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Abstract—This paper presents a road vehicle recognition and 

classification approach for intelligent transportation systems. This 
approach uses a roadside installed low cost magnetometer and 
associated data collection system. The system measures the 
magnetic field changing, detects passing vehicles and recognizes 
vehicle types. We introduce Mel Frequency Cepstral Coefficients 
(MFCC) to analyze vehicle magnetic signals and extract it as 
vehicle feature with the representation of cepstrum, frame energy, 
and gap cepstrum of magnetic signals. We design a 3-dimensional 
map algorithm using Vector Quantization (VQ) to classify vehicle 
magnetic features to 4 typical types of vehicles in Australian 
suburbs: sedan, van, truck, and bus. In order to train an accurate 
classifier, training samples are selected using Dynamic Time 
Warping (DTW). Verification experiments show that our 
approach achieves a high level of accuracy for vehicle detection 
and classification.  
 

Index Terms—Vehicle Classification, Signal Processing, Road 
Traffic Model, Magnetic Sensing, Mel Frequency Cepstral 
Coefficients (MFCC), Vector Quantization (VQ), Dynamic Time 
Warping (DTW), Intelligent Transportation System (ITS) 
 

I. INTRODUCTION 

Intelligent transportation systems (ITS) apply sensors to 
collect and analyze road vehicle information for road vehicle 

monitoring and managing, control of road traffic, and traffic 
data analysis for future development of transportation 
infrastructures. Useful road traffic information includes: 
vehicle location, type, weight, passing speed and direction, and 
vehicle volume in certain zones [1, 2]. The first traffic monitor 
sensor was developed and installed for road use in 1928. This 
device used a microphone to detect vehicle sound [1]. Since 
then, road vehicle sensing technologies have been explored in 
vibration, inductive-loop detecting, magnetic field, acoustic 
sensing, optical and infrared sensing, satellite signal processing, 
camera captured image and video processing, and inertial 
sensing [1, 2]. These sensing technologies can be utilized for a 
single sensor, or in a sensor network. 

Various types of sensing technologies can be applied in 
different locations in transportation systems. The sensors can be 
statically deployed on road side, underneath the road surface, 
over road, on a pole at an optimal height near the road, on bridge 

crossing over the road, or dynamically installed in road or aerial 
vehicles. In a sensor network, these technologies and 
deployment locations can be integrated. 

From a commercial deployment perspective, the types of 
sensing technologies and the deployment locations of sensors 
will impact the reliability and cost of installation and 
maintenance. For example, magnetic sensor installation 
underneath the road surface will increase the sensor 
measurement accuracy, but disrupt the road traffic in 
installation and maintenance phases. 

In this paper, we propose a road vehicle detection and 
classification approach using roadside-installed single 
magnetic sensor. The magnetic sensor measures the magnetic 
field changes when a vehicle is passing the sensor. The sensor 
measurement signals are analyzed to extract vehicle features, 
and these features are classified into vehicle types. Passing 
vehicles on road traffic are detected for four types of vehicles: 
sedan, van, truck, and bus. 

This paper is organized as follows. Section II reviews related 
work in vehicle detecting and classification. Section III presents 
the experimental design for magnetic sensing in this research. 
Section IV presents an algorithm for vehicle identification and 
vehicle type classification. The results of the road vehicle 
identification and classification are demonstrated and evaluated 
in Section V. Conclusion are drawn finally in Section VI. 
 

II. RELATED WORK 

Sensing technologies provide vehicle and road traffic 
information to intelligent transportation systems. 

Accelerometer is able to measure the vibration of the road 
when a vehicle is passing. ITS can receive sensor input from 
accelerometers installed under road surface, and compute the 
weight of passing vehicle and number of vehicles.     

Inductive loop technology uses electrical conducting loop 
that is installed on road surface. When a vehicle passes the loop, 
a current is induced in wired loops, and this signal change is 
processed and transmitted to ITS to compute the detection of 
the passing vehicle type [1]. The vehicle detection and type 
classification algorithms include back-propagation neural 
networks [3], neural genetic controller using single-loop [4], 
and 2-axle tractor/3-axle semi-trailer approach [5]. 
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Radar is a mature technology to detect passing vehicle 
length, height and speed. Frequency modulated continuous 
wave using doppler radar is one of the traditional radar 
techniques to extract shape information and classify vehicle 
types [6]. Recent radar techniques include detecting vehicle and 
analysis of the frequency of incoming vehicle and using 
reconfigurable antenna array and Synthetic Aperture Radar 
technique, which were applied for estimation of angular 
coordinates [7].     

