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ABSTRACT 

Motivation: Antigens that contain overlapping epitopes have been 

reported occasionally. As current algorithms mainly take a one- 

antigen-one-epitope approach to the prediction of epitopes, they are 

not capable of detecting these multiple and overlapping epitopes 

accurately, or even those multiple and separated epitopes existing 

in some other antigens. 

Results: We introduce a novel subgraph clustering algorithm for more 

accurate detection of epitopes. This algorithm takes graph partitions 

as seeds, and expands the seeds to merge overlapping subgraphs 

based on the term frequency-inverse document frequency (TF-IDF) 

featured similarity. Then, the merged subgraphs are each classified 

as an epitope or non-epitope. Tests of our algorithm were conducted 

on three newly collected datasets of antigens. In the first dataset, 

each antigen contains only a single epitope; in the second, each 

antigen contains only multiple and separated epitopes; and in the 

third, each antigen contains overlapping epitopes. The prediction 

performance of our algorithm is significantly better than the state-of- 

art methods. The lifts of the averaged f-scores on top of the best 

existing methods are 60%, 75%, and 22% for the single epitope 

detection, the multiple and separated epitopes detection, and the 

overlapping epitopes detection, respectively. 

Availability The source code is available at github.com/lzhlab/ 

glep/. 

Contact: s080011@e.ntu.edu.sg 
 
 

 

1   INTRODUCTION 

A B-cell epitope is an antigenic determinant at the surface of an 

antigen that binds to an antibody, which is crucial for immune 

response (Abbas et al., 2009). The  relation  between  epitopes 

and antigens is not necessarily a one-to-one correspondence. One 

antigen may have multiple epitopes, even sometimes have multiple 

and overlapping ones; see Figure 1. Detection of all these epitopes 

from an antigen can be beneficial to effective vaccine design, disease 

diagnosis, disease therapy, and template-aware pathogenic-free 

reagent development (Sela-Culang et al., 2014). 
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A number of experimental and computational methods  have 

been developed for the detection of epitopes. The experimental 

approaches, such as X-ray crystallography, nuclear magnetic 

resonance and phage display, are laborious. They have also failed 

to detect the multiple and overlapping epitopes from an antigen 

(Sela-Culang et al., 2014). On the other hand, the computational 

approaches are cheap and flexible, attracting intensive research 

recently (Esmaielbeiki et al., 2016), including methods DiscoTope 

2.0 (Kringelum et al., 2012), ElliPro (Ponomarenko et al., 2008), 

and SEPPA 2.0 (Qi et al., 2014). 

The core idea of these computational methods is to combine 

chemo-physical properties, e.g., hydrophobicity (Kyte and 

Doolittle, 1982), polarity (Cooper and Hausman, 2004), protrusion 

index (Ponomarenko et al., 2008), with machine learning 

techniques, e.g., support vector machine, neural network, random 

forest, to identify epitopes. Depending on whether antibody 

information is required, these methods can be further categorized 

into antibody-specific methods and antibody-agnostic methods. The 

antibody-specific epitope prediction methods (Zhao and Li, 2010; 

Zhao et al., 2011; Sela-Culang et al., 2014, 2015; Krawczyk et al., 

2014; Zhao et al., 2014; Sela-Culang et al., 2015) require the 

associated antibody along with the antigen as input, and output 

a specific epitope that binds to the antibody but not others. For 

example, if the structures/sequences of the antigen contained in 

PDB 1A2Y are specified, these methods are intended to predict 

only the  residues  in part  I+IV  (of  Figure 1(a)), but  not  other 

residues. The results obtained by these methods are trusty and 

biologically meaningful. However, the pairing rule of the input 

data markedly narrows down their applicability. For the antibody- 

agnostic approach, it has been intensively studied due  to  the 

large volume of available antigen data (Esmaielbeiki et al., 2016). 

However, antibody-agnostic methods, to some extent, can be 

misleading as there may exist multiple and separated epitopes in an 

antigen, and even overlapping epitopes (Greenbaum et al., 2007; 

Zhao et al., 2012). See again the example in Figure 1. These 

methods can only detect partial or the whole set of epitopic residues, 

i.e., the parts labeled by I, II, III and IV in the panel (a), without 

the distinction of the residues belonging to the same or different 

epitopes. 
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Fig. 1. The steric locations of the three representative epitopes located 

surface of the Hen egg white lysozyme. The panel (a) shows the lo 

of the three epitopes, colored in dark slate blue (I), dark olive gre 

and salmon (III) depending on which antibody it interacts with, i.e., 

1A2Y, 1J1O and 2IFF. The four firebrick residues, N19, G22, G102 and 

N103 that are labeled as part IV, are the overlapping residues between the 

two epitopes I and II. Panel (b) to (d) are the front view of the three epitopes 

having hydrophobic residues shown in orange, the hydrophilic residues in 

dodge blue, the positive and negative charged residues in purple, and the 

residues with median to low hydrophobicity are shown in white. The images 

are produced by using Chimera (Pettersen et al., 2004). 

