efficient in other time

periods. The questions are how to characterize such time-

varying dominance and what is the underlying mechanism

for such wildly observed coexistence in financial markets. In

this paper, we provide a general framework to answer these

questions. We develop a continuous-time financial market

model with heterogeneous agents who trade multi-assets

based on either economic fundamentals or price momentums

to characterize the coexistence of such controversial views

on market efficiency and time-varying dominance of one

over the other in different time periods in financial markets.

From a globally nonlinear dynamics point of view, we show

that investment constrains can cause the coexistence of two

different and locally stable market states. It is such coexis-

tence, together with random shocks, that underlies the time-

varying dominance of different market states in financial

markets.

By incorporating investment constraints, we model asset

prices as nonlinear interaction of agents who trade on funda-

mentals and agents who trade on price momentum (either in

time series or cross-section). The two trading behavior of

agents are motivated by return reversal and momentum in

the cross-section well documented in financial markets. The

resulting asset price model tends to have bistable dynamics,
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characterized by a Bautin bifurcation, in which a locally sta-

ble fundamental steady state coexists with a locally stable

limit cycle around the fundamental. Depending on market

price levels and random shocks, market prices display two

very different market states. One characterizes small devia-

tions of market price from the fundamental price, leading

market prices to be more efficient; while the other character-

izes cyclical fluctuations around the fundamental price,

enhancing cross-sectional price momentum and leading to

less efficient markets. Triggered by random shocks, market

prices then switch stochastically between the two persistent

market states (due to their local stability), leading to the

coexistence of seemingly controversial efficient market and

price momentum over different time periods.

To explore the underlying mechanism on the coexis-

tence, we conduct a detailed analysis of the global dynamics

of the nonlinear financial market model and provide better

understanding of the complexity of market behavior. The

analysis complements the local stability analysis approach

well used in the extant nonlinear economic model literature.

By applying the normal form method and center manifold

theory, we demonstrate bistable dynamics (the coexistence

of a locally stable steady state and a locally stable limit

cycle) through a Bautin bifurcation (generalized Hopf bifur-

cation). [The Bautin bifurcation is similar to the Chenciner

bifurcation in discrete-time model, which is used to explain

the volatility clustering observed in various financial mar-

kets, see Gaunersdorfer et al. (2008) and He et al. (2016).]

We provide analytical conditions for the bistable dynamics

and show that both time series and cross-sectional momen-

tum can lead to bistable dynamics. The Bautin bifurcation is

characterized numerically by conditions in which a Hopf

bifurcation occurs and meanwhile, the first Lyapunov coeffi-

cient, which determines the direction and stability of the

Hopf bifurcation, is zero. With the aid of the Matlab package

DDE-BIFTOOL, we numerically study the global extension

of the bifurcated periodic solutions, track unstable limit

cycles, and provide the condition for bistable dynamics.

The current agent based financial market literature is

mainly based on local stability analysis of the fundamental

steady state. It focuses on the forward and stable bifurcated

cycles around the fundamental steady state characterized by

the negative Lyapuniv coefficient. However, when the first

Lyapunov coefficient is positive, the Hopf bifurcation is

backward and the bifurcated periodic solution becomes

unstable. In this case, the bifurcated unstable periodic solu-

tion can be extended backward with respect to the bifurca-

tion parameter until a threshold value and then, the extended

periodic solution becomes forward (with respect to the bifur-

cation parameter) and stable. Therefore, the stable fundamen-

tal steady state can coexist with the stable forward extended

periodic solution, in between the backward extended periodic

solution which is unstable. Correspondingly, there exists an

interval for the bifurcation parameter in which the two locally

stable attractors coexist. This implies that, even when the fun-

damental steady state is locally stable, prices need not con-

verge to the fundamental value, but may settle down to a

stable limit cycle, depending on the initial price levels. The

stylized approach for the global dynamics analysis employed

and the underlying mechanism in this paper can be used to

characterize the time-varying economic dominance in general.

The impact of cross-sectional momentum trading on the

bistable dynamics is investigated through three scenarios. (i)

In the first scenario, two separate risky asset prices have for-

ward and stable bifurcations before introducing cross-

sectional momentum trading among two risky assets. When

agents are allowed to trade two risky assets at the same time

via the cross-sectional momentum trading, the two assets are

integrated into one market. We show that the newly inte-

grated market can only generate forward and stable bifurca-

tions. (ii) In the second scenario when the two prices have

backward and unstable bifurcations before integration, the

integrated market can have either backward (unstable) bifur-

cation or forward (stable) bifurcation. (iii) In the third sce-

nario when one risky price has backward (unstable)

bifurcation and the other has forward (stable) bifurcation, the

integrated market can also have either backward (unstable)

bifurcation or forward (stable) bifurcation. The analysis of

the above scenarios shows that in addition to reducing the

local stability of the steady states (meaning a smaller local

stability parameter region or basin of the attraction), the

momentum trading can enhance the local stability of the

limit cycles (meaning a larger parameter region or basin of

the attraction for the bifurcated period solution). This pro-

vides another channel through which momentum trading can

destabilize the market. More specifically, we show that the

cross-sectional momentum trading tends to destabilize the

local stability of the fundamental steady state by reducing

the parameter region of the local stability and enhance cycli-

cal price oscillation around the fundamental steady state.

Intuitively, the bistable dynamics is caused by the con-

straints faced by both fundamental and momentum investors.

On the one hand, various constraints faced by the fundamen-

tal traders, such as the wealth and short-sale constraints, limit

the activity of the fundamental traders. This reduces the size

of the basin of the attraction of the stable fundamental steady

state. When the initial values are far away from the steady

state, the prices tend to depart further away from the steady

state. On the other hand, the wealth and short-sale constraints

also limit the destabilizing role of the momentum investors.

As a result, the prices cannot explode but settle down at a

stable cycle around the fundamental steady state. Therefore,

the constraints limit the strengths of both local attractors (the

stable steady state and the stable limit cycle), resulting in

bistable dynamics.

Our results lead to several empirical implications. First,

we find that a strong integration via the cross-sectional

momentum results in comovements in asset prices in oppo-

site directions. Second, cross-sectional momentum trading

can give rise to a spillover effect in momentum, which

is documented empirically in Gebhardt et al. (2005) and

Jostova et al. (2013), and can reduce the correlation of stock

returns. More interestingly, the model suggests that cross-

sectional momentum trading tends to be self-fulfilling in the

sense that it destabilizes the market and generates additional

price trends in cross-section. Furthermore, we provide empir-

ical evidence based on the U.S. market to support the reduc-

tion in return correlation. We find that an increase in the
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usage of cross-sectional momentum strategies significantly

decreases the correlations among stocks by 35% on average

after Jegadeesh and Titman published their seminal work in

1993. Also the profits of the cross-sectional momentum

increase by 1.5%. The empirical findings are consistent with

our analytical results.

This paper is closely related to the momentum literature.

Momentum profitability is found to depend on market states

(Chordia and Shivakumar, 2002; Cooper et al., 2004), inves-

tor sentiment (Antoniou et al., 2013), and market volatility

(Wang and Xu, 2015). For example, Cooper et al. (2004)

found that short-run (six months) momentum strategies are

profitable in an up-market, but no in a down-market.

Recently, Daniel and Moskowitz (2016) documented that the

momentum strategy tends to experience severe crashes dur-

ing market rebounds. Chu et al. (2015) showed that the dom-

inance of fundamental and behavioral-bias-related non-

fundamental strengths is time-varying. [He et al. (2018)

show that studying both fundamental and momentum jointly

is more powerful than examining each in isolation.]

However, most existing theories are independent of market

conditions either implying a long-lasting momentum or rul-

ing out the existence of momentum. They are difficult to har-

monize with the time-varying existence of momentum. In

our model, the “inefficient” momentum and “efficient” mar-

ket price can coexist. Their dominance depends on the price

levels (and price shocks).

This paper is also related to heterogeneous agent models

(HAM) literature. Over the last three decades, empirical evi-

dence, unconvincing justification of the assumption of

unbounded rationality, and investor psychology have led to

the growing research on HAMs. [See Hommes (2006),

LeBaron (2006), Chiarella et al. (2009), Lux (2009), He

(2013), and Dieci and He (2018) for surveys of the recent

development in this literature.] With different groups of

investors having different expectations about future prices,

HAMs have shown that asset price fluctuations can be

caused by an endogenous mechanism of interaction of het-

erogeneous agents (Brock and Hommes, 1997; 1998;

Chiarella et al., 2002). Given the complexity of nonlinear

financial markets, most of the HAMs are computationally

oriented based on local stability and bifurcation analysis,

while the globally nonlinear properties are seldom analyzed

(through the normal form method and the center manifold

theory). He et al. (2009; 2016) are two exceptions. In addi-

tion to the local stability analysis, He et al. (2009) analyti-

cally examine the bifurcation properties, including the

direction of the bifurcation, the stability of the bifurcated

cycle, and the global extension of the bifurcated cycle. He

et al. (2016) further provide the conditions of Chenciner

bifurcation and show the coexistence of two local attractors.

This paper conducts a global dynamics analysis, which com-

plements the local stability analysis well documented in

HAM literature. It provides better understanding of the com-

plexity and the underlying economic mechanism of market

behavior. This paper also contributes to the studies of inter-

actions between financial markets by examining the effects

of the cross-sectional momentum trading on both local and

global dynamics and a large set of stylized facts in financial

markets. The interaction among financial markets has also

been demonstrated by a number of earlier HAMs, including

Westerhoff (2004), Chiarella et al. (2005), Chen and Huang

(2008), Marsili et al. (2009), Dieci and Westerhoff (2010),

Schmitt and Westerhoff (2014) and Dieci et al. (2018). In

particular, Westerhoff (2004) considers a multi-asset model

with fundamentalists who concentrate only on one market

and trend followers who invest in all markets; Dieci and

Westerhoff (2010) explore deterministic models to study two

stock markets denominated in different currencies, which are

linked via the related foreign exchange market; Chen and

Huang (2008) develop a computational multi-asset artificial

stock market to examine the relevance of risk preferences

and forecasting accuracy to the survival of investors; Marsili

et al. (2009) introduce a generic model of a multi-asset finan-

cial market to show that correlation feedback can lead to

market instability when trading volumes are high. Schmitt

and Westerhoff (2014) calibrate their model to match a num-

ber of important stylized facts of financial markets, including

comovements and cross-correlations; and Dieci et al. (2018)

develop a framework with countercyclical asset price

dynamics.