Infrared (IR), including active infrared laser radar and 
passive infrared, has been used in road vehicle acquisition, 
tracking, and especially for night vision. Infrared is available to 
operate in multiple lanes [1]. IR detecting techniques include 
extracting histograms of oriented gradient features and local 
binary pattern features, and concatenating to form classification 
features [8]. IR technique can be applied to detect both vehicles 
and pedestrians on road. However, infrared sensors may reduce 
vehicle sensitivity in bad weather conditions, like rain, fog and 
snow [1]. 

Cameras capture passing vehicle’s location, speed and 
shapes in images and videos. Road traffic images contain rich 
information in wide area. Vehicle image detecting techniques 
can be used in multiple lanes and multiple zones. Weather 
conditions and day-to-night transition may heavily affect the 
performance [1]. Street lighting is required to assist video 
image recording at night time for obtaining reliable signals [1]. 
In literature, vehicle’s parameters such as length, height and 
width dimensions were extracted and these features are used to 
classify vehicle types [9]. 

Magnetic sensors measure the magnetic field. Magnetic 
sensing technologies include: squid, fiber-optic, optical 
pumped, nuclear procession, search-coil, anisotropic magneto-
resistive, flux-gate, and so on [10]. These sensors detect 
different magnetic field range. The impact of a vehicle passing 
or stopping causes a change to the earth magnetic field within 
the range of 1 microgauss to 10 gauss [10]. Comparing with 
other types of magnetic field sensing technologies in range and 
cost, Anisotropic Magneto-Resistive (AMR) sensors are able to 
work in this range of magnetic field changes for practical 
applications.  

Signal analysis of magnetic field measurement and 
classifying into signal shape patterns has been an effective 
approach. In Sing Yiu et al.’s approach [11], three-axis 
magnetic vectors were analyzed separately in magnitude. The 
magnitudes of signals in the x, y and z in time series were 
classified into a number of patterns. These patterns illustrated 
the shape of hills for each type of vehicles. Using the hill pattern 
approach, Saowaluck et al. [12] extracted features of 
normalized vehicle magnetic length, average energy, number of 
peaks from hill patterns. Their classification types include 
motorcycles, cars, pickups, vans, and buses.  

An integrated approach was developed using magnetic 
sensor and DGPS by Taghvaeeym and Rajamani [13]. In [13], 
two magnetic sensors were used. DGPS measured the speed of 
vehicles to aid the magnetic sensing. The vehicle classification 
was based on magnetic length and estimate of the average 
vertical magnetic height of the vehicle. Vehicle length was 

computed by using the vehicle presence time and vehicle speed.         
Using a single AMR sensor, Yang and Lei [14] detected 

vehicles in a single lane by using sensor measurement when 
vehicle passing the road sensing area. The following features 
were extracted from measured signals for classification: signal 
duration, signal energy, average signal of signal, ratio of 
positive and average energy of X-axis signal, and ratio of 
positive and average energy of Y-axis signal. X-axis and Y-axis 
of the magnetic sensor were installed parallel to the earth 
surface. Z-axis was vertically installed. The types were 
classified into motorcycles, two-box cars, saloon cars, and sport 
utility vehicles in [14].  

Among these approaches, the vehicle detection and 
classification had been developed as prototypes. In AMR 
sensor-related systems, AMR sensors were installed on 
roadside, under the surface of road, used a single sensor, or 
applied multiple sensors as a sensor network. These impact the 
factors of measured signal strength for detecting accuracy, cost 
of installation and maintenance. Application in deployment has 
not been commercialized in large scale yet due to these impact 
factors. Further research of approaches is needed to achieving 
reliable detection and classification results while reducing the 
cost caused by sensor installation and maintenance.  

Compared with different types of sensors, e.g. radar, optical 
images/videos and Infrared, AMR sensor has three main 
advantages. 1) The AMR is the overall systems low cost and 
smaller size due to high sensitivity, and they still maintain 
reliability and quality. 2) AMR sensors have high sensitivity 
and flexibility; therefore, they are placed further away from the 
magnet. This allows the AMR sensor to be installed where it is 
needed for the optimal performance. And, 3) the most 
advantage of these solid-state devices are their durability and 
immunity to shock and vibration. They record magnetic signals 
in a stable fashion that is not influenced by different weather 
conditions.   