 

 

The existing computational approaches mainly focus on the single 

or multi-separated epitope prediction although the emerging of 

overlapping epitopes has been reported occasionally. Studies have 

shown that the immune response related proteins are rich of multiple 

and overlapping binding sites (Zhao et al., 2012). Particularly, the 

Proteasome beta subunit protein has 7.6 binding sites on average, 

and the hen egg white lysozyme has up to 43 interacting partners 

accounting for 9 different epitopes, among which three are visually 

distinguishable (Figure 1). Another recent study on the D8 antigen 

has unveiled that it possesses four epitopes with two of them heavily 

overlapped (Sela-Culang et al., 2014). These findings suggest that 

the existing antibody-agnostic methods may only detect antigenic 

residues (the constituent residues of epitopes) but not epitopes per 

se. Although a few methods can discover multiple epitopes (Zhao 

et al., 2012; Ponomarenko et al., 2008; EL-Manzalawy et al., 2008), 

 

 

Fig. 2. The diagram of our data preparation, model construction and 

evaluation. The model construction is comprised by the solid lines connected 

components, while the model evaluation is illustrated by the dash lines 

connected components. 

 

 
and Lin, 2011). Figure 2 depicts the whole diagram of the data 

preparation, model construction and evaluation steps. 

 

 

2 MATERIALS AND METHODS 

2.1 Data preparation 

Antibody-antigen complexes are retrieved from the protein data bank (PDB) 

(Berman et al., 2000). Per the prevalent data preparation procedures (Zhao 

et al., 2012), the complexes are selected via the following criteria: (i) the 

macromolecular type is protein only, i.e., those containing DNA or RNA 

are excluded; (ii) the length of an antigen sequence is greater or equal 

to 30 residues; (iii) the complex contains at least one asymmetric unit 

composed of antibody-antigen interacting quaternary structure; (iv) the X- 

ray resolution is not worse than 3Å ; and (v) the complex title contains 

at least one of the terms: “antibody”, “Fab”, “Fv”, and “VHH”. Under 

these criteria, 808 antibody-antigen complexes are collected. Some illusive 

interactions are excluded by removing those having epitope size smaller than 

5 (Ponomarenko and Bourne, 2007). The duplicate antigens are also removed 

using cd-hit (Li and Godzik, 2006) under the minimum sequence similarity 

of 0.9 and the minimum epitope similarity of 0.8 (Zhao et al., 2012). 

The  epitope  similarity  is  calculated  in  three  steps:   (i)  determine 
the epitopic residues from each antibody-antigen complex by using the 

their performance is far from satisfactory. Furthermore, none of maximum Euclidian distance of 4Å as suggested by (Kringelum et al., 
them is able to detect overlapping epitopes, particularly the sharing 

antigenic residues, e.g., the four residues colored in red in Figure 1. 

We  introduce  a  novel  antibody-agnostic  epitope  prediction 

algorithm that is able to detect single,  multi-separated,  as well 

as overlapping epitopes from antigens, assuming the data of the 

corresponding antibodies are not given.  Our algorithm,  named 

Glep (short for overlapping graph clustering-based B-cell epitope 

predictor),  achieves the goal by three major steps:  construct a 

residue-level graph of an antigen; partition the graph into subgraphs, 

which are further expanded into overlapping ones using a new 

idea  based  on  the  term  frequency-inverse  document  frequency 

(Rajaraman and Ullman, 2011) featured similarity; and classify each 

expanded subgraph as an epitope or a non-epitope by SVM (Chang 

2012; Sweredoski and Baldi, 2008; Zhao and Li, 2010); (ii) align the 

antigen sequences within each group generated by cd-hit through Clustal 

Omega (Sievers et al., 2011); and (iii) map the epitopic residues to the 

consensus sequence (produced from the alignment of the multiple antigen 

sequences by voting), and calculate the pair-wise epitope similarity using 

|e1 ∩ e2|/min(|e1|, |e2|), where e1 and e2 are two epitopes having 

positions calibrated, and |e| is the number of residues for epitope e. 
As a result, 205 groups containing 258 PDB complexes are obtained, and 

they are further divided into three datasets: (i) D1: single epitope antigens— 

each antigen only has one epitope, which is used to evaluate the generic 

epitope prediction methods; (ii) D2: multi-separated epitope antigens—each 

antigen has more than one epitopes and none of them overlaps with another, 

which is used to evaluate traditional multi-epitope prediction methods; and 

(iii) D3: overlapping epitope antigens—each antigen contains two, or more 
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Table 1. Features used to factorize graphs. 