The bistable dynamics is related to the multiple equilib-

ria mechanism in the sense that a nonlinear financial market

can have multiple locally stable attractors. However, differ-

ent from the multiple equilibria mechanism, the two attrac-

tors in our mechanism are very different. Therefore, the

model is able to characterize seemingly unrelated or even

opposite market phenomena, such as price momentum and

efficient market.

This paper is organized as follows. We first propose a

continuous-time heterogeneous agent model of two assets in

Sec. II to explicitly characterize momentum trading. In Sec.

III, we apply stability and bifurcation theory, together with

the normal form method and center manifold theory, to

examine both local and global dynamics of the model. In

particular, we demonstrate the coexistence of a local stable

fundamental price and a locally stable closed cycle around

the fundamental price. Section IV conducts a numerical anal-

ysis of the stochastic model to explore the joint impact of the

global deterministic dynamics and noises. Based on the U.S.

market data, Sec. V provides empirical evidence to some

implications of the model. Section VI concludes a more gen-

eral model with multiple assets and all the proofs are

included in the Appendixes.

II. THE MODEL

We consider a financial market of two risky assets (A
and B), populated by fundamental investors, extrapolators,

and noise traders. To have an intuitive and parsimonious

model, we motivate the demand functions based on agents’

behavior directly by following Chiarella (1992), He and Li

(2012, 2015), and Di Guilmi et al. (2014). [The demands in

the continuous-time setup are consistent with those deriving

from heterogeneous expectations and utility maximization in

discrete time HAM literature, see, for example, Brock and

Hommes (1997; 1998).] The fundamental investor trade
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based on the (log) book-to-market ratio and their excess

demands is given by

Di
f ;t ¼ tanh bf ðFi

t � Pi
tÞ

h i
; i ¼ A;B; (2.1)

where Fi
t and Pi

t are the log fundamental price and log market

price, respectively, at time t, and bf > 0 is a constant mea-

suring the mean-reverting of the market price to the funda-

mental price. The S-shaped hyperbolic demand function

[tanhð�Þ] reflects various constraints faced by agents, such as

the wealth constraint (the upper bound) and the short-sale

constraint (the lower bound). For simplicity, we consider

that the fundamental prices are governed by

dFA
t

dFB
t

 !
¼ RFdWF

t ; RF ¼
rF

A;1 rF
A;2

rF
B;1 rF

B;2

 !
;

FA
0

FB
0

 !
¼

�F
A

�F
B

 !
; (2.2)

where RF is the variance-covariance matrix for fundamental

returns and WF
t ¼ ðWF

1;t;W
F
2;tÞ
0

are two independent

Brownian motions.

The literature has extensively documented that many

individual and institutional investors extrapolate historical

returns [see, e.g., Vissing-Jorgensen (2004), Bacchetta et al.
(2009), Barberis (2013), Amromin and Sharpe (2014),

Greenwood and Shleifer (2014), and Kuchler and Zafar

(2016)], and shown that both time series momentum (or

absolute momentum) and cross-sectional momentum (or rel-

ative momentum) widely used in practice can generate per-

sistent and sizeable profits [see, e.g., Jegadeesh and Titman

(1993) and Moskowitz et al. (2012) among many others].

Accordingly, we also consider extrapolators who trade on

short-run price trends. The extrapolators estimate the price

trend using a moving average of historical returnsðt

t�s
dPi

u ¼ Pi
t � Pi

t�s;

where dPi
u is the (log) instantaneous return of asset i and s is

the look-back period of the extrapolation. There are two

types of extrapolators, based on time series momentum and

cross-sectional momentum, respectively. The demands of the

absolute momentum investors for assets A and B are given,

respectively, by

Di
a;t ¼ tanh baðPi

t � Pi
t�sÞ

� �
; i ¼ A;B; (2.3)

where parameter ba > 0 represents the extrapolation rate of

the absolute momentum investors on the future price trend.

The cross-sectional momentum strategy has been exten-

sively documented in the literature (e.g., Jegadeesh and

Titman, 1993; 2001; Daniel and Moskowitz, 2016, among

many others). It is typically conducted by longing the win-

ners, the stocks have higher past returns relative to other

stocks, and shorting the losers, the stocks have lower past

returns relative to other stocks. Accordingly, the demands of

the cross-sectional momentum investors are given by

DA
c;t ¼ tanhfbc ðPA

t � PA
t�sÞ � ðPB

t � PB
t�sÞ

� �
g;

DB
c;t ¼ tanhfbc ðPB

t � PB
t�sÞ � ðPA

t � PA
t�sÞ

� �
g;

(2.4)

where bc > 0 is a constant. Equation (2.4) implies that the

cross-sectional momentum strategy is a zero-investment

strategy by taking a long position in one asset and a short

position in the other asset simultaneously. We consider the

same time horizon s for both assets to be consistent with the

cross-sectional momentum literature.

Therefore, both fundamental investors and absolute

momentum investors focus only on individual assets, while

the cross-sectional momentum investors trade on two assets

simultaneously. The market fractions of the three types of

investors who trade on asset i are ai
f ; ai

a, and ai
c, respectively,

satisfying ai
f þ ai

a þ ai
c ¼ 1. Here, ai

c denotes the market

fraction rather than the number of traders. So it can be differ-

ent for the two assets even though the cross-sectional

momentum investors are the same group of investors across

the two risky assets.

The market maker adjusts the market price according to

the aggregated excess demand

dPA
t ¼lA aA

f tanh bf ðFA
t �PA

t Þ
h i

þaA
a tanh baðPA

t �PA
t�sÞ

� �h
þaA

c tanhfbc ðPA
t �PA

t�sÞ�ðPB
t �PB

t�sÞ
� �

g
�
dtþrM

A dWM
t ;

dPB
t ¼lB aB

f tanh bf ðFB
t �PB

t Þ
h i

þaB
a tanh baðPB

t �PB
t�sÞ

� �h
þaB

c tanhfbc ðPB
t �PB

t�sÞ�ðPA
t �PA

t�sÞ
� �

g
�
dtþrM

B dWM
t ;

(2.5)

where the constant li > 0 represents the speed of the price

adjustment by the market maker

RM ¼
rM

A

rM
B

 !
¼

rM
A;1 rM

A;2

rM
B;1 rM

B;2

 !
:

is the variance-covariance matrix for the market returns and

WM
t ¼ ðWM

1;t;W
M
2;tÞ
0

represents two independent Brownian

motions, measuring the demands of noise traders or market

noises. They can be correlated with the fundamental shocks

WF;t; however, in the numerical analysis we assume they are

independent for simplicity. Specifically, when RM is a diago-

nal matrix, the conditional volatility of one asset cannot be

affected by the other asset and hence, any spill-over effect in

the realized volatility cannot be introduced by this term.

However, the two assets are still linked via the fundamental

correlation and the relative momentum investors.

The asset price model (2.5) is characterized by a nonlin-

ear stochastic delay differential system. The resulting returns

are linear functions of three factors, including a fundamental

component and two momentum components, in addition to a

noise term. In a consumption-based asset pricing model

where sentiment investors extrapolate the expected returns

using all historical returns, Barberis et al. (2015) show that

the return process is linear in the dividend process and the

extrapolators’ belief. Empirically, Grinblatt and Moskowitz

(2004) and Heston and Sadka (2008), among others, find that

the historical average returns over a short-run horizon can
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positively forecast return in the cross-section. In the follow-

ing analysis, the local dynamics of the corresponding deter-

ministic model is examined via the linearized form of (2.5).

We show that, different from the fundamental factor, the two

momentum factors tend to destabilize the market and may

result in non-stationary return processes. Furthermore, the

global dynamics analysis shows a rich and more complex

return behavior, which goes beyond the scope of the linear

models used in the empirical momentum literature.

III. DETERMINISTIC DYNAMICS

This section examines the price dynamics of the deter-

ministic skeleton of (2.5). By assuming a constant funda-

mental price Fi
t ¼ �F

i
and no market noise RM ¼ 0, system

(2.5) becomes a deterministic system of delay differential

equations, representing the mean processes of market returns

of the two risky assets

_P
A

t ¼ lA aA
f tanh bf ð �F

A � PA
t Þ

h i
þ aA

a tanh baðPA
t � PA

t�sÞ
� �h

þaA
c tanhfbc ðPA

t � PA
t�sÞ � ðPB

t � PB
t�sÞ

� �
g
�
;

_P
B

t ¼ lB aB
f tanh bf ð �F

B � PB
t Þ

h i
þ aB

a tanh baðPB
t � PB

t�sÞ
� �h

þ aB
c tanhfbc ðPB

t � PB
t�sÞ � ðPA

t � PA
t�sÞ

� �
g
�
:

(3.1)

The linearization of (3.1) at its unique fundamental steady

state ðPA;PBÞ ¼ ð �FA
; �F

BÞ is given by

_P
A

t ¼ ðcA
a þ cA

c � cA
f ÞPA

t � ðcA
a þ cA

c ÞPA
t�s � cA

c PB
t þ cA

c PB
t�s;

_P
B

t ¼ ðcB
a þ cB

c � cB
f ÞPB

t � ðcB
a þ cB

c ÞPB
t�s � cB

c PA
t þ cB

c PA
t�s;

(3.2)

where ci
f ¼ liai

f bf , ci
a ¼ liai

aba, and ci
c ¼ liai

cbc; i ¼ A;B
measure the activities of the three types of investors. Before

studying the full model (3.1) with all three types of investors,

we first examine several special cases to understand the roles

of different types of traders.

A. Bistable dynamics of the single asset model

We first consider the case when there are no cross-

sectional momentum investors, that is ci
c ¼ 0. In this case,

the price dynamics of the two assets is decoupled into two

separate single asset price dynamics

_P
A

t ¼ lA aA
f tanh bf ð �F

A � PA
t Þ

h i
þ aA

a tanh baðPA
t � PA

t�sÞ
� �h i

;

_P
B

t ¼ lB aB
f tanh bf ð �F

B � PB
t Þ

h i
þ aB

a tanh baðPB
t � PB

t�sÞ
� �h i

:

(3.3)

The local dynamics can be described as the following.

Proposition 3.1. For system (3.3) with i ¼ A;B,

(1) it has a unique fundamental steady state Pi ¼ �F
i
;

(2) the fundamental steady state Pi is locally asymptotically
stable for all s � 0 when ci

f � 2ci
a;

(3) the fundamental steady state Pi is locally asymptotically
stable for s < si

0 and unstable for s > si
0 when ci

f < 2ci
a.

In addition, Pi undergoes Hopf bifurcations at
s ¼ si

n; n ¼ 0; 1; 2;….