In our research, considering the cost of installation and 
maintenance, we use a single AMR magnetic sensor to install 
on roadside. Our approach is proposed for Australia road 
environment. The types of vehicles in Australia road traffic are 
typically sedan, van, truck and bus. We analyze these vehicle 
types by using measured earth magnetic field signal changes in 
time domain, when vehicle passes our sensing area. We explore 
vehicle identification and classification by extending audio 
signal analysis approach. The sensor measurements of magnetic 
field are processed by signal feature extraction and vector 
quantization for vehicle type classification. Compared with 
Yang and Lei’s work, we target vehicle types which are suitable 
to Australia road traffic. Our method of feature extraction and 
classification outperforms the method proposed in [14] 1% on 
average classification accuracy.  

III. EXPERIMENT DESIGN USING MAGNETIC SENSOR IN ROAD 

TRAFFIC 

In our experiments, an AMR magnetic sensor is installed on 
road side to collect data of a single lane. The distance between 
the sensor and passing vehicles is 60 centimeters. The roadside 
sensor is able to detect one vehicle on one lane in our 
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experiment. When vehicle passes the sensing area, the magnetic 
field in that area will change and cause the magnetic 
measurement changes. These changes are displayed as a signal 
wave in measurement. From the observation of vehicle types on 
road, we classify and analyze road vehicles using four types: 
sedan, van, truck, and bus. When these vehicles pass the 
experiment spot, the magnetic field measurements display 
signal changes as the form of waves. We have applied dynamic 
time warping (DTW) to select the most representative samples 
from each vehicle type. Figure 1, 2, 3, 4 illustrate the magnetic 
field changes in one dimension for these types of vehicles. 
 

 
Fig. 1.  Magnetic sensor measurement of Sedan signal 

 

 
Fig. 2.  Magnetic sensor measurement of van signal 

 

 
Fig. 3.  Magnetic sensor measurement of Truck signal 
 

 
Fig. 4.  Magnetic sensor measurement of Bus signal 

 

 

 
Fig. 5.  The first four dimensions of MFCC feature extracted from signals of 
four different vehicle types 

From the experiments, we found that magnetic signal wave 
and audio wave display similar characteristics, such as 
reflection, refraction, intervene, measurement data and 
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diffraction. In time domain and frequency domain, the speed, 
length, and frequency of signal waves have certain relationship 
for both magnetic wave and audio wave. In our research, we 
explore filtering raw magnetic measurement signals as well as 
the signal feature extraction to analyze magnetic field signal 
features. 

In this paper, we present a road vehicle detection and 
classification approach using magnetic sensor and magnetic 
signal feature extraction and classification. In order to reduce 
the deployment, interruption of road traffic and maintenance 
cost, we apply a road-side magnetic sensor to detect the 
vehicles. The magnetic signal processing approach extended 
MFCC to extract the magnetic signal feature and classify the 
feature to categorize five types, as shown in Figure 6. In our 
experiments, the signal types are: sedan, van, truck, bus and 
non-vehicle. Figure 5 shows the first four dimensions of MFCC 
extracted from the signature signal of four different vehicle 
types. Usually, when there is no vehicle in measurement area, 
the basic output signal from magnetic sensor is the earth 
magnetic field with environment noises. The non-vehicle can 
also include passengers, bicycles and motors and the earth 
magnetic field with environment noises. Since the signal 
sample length is set as one second, the number of non-vehicle 
samples is the number of seconds that non-vehicle signal lasts. 

IV. VEHICLE CLASSIFICATION ALGORITHM 

In our research, we extract Mel Frequency Cepstral 
Coefficients (MFCC) feature from signals and apply Vector 
Quantization (VQ) to classify magnetic field measurement data 
for passing vehicles. In order to efficiently model the 
probability density functions, we use Dynamic Time Warping 
(DTW) to filter the raw measurement signals to prepare training 
data for VQ. MFCC has been proved to be one of the robust and 
widely used features to analyze the characteristic of audio 
signals [15, 16]. Vector Quantization is a classifier to compare 
the distance in vectors. VQ transforms several scalar data into 
one vector data, and quantizes whole vector space [17].  
 