 
feature group metrics citation 

graph density  Barabasi A.L., et al. (Barabasi and Oltvai, 2004) 

degree statistics mean, variance, median, maximum Barabasi A.L., et al. (Barabasi and Oltvai, 2004) 

degree correlation statistics mean, variance, and maximum Stelzl U., et al. (Newman, 2002) 

clustering coefficient statistics mean, variance, and maximum Barabasi A.L., et al. (Barabasi and Oltvai, 2004) 

topological coefficient mean, variance, and maximum Stelzl U., et al. (Stelzl and et al., 2005) 

 
 

epitopes having at least one overlapping epitope, which is used to assess 

the performance of the so called generalized epitope prediction method. D1 

consists of 163 antigens, D2 consists of 21 antigens containing 42 separated 

epitopes, and D3 consists of 21 antigens containing 53 epitopes. More details 

of these datasets are shown in supplementary Table S1, S2 and Table 2. 

2.2 Glep: steps for construction and prediction 

Major steps in Glep include surface residue graph construction, overlapping 

subgraph clustering and subgraph classification. Details of each step are 

presented as follows. 

2.2.1 Step 1: Surface residue graph construction   Since epitopic 

 
coefficient statistics (Table 1; see more details in the supplementary 

notes).  Then the seed Gx  can be factorized into a vector FGx    = 
(fGx,1, fGx,2, · · · , fGx,14).  Suppose the set of nodes and edges 
of Gx are V (Gx) and E(Gx), respectively, then fGx,1, the graph 

density, is computed using 

fGx,1 = 2|E(Gx)|/(|V (Gx)| · (|V (Gx)| − 1)). 

The values of other features are calculated by the definitions in the 

supplementary notes. Since the values of the features have different 

ranges, they are further calibrated by 

f 
I fGi,j − min(fGx,j ) + Ej 

residues are located at the surface of an antigen, only these accessible ones 

are used to construct the graph G.  The nodes of G are the accessible 

Gi,j 
= 

max(f Gx,j ) − min(f 
 

Gx,j 

, 

) + Ej 

residues, and there is an edge between two nodes if the two residues have 

a Euclidean distance less than 6Å . Other than directly building the surface 

graph from the residues, we construct the graph using the accessible heavy 

atoms (carbon, nitrogen, or Oxygen) at the initial step, and then upgrade it 

into a residue-level graph by removing the edges within the same residues 

where x ∈ {1, 2, · · · , m} having m number of seeds obtained from 
G, and Ej  is the pseudo value for feature fj , which is set as the 

minimum value of the feature by default. Based on the calibrated 

feature vectors, the TF-IDF (short for term frequency-inverse document 

frequency) score is computed for each feature using 
m 

and those duplicate edges between two residues. An atom is considered as 

accessible if its accessible surface area (ASA) is greater than 10Å 2  (Zhao 

et al., 2012). An ASA is computed using NACCESS (Hubbard and Thornton, 

TF-IDF(f ) = 
fGi,j

 

x=1 fGi,x 

· log x=1 fGx,j 
. 

fGi,j 

1992) with the default probe size. Then the graph G is constructed via Qhull Thus, the feature vector FGx  can be transformed into 

(Barber et al., 1996), a software tool which has implemented the Delaunay 

triangulation rule (Huan et al., 2004). It is a tool widely used to construct 
TF-IDF(FG x ) = (TF-IDF(f Gx,j ) : j ∈ (1, · · · , 14)). 

protein surface graphs. 

2.2.2 Step 2: overlapping subgraph clustering Overlapping 

subgraph clustering has been widely used to detect interacting communities, 

such as social networks (Goldberg et al., 2010), protein-protein interaction 

networks, and metabolic pathways (Macropol et al., 2009). These problems 

are intrinsically the same as the prediction of overlapping epitopes from 

an antigen. On top of these basic ideas, we introduce a novel subgraph 

clustering algorithm to detect single, multi-separated, and overlapping 

epitopes simultaneously for an antigen. 

This algorithm has two important components: 

 
1. Seed detection.  Unlike existing approaches that use single node,  a 

From the TF-IDF-transformed feature vectors, each factorized seed 

can be expanded as follows. Let G
I  

be the new seed after a node v is 

added to the seed Gx, i.e., 

V (G
I 
) ={v} ∪ V (Gx) 

E(G
I 

) =E(Gx) ∪ {edge(vi, v) : 

vi ∈ V (Gx)∧  

edge(vi, v) ∈ E(G)}. 