There always exist multiple Hopf bifurcation values for

a delayed differential system as we have here. These bifurca-

tion values si
n are usually governed by complex equations.

However, the first bifurcation value is the most important

because it determined the local stability of the steady state,

while others have less effects on the local stability of the

steady state and tend to affect global dynamics. As such, we

focus on the first bifurcation value in the paper to study the

effect of momentum trading on the local stability of funda-

mental steady state. Local dynamics has been well under-

stood in the HAM literature. For example, He and Li (2012),

among others, show that fundamental investors play a stabi-

lizing role, while momentum investors play a destabilizing

role in financial markets and the local stability can switch as

the time horizon s increases. Specifically, if neither the abso-

lute momentum investors nor the relative momentum invest-

ors participate into the market, the fundamental steady state

is always stable.

However, global price dynamics has been seldom stud-

ied in the literature [there are a few exceptions: e.g., the

global extension of bifurcated cycles is studied in He et al.
(2009; 2016); the piecewise linear maps are studied in

Sushko et al. (2006) and Sushko et al. (2016)] and is still

unclear so far. Therefore, we mainly focus on the coexis-

tence of attractors of the global dynamics and the dynamic

interaction between the two assets in this paper. Denote the

first Lyapunov coefficient by c1ð0Þ, which is derived in

Subsection 2 of the Appendix B. The stability of the Hopf

bifurcation can be characterized.

Proposition 3.2. For system (3.3) with i ¼ A;B,

(1) if c1ð0Þ ¼ 0, it undergoes a Bautin bifurcation (general-
ized Hopf bifurcation);

(2) if ci
f < 2ci

a and c1ð0Þ 6¼ 0, then the direction and stability
of the bifurcated periodic solutions (Hopf bifurcation)
are completely determined by the sign of the first
Lyapunov coefficient c1ð0Þ. That is, the bifurcated peri-
odic solutions are forward stable when c1ð0Þ < 0, but
backward and unstable when c1ð0Þ > 0.

Figure 1 illustrates the impact of the absolute momen-

tum trading, measured by ba, on the global price dynamics,

especially the stability of the bifurcated limit cycles. As ba

increases, the sign of the first Lyapunov coefficient c1ð0Þ
switches from positive to negative. Following Proposition

3.2, the direction of Hopf bifurcation changes from back-

ward to forward; correspondingly, the unstable bifurcated

cycle becomes stable. When the first Lyapunov coefficient

c1ð0Þ ¼ 0, system (3.3) has a Bautin bifurcation (generalized

Hopf bifurcation). The occurrence of Bautin bifurcation

implies that, with a proper set of parameters, a stable steady

state can coexist with a stable limit cycle (a bistable dynam-

ics, see Chap. 8 of Kuznetsov, 2004). Interestingly, numeri-

cal analysis suggests that the first Lyapunov coefficient c1ð0Þ
tends to keep the same sign as ai

j changes. Intuitively, the

right-hand side of (3.3) is linear in ai
j, implying that ai

j can

affect the local stability of the steady state while it may not
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affect the stability of the bifurcation. However, (3.3) is non-

linear in bj and hence, it can affect the global dynamics as

illustrated in Fig. 1. In the following analysis, we examine

two different scenarios [c1ð0Þ > 0 and c1ð0Þ < 0] separately,

and show that these two scenarios have different local and

global dynamics.

1. Scenario 1: c1ð0Þ>0

We set l ¼ li ¼ 15; ai
f ¼ 0:2; ai

a ¼ 0:8, ai
c ¼ 0; bf

¼ 0:2, and ba ¼ 0:04. It follows from (B5) and (B11) that

the first Hopf bifurcation value s0 � 3:92 and first Lyapunov

coefficient c1ð0Þ ¼ 1:3� 10�3 > 0. Proposition 3.1 implies

that the fundamental steady state is locally stable for s < si
0,

but becoming unstable for s > si
0. Proposition 3.2 further

shows that there is a backward Hopf bifurcation when

s ¼ si
0, and the corresponding bifurcated periodic solution is

unstable. We numerically examine the tendency of the bifur-

cated periodic solution using the Matlab package DDE-

BIFTOOL, which can even track the unstable limit cycles.

The numerical method is described in Subsection 3 of the

Appendix B. Figure 2 illustrates how the bifurcated periodic

solution varies with parameter s. Every point in the curve

stands for a periodic solution, and hence, the curve is called

the branch of periodic solutions [see He et al. (2009) for the

proofs of the global extension of the Hopf bifurcation]. As s
varies, the periodic solution with small amplitude at the

beginning moves to the left initially, then turns around at the

critical value si� (�2:89), and then shifts to the right. At

s ¼ si�, the two limit cycles collide and disappear via a

saddle-node bifurcation of periodic solutions (Kuznetsov,

2004). Therefore, there are two periodic solutions coexisting

for s 2 ðsi�; si
0Þ. By further computing the corresponding

nontrivial Floquet multiplier (the one with the maximal mod-

ule among all multipliers) for these two periodic solutions

with fixed s 2 ðsi�; si
0Þ, we find that the periodic solution

with the relatively larger amplitude is stable, while the other

is unstable. Hence, when s is within the coexistence interval,

ðsi�; si
0Þ, there are two local attractors, the asymptotically

stable fundamental steady state and the asymptotically stable

limit cycle around the fundamental steady state with larger

amplitude, and in between there is an unstable cycle. As s
increases, the branch increases steeply, implying large ampli-

tudes of the cycles. Numerical simulations (not reported here)

show that an increase in ba decreases the length of the coexis-

tence interval.

The bistable dynamics is caused by the constrained trad-

ing activities of both fundamental and momentum investors.

Intuitively, on the one hand, the fundamental investors face

various constraints, such as the wealth and short-sale con-

straints, which limit their trading activity and reduce the size

of the basin of the local attractor of the stable steady state.

When the initial values are far away from the steady state,

the prices tend to depart further away from the steady state.

On the other hand, the wealth and short-sale constraints (or

the S-shaped demand function) also limit the destabilizing

role of the momentum investors. As a result, the prices can-

not explode but settle down at a stable cycle. Therefore, the

constraints limit the strengths of both local attractors (the sta-

ble steady state and the stable limit cycle), resulting in the

bistable dynamics. On the one hand, we find that the limit

cycles tend to be unstable and the solutions to the system can

explode to infinity without the S-shaped demand functions of

the momentum investors. On the other hand, after removing

the S-shaped demand functions of the fundamental investors,

although the limit cycles are stable, the bistable dynamics

tend to disappear. In Sec. IV A, we show that, triggered by

the random shocks in the stochastic model (2.5), the bistable

dynamics can lead market prices to switch stochastically but

persistently between the two attractors, characterizing two

very different market states.

2. Scenario 2: c1ð0Þ<0

We choose l ¼ li ¼ 15; ai
f ¼ 0:2; ai

a ¼ 0:8, ai
c ¼ 0; bf

¼ 0:2, and ba ¼ 0:12. In this case, the first Hopf bifurcation

value is si
0 � 0:81, and c1ð0Þ ¼ �2:0� 10�3 < 0.

Proposition 3.2 implies that the Hopf bifurcation is forward

FIG. 2. The extension of the periodic solution bifurcated through a back-

ward and unstable Hopf bifurcation. Here, l ¼ li ¼ 15, ai
f ¼ 0:2; ai

a ¼ 0:8;
ai

c ¼ 0; bf ¼ 0:2, and ba ¼ 0:04. The first Hopf bifurcation value si
0 � 3:92

and first Lyapunov coefficient c1ð0Þ ¼ 1:3� 10�3 > 0.
FIG. 1. The first Lyapunov coefficient as a function of ba. Here, li ¼ 15,

ai
f ¼ 0:2; ai

a ¼ 0:8; ai
c ¼ 0; bf ¼ 0:2, and s ¼ si

0.
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and stable. Figure 3 illustrates the extension of the Hopf

bifurcation. The fundamental steady state is stable for s < si
0

but becomes unstable for s > si
0. The bifurcated forward

limit cycles are stable and the amplitude of the cycles

increases as s increases.

We complete the discussion with the following remark.

When the Hopf bifurcation is forward and stable as in

Scenario 2, the oscillation amplitude of the bifurcated cycles

is very small around the bifurcation value and increases with

s. However, when the Hopf bifurcation is backward and

unstable as in Scenario 1, the extended bifurcated cycles

have large oscillation amplitude around the bifurcation

value. In other words, there is a big jump from the stable

steady state to the stable cycle around the bifurcation value.

B. Bistable dynamics of the two assets model

The previous analysis shows different roles played by

different types of investors. We now analyze the market sta-

bility when all three strategies are employed. The market sta-

bility of the system (3.1) can be characterized by the

following proposition.

Proposition 3.3. For system (3.1),

(1) it has a unique fundamental steady state
ðPA;PBÞ ¼ ð �FA

; �F
BÞ;

(2) the fundamental steady state is locally asymptotically
stable for all s � 0 under condition �C defined in
Subsection 6 of the Appendix B;

(3) the fundamental steady state is locally asymptotically
stable for s 2 ½0; s0Þ but becomes unstable for s > s0

under condition C in Subsection 6 of the Appendix B;
(4) it undergoes a Hopf bifurcation at s ¼ s0 under condi-

tion C. In addition, if T
c1ð0Þ < 0 [ T

c1ð0Þ > 0], then the bifur-
cation is forward (backward), and the bifurcated
periodic solution is stable (unstable) when c1ð0Þ < 0

[c1ð0Þ > 0], where T and the first Lyapunov coefficient
c1ð0Þ are defined in Subsection 6 of the Appendix B.

Proposition 3.3 shows that the direction and the stability

of bifurcated periodic solution are determined by the sign of

both the transversality condition T and the first Lyapunov

coefficient c1ð0Þ. When the two individual systems are cou-

pled together, the market integration cannot alter the funda-

mental steady state of each asset, while tends to destabilize

the market in the sense that the integrated market is prone to

be more unstable. [The effect has also been demonstrated by

a number of earlier HAMs, such as Westerhoff (2004),

Chiarella et al. (2005), Chen and Huang (2008), Marsili

et al. (2009), Dieci and Westerhoff (2010), Schmitt and

Westerhoff (2014), and Dieci et al. (2018)]. In the remaining

analysis, we further investigate the impact of the integration

on price dynamics by examining the integration strength bc.

Specifically, when there are no absolute momentum invest-

ors, that is ai
a ¼ 0, Proposition 3.3 reduces to the following

corollary.