 
Fig. 6. Vehicle magnetic feature extraction and classification process 

 
In identification and classification of vehicle signals, we 

filter the raw magnetic field measurement signals and extract 
relative features, and then label the features to different types of 
vehicles. The method is presented below.  

A. Training sample selection by dynamic time warping 
selection of magnetic measurement signal 

As we all know, for effective machine learning to occur, it is 
important to select representative positive training samples. 
Collected magnetic signals can be very raw due to noisy 
introduced by environmental condition. (i.e. pedestrian, road 
work, train/tram noise and track maintenance) In order to 
accurately model the probability density function for each type 
of vehicle, we introduce sample selection to make sure training 
data efficiently represent the characteristics of each vehicle 
type. Since magnetic signals are complex series with the shift 
and stretching of amplitude, dynamic time warping (DTW) is 
applied in our research to measure similarity among signals. In 
some boundary and temporal consistency constrains, DTW is a 
point to point method and it can obtain a global optimal solution 
through cost matrix [18, 19]. 

For each vehicle class, assuming we have n magnetic signals 
ܵ ൌ ሼݏଵ, ,ଶݏ ଷݏ ⋯  ௡ሽ. Any two magnetic signals of one categoryݏ
are compared with each other. Figure 7 shows an example of 
comparison of two van sample pairs. We apply 16 sampling 
points. Each point has been compared between two magnetic 
signals. 

Assuming  ݏ௪ ൌ ሼݔ௜ሽ௜ୀଵ
ଵ଺  and ݏ௨ ൌ ሼݕ௝ሽ௝ୀଵ

ଵ଺  are the two 
signals in ܵ . When u ് w , u ൌ 1,… , n , w ൌ 1,… , n ,௜ݔ , ݅ ൌ
1, … ,16  and ݕ௝, ݆ ൌ 1, … ,16  represent the sample points of two 
magnetic signals, ݏ௪  and 	ݏ௨ . DTWሺݏ௪,  ௨ሻ is used to presentݏ
the DTW distance between  ݏ௪ and 	ݏ௨, which can be calculated 
by the following equation (1). 
 
DTWሺݏ௪, ௨ሻݏ ൌ
∑ ∑ ݉݅݊ሺ݀൫ݔ௜ିଵ, ,௝൯ݕ ݀൫ݔ௜, ,௝ିଵ൯ݕ ݀൫ݔ௜ିଵ, ௝ିଵ൯ݕ

௝
௝ୀଵ

௜
௜ୀଵ ሻ.		 ሺ1ሻ	

Where	݀ሺݔ௜, 〈〉ሻ ൌ ∞,	݀൫〈〉, ௝൯ݕ ൌ ∞	and	݀ሺ〈〉, 〈〉ሻ ൌ 0.	The	 〈〉	
indicates	empty	series.	The	݀൫ݔ௜, 	distance	the	indicates	௝൯ݕ
between	two	points	ݔ௜	and		ݕ௝,	which	can	be	represented	by	
Euclidean	Distance.	
 
The ܦ ൌ ሼܦଵ, ܦଶ, ܦଷ…ܦ௡ିଵሽ describes a set of DTW distance 
that each magnetic signal compared with the rest signals within 
the same class, as demonstrated below: 
 

ଵܦ   ൌ ൛ܶܦ ଵܹ,ଶ, ܶܦ ଵܹ,ଷ,⋯ , ܶܦ ଵܹ,௡ൟ 
ଶܦ ൌ ൛ܶܦ ଶܹ,ଵ, ܶܦ ଶܹ,ଷ,⋯ , ܶܦ ଶܹ,௡ൟ  
⁞ 
௡ିଵܦ ൌ ൛ܶܦ ௡ܹ,ଵ, ܶܦ ௡ܹ,ଶ,⋯ , ܶܦ ௡ܹ,௡ିଵൟ.     (2) 

 
The average distance between each magnetic signal to the rest 
within the same class can be calculated as follows: 
 

ଵܦ   ൌ
ଵ

௡ିଵ
൫ܶܦ ଵܹ,ଶ ൅ ܶܦ ଵܹ,ଷ ൅ ⋯൅ ܶܦ ଵܹ,௡൯ 
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ଶܦ ൌ
ଵ