To determine whether G
I  

is acceptable, i.e., whether v can be added to 

Gx, we calculate the similarity between G
I 

and Gx using 

set of nodes, or a clique as a seed (Palla et al., 2005; Ding et al., 

2016),  we consider the partitions of a graph as the seeds.  Graph 
sim(G

I 
, Gx) = 

TF-IDF(FG I )  TF-IDF(FGx ) 
x 

.
 

partitioning is a well investigated area, and many renowned tools are 

available (Buluç et al., 2013). To make our algorithm more flexible, we 

have designed a framework that can adapt to many graph partitioning 

approaches instead of just a single built-in method. This framework 

takes a graph and a partitioning approach as the input parameters, and 

outputs the partitions as the seeds. In this work, we use random walk 

(Lovász, 1996) to partition the whole surface residue graph into isolated 

subgraphs for expansion. The learned minimum weight of the edges for 

the graph partitioning is 0.035. 

2. Seed expansion. Formally, let G = {G1, G2, · · · , Gm} be the set of 

seeds (partitioned isolated subgraphs) generated from the graph G. To 

expand a seed Gx, we first factorize it into a 14-dimensional feature 

vector denoted by F = (f1, f2, · · · , f14). The  features  include 
graph density, degree statistics, degree correlation statistics and cluster 

||TF-IDF(FGI )|| · ||TF-IDF(FGx )|| 

In case the similarity is greater than the predefined minimum value 

s0, the seed Gx is expanded by v. The value s0 is learned from the 

training data. The seed cluster is expanded layer-by-layer so long as the 

similarity score is satisfied. 

 
Our subgraph clustering algorithm differs from the existing approaches 

at two important aspects: (i) the partition itself is considered as the seed; 

and (ii) the TF-IDF score is used to determine the seed expansion. Further 

details about overlapping subgraph clustering can be found at (Fortunato, 

2010; Amelio and Pizzuti, 2014). 

Note that the seed expansion is the key to detecting residues that are 

shared by multiple epitopes; see Figure 1. The existing approaches place 

each residue to an epitope, a non-epitope, or different epitopes exclusively. 
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However, our seed expansion allows a residue to be shared by multiple 

epitopes. More interestingly, we exploit the idea of TF-IDF to determine 

whether each residue should be assigned to an epitope or not in a local 

manner (layer by layer), which is in line with the specificity of antibody- 

antigen interaction. 

2.2.3 Step 3: subgraph classification Our Step 2 described above 

can divide the antigen surface graph into expanded subgraphs possibly 

containing both epitopic ones and non-epitopic ones. It remains to determine 
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which ones are epitopic.  Following the study (Zhao et al., 2012),  the 

graphlets having size ≤ 3 are used as features to perform protein-domain 

graph classification,  including single residue,  residue pair,  and residue 
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triplet. That is, there are a total of 1770 (=C
1
 

2   + C3  ) features. Fig. 3. The f-score comparison of epitope prediction by applying Glep, 

Per the study, a subset of 144 features that maximize the validation f-score 

are selected for classification by using LIBSVM (Chang and Lin, 2011). 

2.3   Glep: summary for epitope prediction 

Four major steps are taken by Glep to detect epitopes from an antigen 

with structure information available: (i) select accessible  heavy  atoms 

from the antigen via NACCESS (Hubbard and Thornton, 1992) under the 

parameter ASA≥10Å 2; (ii) construct an atom-level graph for the selected 

atoms by Qhull (Barber et al., 1996) and upgrade it into a residue-level 

graph; (iii) conduct overlapping subgraph clustering for the graph using 

our newly designed algorithm; and (iv) classify each subgraph as epitope 

or non-epitope using LIBSVM (Chang and Lin, 2011). 

 

3 RESULTS AND DISCUSSIONS 

3.1 Evaluation metrics 

Measures f-score, recall and precision are used to assess the 

prediction performance, which are defined as 

recall = TP/(TP + FN ) 

precision = TP/(TP + FP ) 

f-score = 
2 · recall · precision 

,
 

recall + precision 

where TP is the number of epitopic residues that have been correctly 

called, FN is the number of epitopeic residues that have missed 

out, and FP is the number of non-epitopic residues that are wrongly 

called. 

Note that, specificity and accuracy are not  included as  TN, 

the number of non-epitopic residues that are correctly identified, 

is usually 12 times greater than TP on average (Zhao  et  al., 

2011). Thus, specificity and accuracy are not very informative 

to understand the prediction performance. Instead, f-score is the 

most informative and meaningful measurement. In addition, all 

the performance is computed based on the whole antigen sequence 

instead of the antigen surface residues. 

 

3.2 Superior performance on the single-epitope 

detection 

Glep was applied to all the antigens in D1 to predict the epitopes. 

On average, the f-score is 0.579±0.127, recall is 0.518±0.169, and 

precision is 0.716±0.153. Detailed results are shown in Table S1 of 
the supplementary notes. 