Corollary 3.4. Assume that ai
a ¼ 0 for i ¼ A;B.

(1) The fundamental steady state is locally asymptotically
stable for all s � 0 when b2 � 0, where b2 ¼ cA

f cB
f ðcA

f cB
f

�2cA
f cB

c � 2cB
f cA

c Þ.
(2) The fundamental steady state is locally asymptotically

stable for 0 � s < s0 but becomes unstable for s > s0

when b2 < 0. In addition, system (3.1) undergoes Hopf
bifurcations at s ¼ sn; n ¼ 1; 2;…, where sn is given by
(B21).

(3) If T
c1ð0Þ < 0 [ T

c1ð0Þ > 0], then the bifurcation is forward
(backward), and the bifurcated periodic solution is sta-
ble (unstable) when c1ð0Þ < 0 [c1ð0Þ > 0], where T and
the first Lyapunov coefficient c1ð0Þ are defined in
Subsection 6 of the Appendix B.

Figure 4 illustrates the extension of the Hopf branch

bifurcated from the first bifurcation point in the ðbc; sÞ-plane

using DDE-BIFTOOL. The upper line is a Hopf bifurcation

FIG. 3. The extension of periodic solution bifurcated through a forward and

stable Hopf bifurcation. Here, l ¼ li ¼ 15, ai
f ¼ 0:2; ai

a ¼ 0:8; ai
c ¼ 0;

bf ¼ 0:2, and ba ¼ 0:12. The first Hopf bifurcation value si
0 � 0:81 and first

Lyapunov coefficient c1ð0Þ ¼ �2:0� 10�3 < 0.

FIG. 4. The branch of Hopf bifurcation in the ðs; bcÞ-plane. The upper line

is a Hopf bifurcation branch, and the bifurcated periodic solution is unstable.

The middle line separates the ðs; bcÞ-plane into stable and unstable regions

of the fundamental steady state. Through this line, backward or forward

Hopf bifurcation occurs, depending on the value of bc. For any bc < b�c ,

there exists an interval for s (as indicated by the red solid line), on which the

system has bistable dynamics. Here, l¼ 15, aA
f ¼ aB

f ¼ 0:2; aA
a ¼ aB

a ¼ 0:7,

aA
c ¼ aB

c ¼ 0:1; ba ¼ 0:05, and bf ¼ 0:2.
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branch, and the bifurcated periodic solution is unstable. Its

frequency (x2) is the same as the one for the decoupled

model, and hence, the corresponding bifurcation value for s
is independent of bc. The middle line separates the ðs; bcÞ-
plane into stable and unstable regions of the fundamental

steady state, showing that the bifurcation value for s
decreases when bc is increasing. Also s tends to the bifurca-

tion value s0 for the decoupled model as bc approaches 0.

Through this line, backward or forward Hopf bifurcation

occurs, depending on the value of bc. For any bc < b�c , there

exists an interval for s (as indicated by the red solid line), on

which the system has bistable dynamics characterized by the

coexistence of a stable steady state and a stable cycle.

Figure 4 leads to several observations. First, the first

Hopf bifurcation value in terms of s decreases as bc

increases, see the decreasing blue line in the middle of Fig.

4. This implies that enforcing the integration strength

reduces the bifurcation value. Therefore, the two assets with

stable prices before integration can become unstable when

they are strongly coupled. Second, the sign of the first

Lyapunov coefficient c1ð0Þ changes as the intensity of inte-

gration bc increases and exceeds the critical value b�c � 0:07,

while the quantity T does not switch sign as shown in Fig. 5.

Therefore, the direction and the stability of the bifurcation

change at b�c . Third, there is a Bautin bifurcation (general-

ized Hopf bifurcation) for system (3.1) at ðs1
0; b
�
cÞ, which the-

oretically implies the coexistence of two local attractors (the

stable fundamental steady state and the stable limit cycle).

If both assets are unstable before coupling, then there

are two series of bifurcation values introduced by the two

assets, respectively, after market integration. For example,

we consider ~sA
0 < ~sB

0 . Asset A becomes unstable when

s > ~sA
0 . An interesting question following Proposition 3.3

would be whether asset B is still stable or becomes unstable

for ~sA
0 < s < ~sB

0 after integrated with asset A. The following

corollary indicates the latter.

Corollary 3.5. Assume ci
c 6¼ 0. The two prices of system

(3.1) converge to their fundamental steady state prices or
fluctuate cyclically simultaneously.

We have three observations from Corollary 3.5. First,

we do not have a market situation in which one asset price

converges to its fundamental price (or “stable”) and the

other fluctuates cyclically (or “unstable”) simultaneously.

This is different from the observations in Chiarella et al.
(2013) that one asset is stable and the other can be unstable

in a coupled system. Intuitively, the multi-assets are cou-

pled via the variance-covariance matrices in Chiarella

et al. (2013), which is in the higher order terms and hence

cannot affect the local stability. However, the current

model couples the two assets together even in its lineariza-

tion skeleton. Specifically, (3.1) can have such situation

that price A is stable while price B is unstable if cA
c ¼ 0,

which however violates the condition in Corollary 3.5.

Furthermore, when the system is unstable, the bifurcated

periodic solutions of the two assets have the same period

because the oscillation frequency is unique as demon-

strated by Proposition 3.3.

Second, there is a spill-over effect in momentum. More

specifically, consider two separate assets, one is stable and the

other is unstable, that is, one has no trend and the other has

(time series) momentum effect. After market integration

when agents diversify their portfolios, Corollary 3.5, together

with Proposition 3.4, shows that the stable asset becomes

unstable and exhibits momentum. Therefore, the momentum

can spill over from one asset to another. The spillover effect

in momentum is also documented empirically in Gebhardt

et al. (2005) and Jostova et al. (2013). This implies that time

series momentum can give rise to cross-sectional momentum.

In fact, Moskowitz et al. (2012) showed that positive auto-

covariance is the main driving force for time series momen-

tum and cross-sectional momentum effects, while the contri-

bution of serial cross-correlations and variation in mean

returns is small. Furthermore, they show that time series

momentum “is able to fully explain cross-sectional momen-
tum across all assets as well as within each asset class,” while

time series momentum is not fully captured by cross-sectional

momentum. Our model provides a theoretical support to these

empirical findings.

FIG. 5. (a) The first Lyapunov coefficient c1ð0Þ and (b) the transversality condition T as functions of bc. Here, li ¼ 15; aA
f ¼ aB

f ¼ 0:2, aA
a ¼ aB

a ¼ 0:7;
aA

c ¼ aB
c ¼ 0:1, ba ¼ 0:05, and bf ¼ 0:2.
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Third, notice that (3.1) implies that PA
tþdt ðPB

tþdtÞ is a

decreasing function of PB
t ðPA

t Þ. An increase in one asset

price tends to decrease the other’s price. The countercyclical

behavior of the two asset prices is caused by the cross-

sectional momentum trading. In other words, cross-sectional

momentum trading makes the two asset returns be negatively

correlated, which in turn amplifies the cross-sectional

momentum effect. Therefore, the cross-sectional momentum

trading tends to be self-fulfilling. He and Li (2015) also

show that the time series momentum trading is self-fulfilling.

Dieci et al. (2018) also find the countercyclical fluctuations

that is due to the market entry and exit behavior of investors.

Schmitt and Westerhoff (2014) also document comovements

in a multi-asset market.

In summary, we show that the cross-sectional momen-

tum trading, which integrates the two asset dynamics, can

change both local and global dynamics by making the two

price dynamics resonate.

C. The impact of cross-sectional trading
on the bistable dynamics

We further explore how the integration effect affects the

dynamics of (3.1) by numerically studying different dynam-

ics of the two assets before integration.

1. Scenario A: Backward 1 backward) backward
or forward

We first examine the case in which the two prices for

assets A and B have backward and unstable bifurcations

before the integration. Set li ¼ 15; aA
f ¼ 0:2; aB

f ¼ 0:25,

bf ¼ 0:2; aA
a ¼ 0:7; aB

a ¼ 0:65, and ba ¼ 0:05. By

Propositions 3.1 and 3.2, the first bifurcation values for each

asset model are 3.30 (for A) and 5.21 (for B) and their first

Lyapunov coefficients are 1:1� 10�3 and 1:2� 10�3,

respectively, implying backward and unstable bifurcations

for each asset before the integration. Let aA
c ¼ 0:1; aB

c ¼ 0:1
and bc ¼ 0:03. Then, there are two frequencies x1 � 0:59

and x2 � 0:46 for the integrated system, and their

corresponding smallest bifurcation values are s1
0 � 2:74 and

s2
0 � 4:42, respectively. Therefore, the first Hopf bifurcation

value for (3.1) is s0 ¼ s1
0, implying that the integration effect

destabilizes the fundamental steady state by reducing the first

bifurcation value. Furthermore, we have T � 0:02 and

c1ð0Þ � 1:0� 10�3 when s ¼ s0. This indicates that the

Hopf bifurcation for the integrated system (3.1) at s ¼ s0 is

still backward and the bifurcated periodic solution is unsta-

ble. The bistable dynamics (one locally stable fundamental

steady state and one locally stable limit cycle) is illustrated

in Fig. 6 by choosing different initial values. The opposite

price dynamics for the two assets are caused by the cross-

sectional momentum trading, which always longs one asset

while at the same time shorts the other. In other words, the

cross-sectional momentum investors tend to destabilize the

cross-section of asset returns.

Changing the value of parameter bc from 0.03 to 0.09,

the first bifurcation value becomes 1.86, the transversality

condition T¼ 0.08, and the first Lyapunov coefficient c1ð0Þ
� �6:0� 10�4. This implies that the bifurcation becomes

forward and the bifurcated periodic solution is stable. The

bifurcation diagrams for different bc are shown in Fig. 7.

Note that the first Lyapunov coefficients are positive for both

assets when they are decoupled, which may become negative

after the integration. In this case, the integrated system only

has one local attractor (periodic solution), even if there are

two stable attractors (fundamental steady state and periodic

solution) for each asset before the integration. Therefore, the

integration of the two assets tends to stabilize the otherwise

unstable cycles before the integration.

Intuitively, the cross-sectional momentum trading tends

to destabilize the market and strengthen the stability of the

limit cycles. Therefore, as the integration strength increases,

the basin of the attractor of the limit cycle grows while that

of the steady state declines. With a strong integration, the

steady state completely losses its stability and hence the

backward and unstable Hopf bifurcations for the two individ-

ual assets before the integration become forward and stable

after coupling.