௡ିଵ
൫ܶܦ ଶܹ,ଵ ൅ ܶܦ ଶܹ,ଷ ൅ ⋯൅ܶܦ ଶܹ,௡൯  

⁞ 
௡ିଵܦ ൌ

ଵ

௡ିଵ
൫ܶܦ ௡ܹ,ଵ ൅ ܶܦ ௡ܹ,ଶ ൅ ⋯൅ ܶܦ ௡ܹ,௡ିଵ൯ (3) 

 
The equation (3) can be further summarized as  
 

௣ܦ     ൌ
ଵ

௡ିଵ
ቆ∑ ܶܦ ௣ܹ,௠௠ୀଵ,…,௡

௠ஷ௣
, ݌ ൌ 1,… , ݊ െ 1ቇ 

 

௥ܦ ൌ argmin
௣

൛ܦ௣, ݌ ൌ 1,… , ݊ െ 1ൟ .         (4) 

We then select ܵ௥ as the signature magnetic signal of the class 
where ܵ௥ belongs to. For four vehicle classes, we can acquire 
four signature signals, which is showed in Figure 1, 2, 3, 4. 

In order to select training samples of each vehicle class, we 
calculate the DTW distance of each sample in that class to the 
signature signal of that class and select samples with DTW 
distance no greater than 2 as training samples. The number of 
training samples of each vehicle class are listed in the 
APPENDIX. Fig. 7 shows an example, which is a van signal 
compared with its signature signal. The DTW distance between 
these two signals is 0.167847.  

 
Fig. 7. An example of a van signal compared with its signature signal by 
DTW 

B. Magnetic feature extraction process 

The process flow of magnetic field features extraction is as 
Figure 8. Each step of the process is presented in this section. 
 

 
Fig. 8. Magnetic measurement feature extraction 
 
Preemphasis. The first step of magnetic signal feature 
extraction is “preemphasis”. This step improves the energy in 
high frequencies and balances the energy from lower and higher 
frequencies. In the time domain, the filter equation is as below: 

 
yሾnሿ ൌ xሾnሿ െ αxሾn െ 1ሿ .     (5) 

where, n is the time, x[n] is the input signal, and 0. 9 ൑ α ൑ 1.  
 

Windowing. In the second step “Windowing”, we extract 
signal feature from a small window of signal. The windowing 
process is performed using signal value and window value. If 
the value of the signal at time n is ݏሾ݊ሿ, the value of the window 
at time n is ݓሾ݊ሿ , the signal value y[n] of this windowing 
process is presented as the following equation: 

 
ሾ݊ሿݕ ൌ  ሾ݊ሿ .        (6)ݏሾ݊ሿݓ

  
In order to shrink the values of the signal toward zero at the 

window boundaries and avoid discontinuities, we define two 
windowing functions: “Rectangular” and “Hamming”. 
 
Rectangular. We set the window to 1 when signal time n is 
between 0 and L-1, L is the length of the frame of the signal.  In 
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another time period, we set window to 0 [15, 16]. 
 

wሾሾnሿ ൌ ቄ1 0 ൑ ݊ ൑ ܮ െ 1
0 ݁ݏ݅ݒݎ݄݁ݐ݋

.        (7) 

 
Hamming. Hamming window is the goal to extract the 
spectral features, not from the entire signal, it can extract 
spectral features from a small window of signal [15, 16]. 
 

wሾnሿ ൌ ቊ0.54 െ 0.46 cos ଶగ௡
௅

0 ൑ ݊ ൑ ܮ െ 1

0 ݁ݏ݅ݒݎ݄݁ݐ݋
.       (8) 

 
 
After the “Windowing” process, the distributed frames will 

result in two states: dynamic state and static state. The feature 
extracting process will go through two different flows as in 
Figure 8. After “Windowing” processing, there is a condition to 
process each frame in magnetic feature and here are two steps 
including dynamic and static site, due to the reason of each 
frame in “Windowing”. 
 

The windowing process includes “frame shift” and “frame 
size”. In the frame state, there are two conditions: dynamic state 
and static state to resolve this issue. The dynamic processing is 
caused by frame shift that is 10ms, while the static state is frame 
size, which is 25ms. Therefore, the total feature is the data of 
dynamic and static. 
 