To compare the performance between Glep and the state-of-art 

methods, we carried out epitope prediction on D1 using BCPREDS 

(EL-Manzalawy et al., 2008), DiscoTope 2.0 (Kringelum et al., 

2012), Ellipro (Ponomarenko et al., 2008),  EpiPred (Krawczyk 

et al., 2014) and BepiPred (Jespersen et al., 2017),  under their 

BCPREDS, BepiPred, DiscoTope 2.0, Ellipro, EpiPred and SEPPA 2.0 on 

dataset D1. The lower and upper end of the red line within each plot indicate 

the 25th and 75th percentile, respectively. The plots marked by ”*“ are 

obtained solely from antigen sequence. 

 
 

default parameters if applicable. The f-scores of Glep are better 

than all these literature methods for 122 of the total 163 epitopes. 

Figure 3 and Figure S1 present the distribution of the f-scores, 

recalls and precisions for all the predictors.  Clearly,  the f-score 

of Glep is remarkably higher than that of other approaches. We 

have observed (from Figure S1) that the performance superiority 

of Glep is mainly attributed to its very high precision. That is, 

the epitopes determined by Glep contains very small portion of 

non-epitopic residues, sometimes no common residues. Although 

the averaged  recall  generated  by  Glep  is  not  so  striking,  it 

is often better than, at least competitive to, the literature 

methods.  In fact,  the averaged f-score produced by BCPREDS, 

BepiPred, DiscoTope 2.0, Ellipro, EpiPrd and SEPPA 2.0 are 

are  0.234±0.199,   0.090±0.117,   0.167±0.179,   0.361±0.182, 

0.353±0.197, 0.269±0.157; the averaged recalls generated by 

these approaches are 0.221±0.200,  0.201±0.231,  0.271±0.315, 

0.533±0.267, 0.484±0.281, 0.62±0.3; and the averaged precisions 

obtained from these approaches are 0.264±0.222, 0.066±0.094, 

0.178±0.224, 0.372±0.27, 0.291±0.172, 0.185±0.12. On average, 
the  lift  of  f-score  by  Glep  on  top  of  BCPREDS,  BepiPred, 

DiscoTope 2.0, Ellipro, EpiPred and SEPPA 2.0 is 147%, 543%, 

247%, 60%, 64% and 115%, respectively. Here, lift is given by 

(x − y)/y, where x and y are the two values to be compared. More 
detailed comparison results are presented in Table S1. 

 
3.3 Accurate detection of multi-separated epitopes 

from an antigen 

Although predicting multiple epitopes is just a small step ahead 

from the single epitope prediction, it has much more biological 

significance. Firstly, it is in line with the principle of context- 

awareness of epitope binding (Zhao et al., 2011). Secondly, it can, to 

a certain extent, identify epitopes rather than just antigenic residues, 

which can be used to guide practical applications, such as vaccine 

design. 

To assess the performance of our algorithm for the detection 

of multi-separated epitopes from an antigen, we applied Glep to 

dataset D2. Glep achieved an excellent performance. It can detect 

all the epitopes from the 21 antigens in D2, with an averaged f-score 

0.560±0.114, recall 0.523±0.145, and precision 0.655±0.161. 
Detailed performance is presented in Table S2. Some highlights of 

the performance are as follows. The pair-wise sequence similarity of 
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Fig. 4. The performance comparison of separated multi-epitope prediction 

by applying Glep, BCPREDS, and Ellipro on dataset D2. 

 

 
1CZ8 chain W and 2FJG chain W is 100%. However, their epitopes 

are quite different. The epitope residues of 1CZ8 chain W are 

TYR45, LYS48, GLN79, ILE80, MET81, ARG82, ILE83, HIS86, 

GLN87, GLY88, GLN89, HIS90, ILE91, GLY92, GLU93, MET94, 

while the epitope residues of 2FJG chain W that are mapped to 1CZ8 

chain W are PHE17, MET18, TYR21, GLN22, TYR25, ASN62, 

ASP63, GLU64, LEU66, PRO106. Glep can detect 11 of the 16 

residues for the epitope on 1CZ8 chain W, introducing only 2 non- 

epitopic residues. For 2FJG, Glep can detect 6 of the 10 epitopic 

residues, introducing only 3 non-epitopic residues. 

We have also conducted experiments using BCPREDS and 

ElliPro on D2 for multi-epitope prediction. For BCPREDS, the 

parameters of “flexible epitope length” and “non-overlapping 

epitope prediction” are set; while for ElliPro the default parameters 

are used as it can predict multiple epitopes per se. BCPREDS has 

an empty result on 6 epitopes, while ElliPro is unable to detect 2 

epitopes. In contrast, Glep can detect all of them. In addition, the 

f-score on 37 of the 42 epitopes generated by Glep are much higher 

than BCPREDS and ElliPro. On average, the lift of f-score by Glep 

from BCPREDS and ElliPro is 147% and 75%, respectively. Figure 

4 presents the summarized performance of recall and precision for 

all the approaches besides f-score. Obviously, the performance of 

Glep is markedly better than that of the other two. More detailed 

results are reported in Table S2. 