FIG. 6. The solution of (3.1) for s ¼ 2:7 < 2:74 with different initial values: (a) ðPA;PBÞ ¼ ð2; 2Þ and (b) ðPA;PBÞ ¼ ð20; 20Þ over ½�s; 0	. Here

li ¼ 15; aA
f ¼ 0:2; aB

f ¼ 0:25, bf ¼ 0:2; aA
a ¼ 0:7; aB

a ¼ 0:65, ba ¼ 0:05; aA
c ¼ 0:1; aB

c ¼ 0:1, bc ¼ 0:03; �F
A ¼ 0 and �F

B ¼ 0.
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2. Scenario B: Backward 1 forward) backward
or forward

We choose another set of parameter values, li ¼ 15,

aA
f ¼0:12; aB

f ¼0:1; bf ¼0:2, aA
a ¼0:78; aB

a ¼0:3; ba¼0:084,

such that each asset model undergoes different types of Hopf

bifurcations when they are decoupled. In fact, the first bifur-

cation value and the first Lyapunov coefficient are 1.16

(3.69) and �6:4�10�6 (5:4�10�5), respectively, for asset A
(B), implying that the bifurcation is forward and stable

(backward and unstable) for asset A (B). Let aA
c ¼0:1,

aB
c ¼0:6, and bc¼0:01. Then, there exist two frequencies

x1�0:79 and x2�0:53, with their corresponding bifurca-

tion values given by s1
0�1:07 and s2

0�1:95 for the inte-

grated system. Moreover, T�0:07 and c1ð0Þ�5:6�10�5

when s¼ s0¼ s1
0, which implies that the Hopf bifurcation

for (3.1) at s¼ s0 is backward and the bifurcated periodic

solution is unstable. However, the first bifurcation value

decreases after the integration.

Choosing bc ¼ 0:06, we obtain the first bifurcation

value of 0.90, the transversality condition T¼ 0.08, the first

Lyapunov coefficient c1ð0Þ � �8:0� 10�4, and hence, the

corresponding bifurcation is forward and stable. The bifurca-

tion diagrams are similar to Fig. 7. Therefore, we show that

Backwardþ Forward) Backward. However, the first bifur-

cation value becomes smaller after the integration.

3. Scenario C: Forward 1 forward) forward

Numerical simulations (not reported here) also show

that when the two asset prices have forward and stable Hopf

bifurcation before the integration, the integrated system

always has a forward and stable Hopf bifurcation.

In conclusion, we have shown that the integration effect

destabilizes the system in two ways. First, an increase in the

integration strength parameter bc reduces the first bifurcation

value, so the fundamental steady state of the integrated sys-

tem is prone to be unstable compared to the decoupled sys-

tems. Second, an increase in bc tends to lead the cycles of

the integrated system to be stable, even though the decoupled

systems have unstable cycles.

IV. PRICE BEHAVIOUR OF THE STOCHASTIC MODEL

In this section, through numerical simulations, we exam-

ine the interaction between the global dynamics of the deter-

ministic model and noise processes and explore the potential

power of the model to generate various market behaviour

and the stylized facts observed in financial markets.

A. Bistable dynamics and stochastic switching

Figure 8 illustrates the time series of the log market pri-

ces and log fundamental prices for assets A and B with dif-

ferent initial conditions. With the chosen parameters, Fig. 5

shows that the corresponding deterministic system has bista-

ble dynamics, that is, the coexistence of a stable fundamental

steady state and a stable cycle. When we choose the initial

values close to the fundamental steady state, the prices con-

verge to the stable fundamental steady state of the corre-

sponding deterministic system. For the stochastic system,

Figs. 8(a) and 8(b) show that the stochastic market prices

(the red solid line) follow the fundamental prices (the blue

dotted line) in general, but accompanied by small deviations

from time to time. However, when we choose the initial val-

ues far away from the steady state, the prices converge to the

stable limit cycle of the corresponding deterministic system

and the stochastic market prices fluctuate widely around their

fundamentals for the stochastic system as illustrated in Figs.

8(c) and 8(d). This illustrates a significant impact of the ini-

tial value on the price dynamics when the underlying deter-

ministic model is bistable. Therefore, our model allows the

coexistence of puzzling and even controversial financial

market anomalies (efficient markets and momentum phases).

B. Spillover effect

The spillover effects in returns and volatilities have

been extensively documented in the literature. It has been

observed in various assets, including international equity

markets (Kinget al., 1994; Forbes and Rigobon, 2002), bond

markets (Christiansen, 2007), foreign exchange markets

(Hong, 2001), and commodity markets (Nazlioglu et al.,
2013).

(a) (b)

FIG. 7. Hopf bifurcation extension for asset A’s price of the system (3.1) in scenario A for (a) bc ¼ 0:03 and (b) bc ¼ 0:09. Here li ¼ 15,

aA
f ¼ 0:2; aB

f ¼ 0:25; aA
a ¼ 0:7, aB

a ¼ 0:65; aA
c ¼ 0:1; aB

c ¼ 0:1, bf ¼ 0:2, and ba ¼ 0:05.
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We numerically examine the spillover effect by explor-

ing the joint impact of the integration intensity bc and the

two noise processes on the market price dynamics. To exam-

ine the impact of the market integration on the stochastic

price dynamics, we choose the same market volatility and

fundamental volatility for the two assets. Under parameters

used in Fig. 9, the variance of the market noise for each asset

is 0:082 þ 0:052 ¼ 8:9� 10�3, the covariance of the market

noises for the two assets is 0:08� 0:05þ 0:05� 0:08

¼ 8� 10�3, the variance of the fundamental noise for each

asset is 0:062 þ 0:052 ¼ 6:1� 10�3, and the covariance of

the fundamental noises for the two assets is 0:06� 0:05

þ0:05� 0:06 ¼ 6� 10�3. However, we consider a situation

in which the fundamental steady state of the corresponding

deterministic model is unstable for asset A but stable for

asset B before the market integration (that is, bc ¼ 0).

Figures 9(a) and 9(b) show that the stochastic price of asset

A has greater fluctuations than asset B, and the realized

annual standard deviations of market returns are 9.3% and

8.6% for assets A and B, respectively, and the correlation is

45.3%. The higher volatility for asset A is mainly driven by

the greater activity of momentum investors in asset A.

Figures 9(c) and 9(d) illustrate the prices after the market

integration (that is, bc > 0). They illustrate that the market

integration increases the volatilities for both assets, and the

realized annual standard deviations of market returns

become 10.8% and 10.7% for assets A and B, respectively.

Notice that the volatility for asset B increases by 24.4%,

much higher than the increase for asset A, 16.1%. Therefore,

cross-momentum trading leads to a spillover in volatility.

However, the correlation between the two assets’ returns

reduces to 15.7%. In fact, Fig. 6 has shown that the cross-

sectional momentum trading leads to an opposite movements

of the two assets, and hence, we observe smaller correlations

after market integration. Therefore, the cross-sectional

momentum trading reduces return correlations, which in turn

make the momentum portfolios become more diversified.

Further numerical simulations (not reported here) show that

the correlation increases in rAB
F and rAB

M .

We also conduct Monte Carlo simulations. Based on the

set of parameters used in Fig. 9 and 1000 different random

seeds, the average realized annual standard deviations of

market returns are 8.9% and 8.5% for assets A and B, respec-

tively, and the correlation is 43.5% when bc ¼ 0. With the

cross-sectional momentum trading (bc ¼ 0:015), the average

realized annual standard deviations of market returns

FIG. 8. The time series of log market prices and log fundamental prices for assets A and B with different initial conditions. lA ¼ lB ¼ 15; aA
f ¼ aB

f ¼ 0:2,

aA
a ¼ aB

a ¼ 0:7; aA
c ¼ aB

c ¼ 0:1, bf ¼ 0:2; ba ¼ 0:05; bc ¼ 0:01, rF
A;1 ¼ 0:05; rF

A;2 ¼ 0:01, rF
B;1 ¼ 0:01; rF

B;2 ¼ 0:06, rM
A;1 ¼ 0:1; rM

A;2 ¼ 0:05, rM
B;1 ¼ 0:05;

rM
B;2 ¼ 0:08, �F

A ¼ �F
B ¼ 5 and s¼ 2. (a) Initial value of PA

s ¼ PB
s ¼ 2 for� s � s � 0. (b) Initial value of PA

s ¼ PB
s ¼ 2 for� s � s � 0. (c) Initial value of

PA
s ¼ PB

s ¼ 20 for� s � s � 0. (d) Initial value of PA
s ¼ PB

s ¼ 20 for� s � s � 0.
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become 16.4% and 16.3% for assets A and B, respectively,

and the correlation is reduced to 28.3%. The Monte Carlo

results confirm that cross-sectional momentum trading

reduces return correlation.

Therefore, channelled by the underlying deterministic

dynamics, the stochastic price model can generate various

stylized facts observed in the financial markets, including

market booms and crashes, comovements, and spillover

effects.

V. EMPIRICAL EVIDENCE FROM THE U.S. MARKET

Finally, we provide empirical analysis to test these

model implications developed in Sec. IV. First, we examine

if cross-sectional momentum trading tends to reduce the cor-

relations among stocks. It is reasonable to assume that there

would be an increase in the usage of cross-sectional momen-

tum strategies after Jegadeesh and Titman published their

seminal work in March 1993. In fact, Jegadeesh and Titman

(2001) showed that the momentum strategies continued to be

profitable and that past winners outperformed past losers by

about the same magnitude after the publication of their 1993

paper. [Mclean and Pontiff (2016) find a decrease of 58% in

the portfolio returns of 97 variables shown by academic stud-

ies to predict cross-sectional returns after they were pub-

lished academically.] We examine the correlations among

stock returns before and after the publication of momentum.

We use the stocks listed in the S&P 100 index during 03/

1986-12/2015 from CRSP. We drop the stocks with less than

five years data before or after 03/1993. The correlations

among each two stocks are calculated for before publication

(i.e., 03/1986–02/1993) and after publication (i.e., 04/1993-

12/2015). There are 76 stocks considered, implying 2850

correlations in total. We find that the distribution of the cor-

relations is very close to a normal distribution. Panel (A) of

Table I reports the average correlations before and after pub-

lication, and their difference. There is an economically and

statistically significant decrease (35%) in the average corre-

lations after the publication of momentum in 03/1993. The

empirical finding is consistent with our theoretical results.