Static state:  
Discrete Fourier Transform (DFT).  For static frame 
condition, the third step is Discrete Fourier Transform (DFT). 
We extract magnetic information for windowed signal. We 
calculate how much energy the signal contains at different 
frequency bands. DFT is defined as: 
 

ሾ݇ሿݔ ൌ ∑ ሾ݊ሿ݁௝ఏேିଵݔ
௡ୀ଴ .           (9) 

where k and N are the sequence of frame and discrete frequency 
bands respectively. The e, and ߠ  are presented in Euler’s 
formula as below: 
 

݁௝ఏ ൌ cos ߠ ൅ ݆ sin  (10)           .ߠ

Where, ߠ ൌ െ2
గ

ே
݇݊. 

 
Mel Filter Bank. The next steps of feature extraction are 
“Mel Filter Bank” and “Log Processing” to reduce to lower 
amplitudes. This is computed using:   

 

݈݉݁ሺ݂ሻ ൌ ሺଵା݊ܫ1127
೑
ళబబ

ሻ.           (11) 
where f is the frequency of the input signal. 
 

The final steps are “Inverse Discrete Fourier Transform” 

(IDFT) and “Deltas” and “Energy”: therefore, the magnetic 
feature include Cepstrum, Deltas and Energy. 
 
Inverse Discrete Fourier Transform (IDFT). IDFT is 
computed using the following equations:  

 

ܿሾ݊ሿ ൌ ∑ ∑|ሺ݃݋݈ ௫ሾ௡ሿ௘షೕ
మഏ
ಿ ೖ೙ಿషభ

೙సబ |ሻ݁௝
మഏ
ಿ
௞௡ேିଵ

௡ୀ଴ .     (12) 
where c is the cepstrum of magnetic feature. 
 
Delta. In Delta stage, we compute the gap cepstrum (delta). 
Delta is defined as the value of average of current cepstrum and 
the cepstrum of next time. Delta d is computed as below. 
 

݀ሺݐሻ ൌ
௖ሺ௧ାଵሻି௖ሺ௧ሻ

ଶ
.              (13) 

 
Double delta is defined as: 
 

ሻݐሺݖ ൌ
௖ሺ௧ାଵሻି௖ሺ௧ିଵሻ

ଶ
 .            (14) 

 
Dynamic state:  

For the dynamic state frames after “Windowing”, we start 
“Energy” process as in Figure 8. 
 
Energy. Energy is computed using the energy of the frame 
between two time points t1 and t2. We calculate Energy of 
cepstrum c, delta d and double delta z. 
 

ݕ݃ݎ݁݊ܧ ൌ ∑ ሿ௧మݐଶሾݔ
௧ୀ௧భ

.           (15) 

 
Feature. For both process flows for dynamic state and static 
state as in Figure 8, the final features are integrated. Magnetic 
feature is presented using integration of cepstrum c, delta d, 
double delta z and Energy, as in Equations 12, 13, 14 and 15. 
Vehicle magnetic features are consequently extracted and 
represented in this process.  

C. Vehicle classification process 

To classify magnetic sensor signals for vehicle types, we 
transform several scalar magnetic measurement data into one 
vector. We design this vector containing cepstrum c, Energy, 
and the gap cepstrum d, which are extracted from the vehicle 
magnetic feature extraction process.  

A vector space is quantized using all magnetic feature 
vectors. We compress data and store this feature information in 
magnetic vector space [20]. 

We design a 3-dimensional classification model to present 
the distribution of vehicle types as in Figure 9. 
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Fig. 9.  Distribution of vehicles on 3-dimensional classification algorithm 
 

In this distribution 3-dimension model (magnetic-x, 
magnetic-y, magnetic-z), we design three axes as the 
coordinate. The coordinate displays the different vehicles in the 
region. We uniquely represent each color circle by this 
coordinate. In this case, we design sedan as red circle, vans as 
orange circle, truck as dark red circle, bus as yellow circle, 
none-vehicle as blue circle and input data as pink circle in 
Figure 9. For example, we design the coordinate [0.352, 0.412, 
0.786] to allocate the position of one passing sedan in this 
distribution. The VQ algorithm compares the distance between 
input data (pink circle) and others vehicles (red circle, orange 
circle, dark red circle, yellow circle, blue circle). If the distance 
between the input data (pink circle) and sedan (red circle) is the 
shortest, the input signal is labeled as a sedan. Similarly, each 
input signal has corresponding vehicle label in this 3-dimension 
space. 