Experiments are not carried out using BepiPred, DiscoTope 2.0, 

EpiPrd and SEPPA 2.0, as they can only predict single epitopes from 

an antigen. 

 

3.4 Accurate detection of overlapping epitopes from an 

antigene 

Existence of overlapping epitopes in antigens has been known 

for a long time, but reported in detail only recently (Narayan 

et al., 2011; Zhao et al., 2012; Faleri et al., 2014; Zhao et al., 

2012; Abdiche et al., 2017). BCPREDS is the only computational 

method which has an option to predict overlapping epitopes from 

an antigen, but has exclusive parameter settings comparing with 

separated epitope prediction. Our method has a better performance 

than BCPREDS. Experiments are carried out  on  dataset  D3, 

and the detailed results are presented in Table 2. Glep can 

successfully detect all the epitopes from the 21 antigens, including 

the overlapping epitopes. The averaged f-score, recall and precision 

are 0.549±0.123, 0.483±0.166, and 0.700±0.163, respectively. 
BCPREDS has a much lower performance with an averaged f- 

score at only 0.449±0.156, recall at 0.433±0.170, and precision 

Fig. 5. The performance comparison of overlapping multi-epitope 

prediction by applying Glep and BCPREDS on dataset D3. 

 

 
 

at 0.496±0.175. The lift of f-score, recall or precision by Glep 
from BCPREDS is 22.3%, 11.5%, and 41.1%, respectively. 
Comprehensive comparison of the performances between these two 

approaches is shown in Figure 5. The paired t-test p-value of f- 

score, recall and precision between Glep and BCPREDS are 1.7e-4, 

1.1e-1 and 7.1e-8, statistically indicating that Glep significantly 

outperforms BCPREDS from all the performance measurements. 

 

3.5 Simultaneous detection of both overlapping and 

separated epitopes from an antigen 

There are cases of antigens which contain epitopes separated from 

the cluster of overlapping epitopes (Zhao et al., 2012; Faleri et al., 

2014). Figure 6 shows an example. None of existing approaches 

can detect both separated and overlapping epitopes simultaneously. 

Although BCPREDS can make predictions for non-overlapping and 

overlapping epitopes, it achieves this goal by different built-in 

procedures having different parameters. That is, it can only make 

predictions for overlapping epitopes or non-overlapping epitopes 

independently, other than simultaneously. Our Glep works very well 

to deal with these challenging situations. 

We use the antigen contained in 1JHL chain A to demonstrate the 

effectiveness of Glep in the simultaneous prediction of overlapping 

epitopes as well as separated epitopes. Table 3 shows that the four 

antigen sequences are highly similar (in fact three of them—1p2c, 

1bvk and 1dqj—are the same, while the other is slightly different), 

while their epitopes are distinguishable. Particularly, the epitope of 

1p2c chain C is totally different from the others, while the rest three 

overlap with each other; see Figure 6. 

Results in Table 2 suggest that Glep can successfully detect 

the four epitopes with very high accuracy (the f-score of 

detecting epitopes within 1p2c BA C, 1jhl HL A, 1dqj BA C 

and 1bvk BA C are 0.79, 0.67, 0.61 and 0.38, respectively). 

Specifically, Glep can detect 13 of the 18 residues of the 

separated epitope 1p2c BA C with only introducing 2 non-epitopic 

residues; detect 8 of the 11 residues of the epitope 1jhl HL A 

with introducing 5 non-epitopic residues; detect 10 of the 21 

residues of the epitope 1dqj BA C with introducing 2 non-epitopic 

residues; and detect 5 of the 17 residues of the epitope 1bvk BA C 

with introducing 4 non-epitopic residues. More importantly, the 

overlapping epitope residues can be fished out for different epitopes. 

For instance, there are 4 overlapping residues between epitope 

1dqj BA C and 1bvk BA C (positions are 18, 19, 102 and 103), 

and Glep can detect 3 of them (18, 102 and 103) for both epitopes. 
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Table 2. The performance of overlapping multi-epitope prediction by Glep and BCPREDS on dataset D3. 