Second, our model implies that the cross-sectional

momentum trading is self-fulfilling in the sense that it ampli-

fies the price trends in cross-section. We consider the

momentum portfolios constructed in Daniel and Moskowitz

FIG. 9. The time series of log market prices and log fundamental prices for assets A and B with different initial conditions. lA ¼ lB ¼ 15; aA
f ¼ 0:2; aB

f ¼ 0:7,

aA
a ¼ 0:7; aB

a ¼ 0:2; aA
c ¼ 0:1, aB

c ¼ 0:1; bf ¼ 0:2; ba ¼ 0:05, rF
A;1 ¼ 0:06; rF

A;2 ¼ 0:05, rF
B;1 ¼ 0:05; rF

B;2 ¼ 0:06, rM
A;1 ¼ 0:08; rM

A;2 ¼ 0:05, rM
B;1 ¼ 0:05;

rM
B;2 ¼ 0:08, �F

A ¼ �F
B ¼ 5, and s ¼ 2:8. (a) Prices for A when bc ¼ 0. (b) Prices for B when bc ¼ 0. (c) Prices for A when bc ¼ 0:015. (d) Prices for B when

bc ¼ 0:015.
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(2016). The 10-decile momentum portfolios are formed on

the basis of cumulative log returns from months t – 12

through t – 2 using NYSE, AMEX, and NASDAQ stocks

over 01/1927-03/2013. The portfolios are value weighted

and rebalanced at the end of each month [see the online

appendix of Daniel and Moskowitz (2016) for the details of

portfolio formation]. We escape the momentum crashes peri-

ods of 07-08/1932, and 03-05/2009 documented in Daniel

and Moskowitz (2016). Panel (B) of Table I shows that the

annualized average returns to momentum strategies are

20.4% and 21.9%, respectively, before and after the publica-

tion of momentum, indicating an increase in 1.5% in

momentum return after publication. This is consistent with

the finding in Schwert (2003) that among different financial

anomalies, momentum is the only persistent anomaly even

after its publication. In fact, the abnormal returns even

increase after its publication. Jegadeesh and Titman (2001)

also showed that the relative returns to high-momentum

stocks increased after their publication of momentum. We

also find similar results (not reported here) based on the 10-

decile momentum portfolios in Ken French’s data library.

(The portfolios are constructed using NYSE prior 2–12

months return decile breakpoints. See http://mba:tuck:dart

mouth:edu¼pages¼faculty¼ken:french¼datalibrary:html.)

Therefore, more momentum trading seems not able to arbi-

trage away the abnormal momentum returns and however in

turn amplifies the momentum profits. This supports our

model implication that the cross-sectional momentum trad-

ing destabilizes the market and leads to more significant

price trends in the cross-section.

VI. CONCLUSION

In this paper, we develop a continuous-time nonlinear

heterogeneous agent model of multiple assets to characterize

the cross-sectional momentum trading. Both local and global

dynamics are examined via stability, bifurcation theory, nor-

mal form method, and center manifold theory, respectively.

The impact of the integration is examined for different cases

in which the asset dynamics has various combinations before

introducing cross-section momentum trading. The bistable

dynamics (or the coexistence of a local stable fundamental

steady state and a local stable cycle) occurs through a Bautin

bifurcation (generalized Hopf bifurcation). We show that, in

addition to the loss of local stability of the fundamental

steady states, momentum trading destabilizes the market by

strengthening the stability of limit cycles.

Channelled by the underlying deterministic dynamics,

the stochastic price model can generate various stylized facts

observed in financial markets, including market booms and

crashes, comovements, and spillover effects. Our analysis

suggests that cross-sectional momentum trading tends to be

self-fulfilling in the sense that it destabilizes the market and

amplifies the price trends in the cross-section. Our analysis

also suggests that cross-sectional momentum trading leads

to decreases in return correlations, which in turn make the

cross-sectional momentum portfolios more diversified.

Empirical evidence based on the U.S. market supports our

main findings.

This paper studies the nonlinear effect caused by invest-

ment constraints. A model extension in which traders switch

between strategies will enable us to examine the joint impact

of switching and investment constraints on bistable dynam-

ics. We leave this for future research.
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APPENDIX A: GENERAL MODEL WITH N ASSETS

The two-asset model (2.5) can be extended to a general

case with N risky assets

dPi
t ¼ li

(
ai

f tanhðbf f
i
t Þ þ ai

atanhðbari
t;t�sÞ

þai
ctanh

bc

N
ðri

t;t�s � rm
t;t�sÞ

� �)
dtþ rA

MdWA
M;t;

i ¼ 1; 2;…;N; (A1)

where f i
t ¼ Fi

t � Pi
t is the fundamental factor, ri

t;t�s ¼ Pi
t

�Pi
t�s is the return of asset i over the period of ½t� s; t	,

and rm
t;t�s ¼

PN
i¼1 ri

t is the equally weighted market return.

That is, the cross-sectional momentum investors buy

the past winners and short the past losers over the period of

½t� s; t	 simultaneously. Notice that the cross-sectional

momentum portfolio is an arbitrage portfolio since the total

investment at time t sum to zero (Lo and Mackinlay, 1990;

DeMiguel et al., 2014). Our analysis can be straightfor-

wardly extended to this general case, but with a more

involved results.

APPENDIX B: PROOFS

The characteristic equation at the fundamental steady

state of the system (3.1) is given by

kþ cA
f �ðcA

a þ cA
c Þð1�e�ksÞ

h i
kþ cB

f �ðcB
a þ cB

c Þð1� e�ksÞ
h i

� cA
c cB

c ð1� e�ksÞ2¼ 0: (B1)

TABLE I. Panel (A): the average correlations among stock returns before

and after publication of momentum, and their difference. Panel (B): the

average momentum profits before and after publication. t-statistics are

reported.

Before After Difference

(A) Correlation 27.1% 17.5% �9.6%

(111.01) (80.87) (�35.78)

(B) Return 20.4% 21.9% 1.5%

(6.79) (2.78)
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1. Proof of Proposition 3.1

It is easy to verify that (3.1) has a unique steady state

Pi ¼ �F
i
. The characteristic equation reduces to

kþ ci
f � ci

a þ ci
ae�ks ¼ 0: (B2)

When s¼ 0, (B2) has only one negative root k ¼ �ci
f

< 0. Substitute k ¼ ix (x > 0) into (B2)

cos xs ¼ 1�
ci

f

ci
a

; sin xs ¼ x
ci

a

; (B3)

leading to

x2 ¼ ci
f ð2ci

a � ci
f Þ: (B4)

If ci
f � 2ci

a, then (B4) has no solution.

If ci
f < 2ci

a, then x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci

f ð2ci
a � ci

f Þ
q

and

si
n ¼

1

x
cos�1ð1� ci

f =c
i
aÞ þ 2np

h i
; n ¼ 0; 1; 2;…: (B5)

It is easy to verify that
dðRekÞ

ds jk¼ix ¼ x2 þ ðci
f � ci

aÞ
2 > 0.

Therefore, the fundamental steady state Pi is locally

asymptotically stable s < si
0 and unstable for s > si

0. Pi

undergoes Hopf bifurcations at s ¼ si
n; n ¼ 0; 1; 2;….

2. Proof of Proposition 3.2

For the no relative momentum case, we conduct sym-

bolic computation of the first Lyapunov coefficient, which

determines the direction and stability of bifurcated periodic

solutions. In this case, the prices are decoupled and the sys-

tem (3.1) is given by

_P
i

t ¼ li ai
f tanh bf ð �F

i � Pi
tÞ

h i
þ ai

atanh baðPi
t � Pi

t�sÞ
� �h i

;

i ¼ A;B;

(B6)

which involves two analogical equations with different coef-

ficients. In the following analysis, we drop the superscript

i to get a scalar equation, which can represent any equation

in (B6)

_Pt ¼ li af tanh bf ð �F � PtÞ
� �

þ aatanh baðPt � Pt�sÞ½ 	
� �

:

(B7)

After a change of variable, P̂t ¼ Pt � �F, and drop the “̂ ” for

ease of notation, we get

_Pt ¼ �liaf tanhðbf PtÞ þ laatanh baðPt � Pt�sÞ½ 	: (B8)

Taylor expanding the righthand side of (B8) at 0, and

then writing its linear and nonlinear parts in functional form

yield

Lð/Þ :¼ ðca � cf Þ/ð0Þ � ca/ð�sÞ;

Fð/Þ :¼ 1

3
ðcf b

2
f � cab

2
aÞ/

3ð0Þ þ 1

3
cab

2
a/

3ð�sÞ

þ cab
2
a/

2ð0Þ/ð�sÞ � cab
2
a/ð0Þ/2ð�sÞ:

There are mainly two methods for the first Lyapunov

coefficient calculation in the literature: one is to compute the

expression of center manifold (Guckenheimer and Holmes,

1983; Hassard et al., 1981), and the other is to get the normal

form directly via a sequence of transformation of variables

without computing center manifold (Faria and Magalhaes,

1995). We use the first method by following the algorithm

developed in Guckenheimer and Holmes (1983) below, which

requires computing the following quantities in the first place:

(1) the matrix-valued function UðhÞ, satisfying AUðhÞ
¼ UðhÞB, where A is the infinitesimal generator of the

linearized equation of (B8), defined by

A/ ¼
/0ðhÞ; h 2 ½�s; 0Þ;

ðca � cf Þ/ð0Þ � ca/ð�sÞ; h ¼ 0;

8<
:

and

B ¼
0; x

�x; 0

 !
;

(2) the matrix-valued function WðnÞ, satisfying A�WðnÞ
¼ BWðnÞ and ðW;UÞ ¼ I, where A� is the formal adjoint

operator of A, defined by

A�w ¼
�w0ðnÞ; n 2 ð0; s	;

ðca � cf Þwð0Þ � cawðsÞ; n ¼ 0;

8<
:

and ð�; �Þ is the bilinear form defined by

ðw;/Þ ¼ wð0Þ/ð0Þ �
ð0

�s

ðh

n¼0

wðn� hÞdgðhÞ/ðnÞdn;

(3) and the Taylor expansion, up to the second order, of

the expression for center manifold: h ¼ h11ðhÞu2
1

þh12ðhÞu1u2 þ h22ðhÞu2
2 þ Oðkuk3Þ :¼ h2 þ Oðkuk3Þ,

where u ¼ ðu1; u2ÞT are functions of time t, standing for

the coordinates of the solution to (B8) on the center

manifold.