The classification algorithm is roughly described as follows. 
Given ܯ as the number of training samples, the training data 
set can be represented as ܺ ൌ ሼݔ௠,݉ ൌ 1,… ሽܯ, . For each 
training sample in the training set, ݔ௠ ൌ ൛ݔ௠,ଵ, ,௠,ଶݔ … ,  ,௠,௞ൟݔ
where ݇ represents the dimension number of a feature vector 
used to represent each sample. Divide the classification feature 
space to N parts, i.e. N classes. In our case, N =5 to indicate five 
pre-defined vehicle classes. For each vehicle class n, a code 
vector ܿ௡ ൌ ൛ܿ௡,ଵ, ܿ௡,ଶ, … , ܿ௡,௞ൟ, which is the feature vector of 
the centroid point of that class. Therefore, in our case, the 
codebook of classification space can be represented as ܥ ൌ
ሼܿ௡, ݊ ൌ 1,… ,5ሽ. ܵ௡  is the encoding region including ܿ௡ . We 
set partition of the space ܲ ൌ ሼܵ௡, ݊ ൌ 1,… ,5ሽ. If ݔ௠ is in ܵ௡ 
area, ݔ௠ can be quantized as ܿ௡: ܳሺݔ௠ሻ ൌ ܿ௡. 

The average distortion Dave can be computed using 
 

௔௩௘ܦ ൌ
ଵ

ெ௞
∑ ௠ݔ| െ ܳሺݔ௠ሻ|ଶெ
௠ୀଵ .        (16) 

 
We design optimality criteria using “Nearest Neighbor 

Condition” and “Centroid Condition”. 
These criteria are presented as follows:  
 

“Nearest Neighbor Condition”: 
 

ܵ௡ ൌ ሼݔ: ݔ| െ ܿ௡|ଶ ൑ ݔ| െ ܿ௡ᇲ|
ଶ	∀݊ᇱ ൌ 1,2, … ,ܰሽ.  (17) 
 

The vectors standing on boundary can be chosen to certain 
region Sn. 

 
“Centroid Condition”: 
 

ܿ௡ ൌ
∑௫೘∈௦೙

೉೘

∑௫೘∈௦೙
భ 	݊ ൌ 1,2, … ,ܰ.          (18) 

 
If the transformed vehicle magnetic vector meets the both 

“Nearest Neighbor Condition” and “Centroid Condition”, then 
the magnetic vector can be classified into that vehicle type. 
 

V. ANALYSIS OF VEHICLE CLASSIFICATION EXPERIMENT 

RESULTS 

We perform experiments for vehicle type classification, i.e. 
classifying signals into five classes including sedan, van, truck, 
bus and non-vehicle, based on features extracted from each 
signal. “non-vehicle” type is defined for magnetic signals when 
vehicles are absent.  

A. Classification with rough training data and cross- 
validation 

We separate magnetic measurement data into two sets: 
training data set and testing data set. Experiments are set up in 
three groups. In Experiment Group 1, we set up 2/3 of entire 
data (87 sedans, 76 vans, 82 trucks, 71 buses and 96 non-vehicle 
signals) as training data and the rest 1/3 data as testing data. In 
Experiment Group 2, we set up 3/4 as training data and 1/4 as 
testing data. The last group 3, we set up 4/5 as training data and 
1/5 as testing data.  

The cross-validation is an approach to generalize the 
classification result to an independent data set. In our approach, 
we apply K-fold approaches [21]. K is set up as 3, 4 and 5 
respectively for different experiment groups. For Group 1 of 3-
fold, we firstly divided the entire experimental data into three 
partitions, each of which had 1/3 of the total data. One of the 
partitions was picked up as testing data. The data in the other 
two partitions were training data. Then, the second partition was 
used for testing and the rest two partitions were for training. 
After that, the third 1/3 data were for testing, and the rest 2/3 
data were for training. At the end, the three times accuracies are 
averaged as the classification accuracy for 3-fold cross-
validation. For Group 2 of 4-fold, we divided the whole data set 
into 4 partitions. Each partition was in turn used for testing and 
the rest were for training. Then, the average accuracy was 
calculated. For Group 3, i.e. 5-fold, the data were divided into 
5 partitions for experiments.  