 

PDB† 
Glep   BCPRED S 

PDB 
Glep   BCPRED S 

f-score recall precision f-score recall precision f-score recall precision f-score recall precision 

3sqo HL A 0.64 0.50 0.88 0.50 0.50 0.50 2adf HL A 0.50 0.40 0.67 0.55 0.53 0.57 

2xtj DB A 0.59 0.47 0.80 0.58 0.53 0.64 1fe8 JN A 0.40 0.36 0.44 0.24 0.27 0.21 

3h42 HL B 0.48 0.45 0.50 0.28 0.23 0.36 1fe8 IM B 0.55 0.42 0.80 0.55 0.47 0.64 

1a14 HL N 

1nca HL N 

0.62 0.53 0.75 0.45 0.41 0.50 1fe8 IM C 0.77 1.00 0.62 0.21 0.40 0.14 

0.65 0.48 1.00 0.29 0.24 0.36 3hi6 HL A 

3eoa HL I 

0.40 0.27 0.75 0.28 0.23 0.36 

4lsu HL G 

4h8w HL G 

4om1 HL G 

0.46 0.34 0.71 0.41 0.29 0.71 0.55 0.43 0.75 0.57 0.57 0.57 

0.39 0.37 0.41 0.61 0.53 0.71 4g6m HL A 

4g6j HL A 

0.52 0.42 0.67 0.48 0.42 0.57 

0.49 0.38 0.71 0.52 0.38 0.86 0.74 0.67 0.82 0.17 0.14 0.21 

3gbn HL A 0.43 0.50 0.38 0.40 0.67 0.29 1p2c BA C 0.79 0.72 0.87 0.00 0.00 0.00 

3lzf HL A 0.44 0.32 0.75 0.36 0.32 0.43 1bvk BA C 0.38 0.29 0.56 0.39 0.35 0.43 

4py8 IJ A 0.50 0.50 0.50 0.42 0.50 0.36 1dqj BA C 0.61 0.48 0.83 0.29 0.24 0.36 

3hi1 HL G 

2i5y HL G 

0.55 0.45 0.69 0.41 0.35 0.50 1jhl HL A 0.67 0.73 0.62 0.32 0.36 0.29 

0.67 0.67 0.67 0.34 0.33 0.36 3nfp HL I 

3iu3 HL I 

0.56 0.50 0.64 0.38 0.33 0.43 

2ny7 HL G 

3idx HL G 

2ny5 HL G 

0.41 0.26 1.00 0.43 0.35 0.57 0.48 0.35 0.80 0.49 0.39 0.64 

0.58 0.44 0.88 0.60 0.56 0.64 1tqb BC A 

2w9e HL A 

4h88 HL A 

0.82 0.78 0.88 0.56 0.50 0.64 

0.48 0.54 0.44 0.30 0.31 0.29 0.69 0.60 0.82 0.76 0.73 0.79 

2xwt AB C 

3g04 BA C 

0.55 0.48 0.65 0.15 0.11 0.21 0.59 0.42 1.00 0.69 0.75 0.64 

0.34 0.22 0.83 0.11 0.09 0.14 4bz2 HL A 

4bz1 HL A 

0.59 0.47 0.80 0.58 0.53 0.64 

3bn9 DC B 

3nps BC A 

3so3 CB A 

0.48 0.33 0.89 0.26 0.21 0.36 0.42 0.33 0.57 0.54 0.58 0.50 

0.50 0.44 0.58 0.26 0.20 0.36 4l5f HL E 

4al8 HL C 

0.50 0.46 0.55 0.44 0.46 0.43 

0.54 0.44 0.69 0.31 0.24 0.43 0.56 0.64 0.50 0.56 0.64 0.50 

3ma9 HL A 

2cmr HL A 

0.44 0.32 0.73 0.51 0.40 0.71 3u2s HL G 

4dqo HL C 

0.75 0.90 0.64 0.50 0.60 0.43 

0.40 0.28 0.71 0.63 0.56 0.71 0.63 0.56 0.71 0.52 0.67 0.43 

4hc1 HL A 

4hcr HL A 

0.80 0.75 0.86 0.67 0.62 0.71 4lu5 IM A 

4m1g HL A 

4m1g HL B 

0.54 0.47 0.64 0.55 0.53 0.57 

0.62 0.44 1.00 0.25 0.22 0.29 0.59 0.62 0.57 0.74 0.77 0.71 

3bgf HL S 

2dd8 HL S 

0.48 0.40 0.60 0.55 0.53 0.57 0.67 0.73 0.62 0.40 0.45 0.36 

0.29 0.26 0.33 0.61 0.53 0.71  
† The first part separated by “ ” is the PDB code, the middle part contains the antibody heavy and light chain name, and the last part is the antigen chain name. The antibody- 

antigen complexes within the same block having the same antigen but different epitopes, i.e., the antigen sequence similarity is no less than 0.9, while the epitope similarity is 

no larger than 0.8. 

 

 

Table 3. The details of overlapping and separated epitopes in antigen 1JHL chain A. 