Based on these quantities, one can derive the following

ordinary differential equation for u, up to the third order, on

the center manifold

_u ¼ BuþWð0ÞFðUuþ h2 þ Oðkuk3ÞÞ; (B9)

whose general form is given by

_u1 ¼ xu2 þ f 1
11u2

1 þ f 1
12u1u2 þ f 1

22u2
2 þ f 1

111u3
1 þ f 1

112u2
1u2

þ f 1
122u1u2

2 þ f 1
222u3

2 þ Oð4Þ;

_u2 ¼ �xu1 þ f 2
11u2

1 þ f 2
12u1u2 þ f 2

22u2
2 þ f 2

111u3
1 þ f 2

112u2
1u2

þ f 2
122u1u2

2 þ f 2
222u3

2 þ Oð4Þ:
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The coefficients in the above equation depend on U; W, h,

and the nonlinear term F of the original equation. According

to the formula by Guckenheimer and Holmes (1983), the first

Lyapunov coefficient is given by

c1ð0Þ ¼
1

8
ð3f 1

111þ f 1
122þ f 2

112þ 3f 2
222Þ

� 1

8x
f 1
12ðf 1

11þ f 1
22Þ� f 2

12ðf 2
11þ f 2

22Þ� 2f 1
11f 2

11þ 2f 1
22f 2

22

� �
:

(B10)

Remark B.1.

(1) The matrix W satisfying both A�W ¼ BW and ðW1;UÞ
¼ I is usually obtained by two steps: solving A�W ¼ BW
to get an intermediate matrix W1, and then multiplying it

by a proper matrix K to make sure that ðW;UÞ ¼ I, that

is, W ¼ KW1. Therefore, K ¼ ðW1;UÞ�1
.

(2) The second order term in h satisfies the following

system:

@h2

@h
þ Oðkuk3Þ

¼ @h2

@u
Buþ UðhÞWð0ÞF2ðUðhÞuÞ þ Oðkuk3Þ;

Lðh2Þ þ F2ðUðhÞuÞ þ Oðkuk3Þ

¼ @h2

@u

����
h¼0

Buþ UðhÞWð0ÞF2ðUðhÞuÞ þ Oðkuk3Þ:

which yields a series of differential equations for

hijðhÞ; i; j ¼ 1; 2, with proper boundary conditions, and

hence, the approximate expression for h will be obtained

by solving these equations.

Along with a similar Maple program, as in Campbell

(2009), one can get

UðhÞ ¼ cos ðxhÞ; sin ðxhÞ½ 	;

WðnÞ ¼

�2xð xs cos xs� sin xs½ 	 cos xnþ xs sin xs sin xnÞ
cax2s2 þ ca cos2xs� 2x2s cos xs� ca þ 2x sin xs

�2xð xs cos xs� sin xs½ 	 sin xn� xs sin xs cos xnÞ
cax2s2 þ ca cos2xs� 2x2s cos xs� ca þ 2x sin xs

2
6664

3
7775 :¼

w1ðnÞ
w2ðnÞ

" #
;

and

h2 ¼ 0:

The second order term h2 being zero is due to the fact that

the second order derivatives of tanhx at x¼ 0 are 0.

Substituting these variables into (B9), also accomplished by

Maple, we get

f 1
111 ¼

1

3
cab

2
aw1ð0Þ �1þ 3 cos xs� 3 cos 2xsþ cos 3xs½ 	

þ 1

3
cf b

2
f w1ð0Þ;

f 1
122 ¼ w1ð0Þcab

2
a sin 2xsðcos xs� 1Þ;

f 2
112 ¼ �w2ð0Þcab

2
a sin xsðcos xs� 1Þ2;

f 2
222 ¼ �

1

3
cab

2
aw2ð0Þ sin 3xs;

and all the coefficients of the second order term in (B9) are

zero. It then follows form (B10) that the first Lyapunov coef-

ficient is finally given by

c1ð0Þ ¼
1

4
cab

2
aw1ð0Þð2 cos xs� cos2xs� 1Þ þ 1

8
cf b

2
f w1ð0Þ

þ 1

4
cab

2
aw2ð0Þ sin xsðcos xs� 1Þ: (B11)

3. Numerical method of the periodic solution branch

To examine these two limit cycles numerically around

the Bautin bifurcation point, the scheme is to find a proper

set of parameter values under which backward Hopf bifurca-

tion happens, and then to check how the bifurcated periodic

solution varies as one of these parameters (e.g., s) changes.

The choice of parameters for backward Hopf bifurcation is

based on Propositions 3.1 and 3.2, while tracking the bifur-

cated periodic solution can be done with the aid of a Matlab

package, DDE-BIFTOOL, which allows us to analyse the

stability of steady state solutions and periodic solutions, to

continue steady state fold and Hopf bifurcations, and to

switch, from the latter, to an emanating branch of periodic

solutions (Engelborghs et al., 2001). Notice that the method

can even numerically simulate the unstable limit cycles.

4. Proof of Proposition 3.4

The characteristic equation at the steady state ðPA;PBÞ
¼ ð �FA

; �F
BÞ is given by

kþ cA
f � cA

c ð1� e�ksÞ
h i

kþ cB
f � cB

c ð1� e�ksÞ
h i

� cA
c cB

c ð1� e�ksÞ2 ¼ 0: (B12)

When s¼ 0, (B12) has two negative roots k1 ¼ �cA
f and

k2 ¼ �cB
f . If s > 0, then (B26) reduces to

sin xs ¼ �xNðK1 � x2Þ þ K2xL

K2
2x

2 þ ðK1 � x2Þ2
;

cos xs ¼ �LðK1 � x2Þ � K2x2N

K2
2x

2 þ ðK1 � x2Þ2
;
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where

L ¼ cA
f cB

c þ cB
f cA

c ; N ¼ cA
c þ cB

c ; K1 ¼ cA
f cB

f � L;

K2 ¼ cA
f þ cB

f � N;

and thus x satisfies

Fð�xÞ ¼ �x4 þ P3 �x3 þ P2 �x2 þ P1 �x þ P0 ¼ 0; (B13)

with �x ¼ x2 and

P3 ¼ 2ðK2
2 � 2K1Þ � N2;

P2 ¼ 2K2
1 þ ðK2

2 � 2K1Þ2 � L2 � ðK2
2 � 2K1ÞN2;

P1 ¼ 2K2
1ðK2

2 � 2K1Þ � K2
1N2 � ðK2

2 � 2K1ÞL2;

P0 ¼ K2
1ðK2

1 � L2Þ:

We rewrite (B13) as

F1ð�xÞF2ð�xÞ ¼ 0; (B14)

where

F1 ¼ ð�x � cA
f cB

f þ cA
f cB

c þ cA
c cB

f Þ
2 þ �xðcA

f � cA
c þ cB

f � cB
c Þ

2;

F2 ¼ �x2 þ �xðcA2
f � 2cA

f cA
c þ cB2

f � 2cB
f cB

c Þ

þ cA
f cB

f ðcA
f cB

f � 2cA
f cB

c � 2cB
f cA

c Þ: (B15)

Notice F1 � 0 and we only need to examine the positive

roots of F2ð�xÞ ¼ 0. We rewrite F2ð�xÞ as F2ð�xÞ ¼ �x2

þa2 �x þ b2, where

a2 ¼ cA2
f � 2cA

f cA
c þ cB2

f � 2cB
f cB

c ¼ K2
2 � 2K1 � N2;

b2 ¼ cA
f cB

f ðcA
f cB

f � 2cA
f cB

c � 2cB
f cA

c Þ ¼ K2
1 � L2:

It is easy to verify that there is only one frequency

xþ ¼
�a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4b2

p
2

� �1=2

; (B16)

if and only if

ða2;b2Þ 2 fa2
2 ¼ 4b2; a2 < 0g

S
fb2 < 0g

S
fa2 < 0; b2 ¼ 0g;

(B17)

there are two frequencies

x6 ¼
�a26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4b2

p
2

� �1=2

; (B18)

if and only if

ða2; b2Þ 2 fa2
2 > 4b2 > 0; a2 < 0g; (B19)

and (B15) has no positive root if and only if

ða2; b2Þ 2 fa2
2 < 4b2g

[
fa2 ¼ 2

ffiffiffiffiffi
b2

p
g
[
fa2 > 0; b2 ¼ 0g

�
[
fa2

2 > 4b2 > 0; a2 � 0g: (B20)

When b2 � 0, we get cA
f ðcB

f � 2cB
c Þ � 2cB

f cA
c and cB

f ðcA
f

�2cA
c Þ � 2cA

f cB
c . Hence,

a2 ¼ cA
f ðcA

f � 2cA
c Þ þ cB

f ðcB
f � 2cB

c Þ �
2cA2

f cB
c

cB
f

þ
2cB2

f cA
c

cA
f

> 0;

which implies that the sets fða2; b2Þ : a2 < 0; b2 ¼ 0g and

fða2; b2Þ : a2
2 > 4b2 > 0; a2 < 0g are empty. It also follows

from (B28) that the transversality condition is determined by

the sign of F0ðx2
þÞ, which is equal to the sign of the quantity

F02ðx2
þÞ since F1 > 0. If ða2; b2Þ 2 fa2

2 ¼ 4b2; a2 < 0g, then

F02ðx2
þÞ ¼ 2x2

þ þ a2 ¼ 0. Therefore, Hopf bifurcation will

never happen for ða2; b2Þ 2 fa2
2 ¼ 4b2; a2 < 0g, and hence,

the sufficient condition for the occurrence of Hopf bifurca-

tion corresponding to one frequency is b2 < 0, under which

F02ðx2
þÞ ¼ 2x2

þ þ a2 > 0.

Note that sin xs > 0 for all positive x, since

K2L� K1N ¼ cA2
f cB

c þ cB2
f cA

c > 0. Therefore, the bifurcation

values are given by

sn ¼
1

xþ
cos�1 �LðK1 � x2Þ � K2x2N

K2
2x

2 þ ðK1 � x2Þ2

 !
þ 2np

" #
;

n ¼ 0; 1;…:

(B21)

The proof of the properties of Hopf bifurcation can be

found in Subsection 6 of the Appendix B for the proof for

the full model.

5. Proof of Proposition 3.5

It is sufficient to show that it cannot happen that one

asset’s price converges to its fundamental while the other’s

fluctuates cyclically simultaneously. Without the loss of

generality, suppose PA
t converges to its fundamental price

and PB
t fluctuates cyclically at the same time. Because PB

t

is a cycle in this case, there exist a positive number x> 0

and a sequence of time tk; k ¼ 1; 2;…, such that tk !1 as

k !1, and jPB
tk
� PB

tk�sj � x. (We assume that s is not

equal to the multiples of the period of the cycle.