 
PDBa

 antigen size antigen similarityb
 epitope similarityc

 position of epitope residuesd
 

1jhl HL A 129 92.25% 63.64% 21 23 103 106 112 113 116 117 118 119 121 

1p2c BA C 129 92.25% 0 41 43 45 46 47 48 49 50 51 53 65 66 67 68 70 79 81 84 

1bvk BA C 129 92.25% 63.64% 18 19 22 23 24 27 102 103 116 117 118 119 120 121 124 125 129 

1dqj BA C 129 92.25% 23.53% 14 15 16 18 19 20 21 62 63 73 75 77 89 93 96 97 98 100 101 102 103 

a The first part separated by “ ” is the PDB code, the middle part contains the antibody heavy and light chain name, and the last part is the antigen chain name. b Antigen pair-wise 

sequence similarity, computed by using cd-hit (Li and Godzik, 2006). Here we only show the minimum similarity between the interest antigen and the rest. In fact, the chain “C” 

of 1p2c, 1bvk and 1dqj are the same. c Epitope similarity, determined by |e1 ∩ e2 |/min(|e1 |, |e2 |), where |e| is the size of e. We only show the maximum similarity between 

the interest epitope and the rest. d For ease of understanding, the position is the calibrated position other than the raw position of each complex, i.e., the four antigen sequences are 

aligned by using Clustal Omega (Sievers et al., 2011) at first, then the position of epitope residues are mapped to the alignment later. 

 

 

3.6 Marginal impact of unbound antigen on epitopes 

detection by Glep 

Glep is much better than existing approaches on epitope prediction 

that has been validated on bound antigens, i.e., D1, D2 and D3, 

while its performance on unbound antigens is unknown. To unveil 

its power of epitope prediction on unbound antigens, we have 

collected another data set that is in accordance with the bound 

antigens in terms of sequence similarity having minimum threshold 

of 95%, where the similarity is automatically computed via the 

tool provided by PDB (Berman et al., 2000) . That is, we use 

the  bound  antigen  sequence  to  query  the  PDB  to  retrieve  the 

unbound antigens satisfying the similarity threshold. As a result, 

110 unbound antigens are obtained. 

Based on the unbound antigen, we carried out epitope prediction 
by using Glep. The overall f-score, recall and precision is 

0.551±0.154, 0.483±0.179, and 0.696±0.182, respectively. The 
detailed  performance  is  shown  in  the  supplementary  notes. 

Comparing with the performance produced from the bound 

antigens, the one obtained from the unbound antigens is slightly 

smaller. The difference between the two is 0.028 in terms of mean 

f-score. When it breaks down into the three types, we found that 

the performance of unbound antigen on D3 is slightly better than 
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Fig. 6. Overlapping and separated epitopes resided in antigen 1JHL chain 

A. The whole picture of the four epitopes is shown in the lower right panel 

with partial covered by each other; the three overlapping epitopes are shown 

in the top left panel with overlapping residues highlighted in different colors. 

 

 
that of the bound antigen; see figure 7. We have also calculated the 

correlation coefficient as well as the p-value between the f-score 

obtained from bound antigen and unbound antigen. It is clear that 

there has no significant difference; see figure 7. From the figure 

we can also see that the larger root mean square deviation (rmsd) 

between a bound antigen and the corresponding unbound antigen 

results in higher discrepancy of performance, which is in accordance 

with the intuition. 

 

 
4   CONCLUDING REMARKS 

Epitope prediction possesses broad significance, attracting many 

global research teams working on this area. However, they mainly 

take a one-antigen-one-epitope approach to the prediction of 

epitopes. Now that multiple, even overlapping epitopes in an antigen 

have been reported recently, this one-to-one prediction scenario is 

limited with unsatisfactory performance. To detect epitopes from 

antigens accurately as well as to reflect the biological facts, we 

have introduced a novel subgraph clustering algorithm especially for 

the prediction of overlapping epitopes. This algorithm takes surface 

residue graph partitions as seeds, and expands all the seeds to cluster 

overlapping subgraphs through term frequency-inverse document 

frequency (TF-IDF) featured similarity. Then, the subgraphs are 

each classified as an epitope or a non-epitope using SVM on 

delicately selected features. Experiments are conducted on three 

newly collected antigen datasets. The results have demonstrated that 

the performance of our newly proposed approach is significantly 

better than the state-of-art approaches. The lift of averaged f- 

score of our algorithm from that of the literature methods ranges 

from 60% to 543% on single epitope prediction. Regarding the 

averaged f-score of multiple separate epitope prediction, the lift of 

our algorithm from the second best is as high as 75%. For multiple 

overlapping epitope prediction,  the  lift  is  22%.  Furthermore, 

the proposed algorithm can detect multiple, both separated and 

overlapping, epitopes simultaneously with excellent performance. 
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Fig. 7. The performance comparison of Glep between bound antigens and 

unbound antigens. Panel A is overall performance distribution, while B, 

C, and D are the detailed distribution on the three datasets. The x-axis of 

the panel B, C and D is the root mean square deviation (rmsd) between a 

bound antigen and the corresponding unbound antigen generated by structure 

alignment, while the y-axis is the difference of f-score obtained from the two. 
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