Otherwise, PB
tk
� PB

tk�s 
 0). The first equation of (3.1) is

equivalent to

PA
tþdt� �F

A¼PA
t � �F

AþlA aA
f tanh bf ð �F

A�PA
t Þ

h ih
þaA

a tanh baðPA
t �PA

t�sÞ
� �

þaA
c tanh bc ðPA

t �PA
t�sÞ

hn
�ðPB

t �PB
t�sÞ
ioi

:

(B22)

As t!1; �F
A � PA

t ! 0 and PA
t � PA

t�s ! 0 due to the con-

vergence of PA
t . So (B22) implies that, for sufficiently large k

jPA
tkþdt � �F

Aj � lAaA
c tanhfbcjPB

tk
� PB

tk�sjg
� lAaA

c tanhfbcxg > 0; (B23)

which contradicts the assumption of the convergence of PA
t .

This completes the proof.
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6. Proof of Proposition 3.3

When s¼ 0, there are two roots, k1 ¼ �cA
a and

k1 ¼ �cB
a , for (B1), and hence, the equilibrium is locally sta-

ble. If 6ix; x > 0 are a pair of purely imaginary roots of

(B1), then we have

ðK1 �x2Þ þ ðL� 2MÞ cos xsþxN sin xsþM cos 2xs ¼ 0;

K2x� ðL� 2MÞ sin xsþxN cos xs�M sin 2xs ¼ 0:

(B24)

which is equivalent to

ðK1 � x2 �MÞ sin xsþ K2x cos xsþ xN ¼ 0;

ðK1 � x2 þMÞ cos xs� K2x sin xsþ ðL� 2MÞ ¼ 0:

(B25)

Here,

L ¼ cA
f ðcB

a þ cB
c Þ þ cB

f ðcA
a þ cA

c Þ;
M ¼ cA

a cB
a þ cA

a cB
c þ cA

c cB
a ;

N ¼ cA
a þ cA

c þ cB
a þ cB

c ;

K1 ¼ cA
f cB

f � LþM;

K2 ¼ cA
f þ cB

f � N:

Therefore,

sin xs ¼ �xNðK1 � x2 þMÞ þ K2xðL� 2MÞ
K2

2x
2 þ ðK1 � x2Þ2 �M2

;

cos xs ¼ �ðL� 2MÞðK1 � x2 �MÞ � K2x2N

K2
2x

2 þ ðK1 � x2Þ2 �M2
:

(B26)

This implies that x must satisfy the following equation:

�NðK1 � x2 þMÞ þ K2ðL� 2MÞ
� �2

x2

þ ðL� 2MÞðK1 � x2 �MÞ þ K2x
2N

� �2
¼ K2

2x
2 þ ðK1 � x2Þ2 �M2

h i2

;

which can be simplified to

Fð�xÞ :¼ �x4 þ P3 �x3 þ P2 �x2 þ P1 �x þ P0 ¼ 0; (B27)

with �x ¼ x2, and

P3 ¼ 2ðK2
2 � 2K1Þ � N2;

P2 ¼ 2ðK2
1 �M2Þ þ ðK2

2 � 2K1Þ2 � ðL� 2MÞ2

� ðK2
2 � 2K1ÞN2 þ 2MN2;

P1 ¼ 2ðK2
1 �M2ÞðK2

2 � 2K1Þ � N2ðK1 þMÞ2

�ðL� 2MÞ2ðK2
2 � 2K1Þ � 2MðL� 2MÞ2

þ 4K2MNðL� 2MÞ;
P0 ¼ ðK1 �MÞ2ðK1 þMÞ2 � ðK1 �MÞ2ðL� 2MÞ2;

The fundamental theorem of algebra suggests that (B27)

has four roots. The expressions of the four roots, first

proposed by Lodovico Ferrari, are extremely complicated. A

detailed discussion on the conditions for different cases and

the corresponding solutions would be tediously long.

Therefore, instead of providing complete conditions of all

possible combinations of parameters, including those eco-

nomically meaningless parameter sets, we just give some

simple discussions on the properties of the roots of (B27) to

provide a better understanding of the roots, and then we

numerically examine the roots for certain sets of parameters

we are interested in. We refer readers to the study by

Abramowitz and Stegun (1972) for the details of the formu-

las of the four roots. First, Vieta’s Formulas show that (B27)

has an even (odd) number of positive roots if P0 > 0 ð< 0Þ.
Therefore, if P0 < 0, (B27) has at least one positive root and

hence system (3.1) will undergo Hopf bifurcations.

Especially, if P0 ¼ 0, then the number of positive roots is

determined by P2. Second, we can rewrite (B27) as

ð�x2 þ a1 �x þ b1Þð�x2 þ a2 �x þ b2Þ ¼ 0;

where ai and bi satisfy

P0 ¼ b1b2; P1 ¼ a1b2 þ a2b1; P2 ¼ a1a2 þ b1 þ b2;

P3 ¼ a1 þ a2:

Therefore, we can instead examine the roots of the more

familiar quadratic equations and the number of positive roots

of (B27) is completely determined by ai and bi, i¼ 1, 2.

More specifically, first, (B27) has four positive roots if and

only if C1

T
C2, where Ci :¼ fai < 0g

T
fa2

i � 4bi > 0g,
i¼ 1, 2. The condition C1

T
C2 is equivalent to fP0 > 0;

P1 < 0;P2 > 0;P3 < 0g
T
fa2

i � 4bi; i¼ 1;2g. Second, (B27)

has two positive roots if and only if ðC1

T
C2Þ

S
ðC2

T
C1Þ,

where the overline is a complementary set operator. Third,

(B27) has no positive root if and only if C1

T
C2 . Similarly,

we can determine the conditions that (B27) has one or

three roots. To save space, we omit them. We denote
�C :¼ C1

T
C2 as the condition that (B27) has no positive

root, so the parameter set C corresponds to the condition that

(B27) has at least one positive root.

Now, we consider the properties of Hopf bifurcation of

system (3.1). Assume that (B27) has positive roots, (that is,

under condition C), denoted by �xi, i takes the integers from

1 to 4 depending on how many roots (B27) may have. For

each �xi, one can get a sequence of bifurcation values for

time delay, si
n; n ¼ 0; 1;…, from (B26). Denote the smallest

si
0 for all possible i by s0 and the corresponding frequency by

x0. To verify the transversality condition, set

Gðk;sÞ¼ kþ cA
f �ðcA

a þ cA
c Þð1�e�ksÞ

h i
� kþ cB

f �ðcB
a þ cB

c Þð1�e�ksÞ
h i

� cA
c cB

c ð1� e�ksÞ2:

Using (B25), we get

@G

@k

����
k¼ix0;s¼s0

¼ K2þNcosx0s0þs0ðK1�x2
0�Mcos2x0s0Þ

� �
þi 2x0�Nsinx0s0þs0ðK2x0þMsin2x0s0Þ½ 	;
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and

@G

@s

����
k¼ix0;s¼s0

¼ �x0ðK2x0 þM sin 2x0s0Þ þ ix0ðK1 � x2
0 �M cos 2x0s0Þ;

Therefore, SignRe ds
dk

� 	
¼ �SignRe @G

@k =
@G
@s


 �
, which equals the sign of the following quantity

x0 K2 þ N cos x0s0 þ s0ðK1 � x2
0 �M cos 2x0s0Þ

� �
ðK2x0 þM sin 2x0s0Þ

�x0 2x0 � N sin x0s0 þ sðK2x0 þM sin 2x0s0Þ½ 	ðK1 � x2
0 �M cos 2x0s0Þ

¼ x0ðK2 þ N cos x0s0ÞðK2x0 þM sin 2x0s0Þ�x0ð2x0 � N sin x0s0ÞðK1 � x2
0 �M cos 2x0s0Þ

¼ x2
0ðK2

2 � 2K1 þ 2x2
0Þ þ x0K2M sin 2x0s0 þ 2x2

0M cos 2x0s0þK2x
2
0N cos x0s0 þ x0NðK1 � x2

0 þMÞ sin x0s0

¼ 2x2
0ðK2

2 � 2K1 þ 2x2
0Þ þ 2x2

0 K2N � ðL� 2MÞ½ 	 cos x0s0þx0 NðK1 � x2
0 þMÞ � K2ðL� 2MÞ � 2x2

0N
� �

sin x0s0

¼ x2
0ð4x6

0 þ 3P3x4
0 þ 2P2x2

0 þ P1Þ
K2

2x
2
0 þ ðK1 � x2

0Þ
2 �M2

¼ x2
0F0ðx2

0Þ
K2

2x
2
0 þ ðK1 � x2

0Þ
2 �M2

:¼ T:

(B28)

The computation of c1ð0Þ in Proposition 3.3 can be done

by Maple, following the same procedure as in Subsection 2

of the Appendix B for the single asset model. However, the

expression of c1ð0Þ is much more complicated than the one

for no relative momentum model, and hence it is omitted.

Remark B.2. Although we do not provide the distribu-

tion of the roots to (B27), we claim that (B27) can have posi-

tive roots for certain sets of parameters. For example,

assume that cA
f ¼ cB

f :¼ cf , cA
a ¼ cB

a :¼ ca, and cA
c ¼ cB

c :¼ cc.

It then follows that:

P0 ¼ c4
f ðcf � 2ca � 2ccÞ2 ðcf � 2caÞ2 � 4ccðcf � 2caÞ

h i
> 0;

when cf � 2ca < 0. Set �x1 ¼ cf ð2ca � cf Þ. We get Fð�x1Þ
¼ 0 and F0ð�x1Þ ¼ �32c2

f cac
3
c < 0. Since lim�x!þ1 Fð�xÞ

¼ þ1, Fð�xÞ ¼ 0 has at least another positive solution,

denoted by �x2, which is greater than �x1. Assume further

that the two other roots of (B27) are non-positive. Then, �x1

and �x2 will determine two sequences of bifurcation values

for s, denoted by s1
n and s2

n, respectively, n ¼ 0; 1;…,

according to (B26). Recall that the decoupled system

(cc ¼ 0) will oscillate in one side neighborhood of si
0, i¼A

or B, if cf � 2ca < 0. If s1
0 < s2

0, then s1
0(¼ si

0) is the first

Hopf bifurcation value, and hence the coupled system will

oscillate in the same frequency as decoupled system. While

s1
0 > s2

0, the first Hopf bifurcation value becomes s2
0, which

implies that the oscillation frequency for the coupled system

is
ffiffiffiffiffiffi
�x2

p
. In this case, we conclude that two asset prices, oscil-

lating in the same way (same frequency and amplitude)

when decoupled, will oscillate with higher frequency after

integration.
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