Cross-validation classification results of each experimental 
group are listed in Table 1. The number of training samples and 
testing samples are also listed. Please note, when the total 
number of samples cannot be divisible by K, the number of 
training and testing samples can be slightly different for each 
cross-validation run of the same experiment group. It is obvious 
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that, the less the testing data, i.e. the more the training data, the 
higher the classification accuracy. 
 

 Sedan Van Truck Bus Non 
No. total samples 87 76 82 71 96 
Group 
1 

No. Train 58 51/0 55/4 47/8 64 
No. Test 29 25/6 27/8 24/3 32 
Accuracy 56% 67% 65% 71% 61% 

Group 
2 

No. Train 65/6 57 61/3 53/4 72 
No. Test 22 19 21/19 18/7 24 
Accuracy 61% 70% 67% 74% 65% 

Group 
3 

No. Train 70/68 61/0 66/4 57/6 77/6 
No. Test 17/9 15/6 16/8 14/5 19/20 
Accuracy 67% 72% 68% 77% 71% 

Table 1. Cross-validation accuracies of three groups with rough training data  

B. Classification with DTW selected training data and cross-
validation 

As we known, training sample selection is vital for effective 
machine learning to occur. Different from experiments 
proposed in V.A, in order to improve the classification 
performance, all training data has been further selected by 
applying Dynamic Time Warping (DTW). For each vehicle 
type, we set DTWൌ 2 as a threshold value to select training 
data. If	DTWሺݏ௪, ௥ሻݏ ൏ 2, then ݏ௪ will be selected for training. 
As discussed in Section IV.A, ݏ௥ is the signature in a particular 
vehicle class and ݏ௪ ݓ , ൌ 1,… , n, ݓ ് r , indicates the rest 
signals in the same class. The numbers of training data used for 
different sets of experiments are listed in the APPENDIX.  

Table 2 summarizes the cross-validation accuracies of three 
groups with DTW selected training data. We also list the 
number of training and test samples in the table. When the total 
number of samples cannot be divisible by K, the number of 
testing data can be slightly different for each cross-validation 
run of the same experiment group. Detailed experimental 
results of cross-validation runs can be found in VII. Appendix.  

 
 Sedan Van Truck Bus Non 

No. total samples 87 76 82 71 96 
Group 
1 

No. Train 50 46 50 42 57 
No. Test 29 25/6 27/8 24/3 32 
Accuracy 84% 85% 83% 91% 89% 

Group 
2 

No. Train 60 51 55 48 65 
No. Test 22 19 21/19 18/7 24 
Accuracy 90% 88% 86% 97% 95% 

Group 
3 

No. Train 64 53 58 51 68 
No. Test 17/9 15/6 16/8 14/5 19/20 
Accuracy 93% 91% 93% 99% 97% 

Table 2. Cross-validation accuracies of three groups with DTW selected 
training data 
 
Compared Table 2 with Table 1, we can find that the 
classification performance was improved significantly by 
selecting efficient training samples. DTW, as a filter, made a 
great contribution to increasing classification accuracy.  
 

VI. CONCLUSION 

In this paper, we present a road vehicle identification and 
classification approach using magnetic sensing, magnetic 
signal feature extraction and classification. This approach is 
designed for analyzing road traffic in intelligent transportation 
systems.  

Using this approach, the installation of magnetic sensor in 
roadside does not require interruption of road traffic. This 
reduces the deployment and maintenance cost.  

Processing magnetic signals by extracting the features of 
MFCC and VQ based on classification can categorize five types 
of vehicle signals. Applying DTW to select efficient training 
samples can further improve the classification accuracy 
significantly.   

As an initial research, we have set up distance between the 
sensor and passing vehicles as 60 centimeters. In our future 
studies, we will consider applying multiple sensors to monitor 
multiple lanes. Moreover, experiments can be carried out to 
investigate the effect of various distance between AMR sensor 
and passing vehicles.  
 

VII. APPENDIX 

Detailed experimental results of cross-validation runs are 
listed as follows. 
 

A. Classification with rough training data and cross-
validation 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 58 51 55 47 64 
No. Test 29 25 27 24 32 
No. correct 18 18 17 15 20 
Accuracy 62% 72% 63% 63% 63% 

Table 3: Group 1 round 1 accuracy with rough training data (2/3 for training 
and 1/3 for testing)  

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 58 51 55 47 64 
No. Test 29 25 27 24 32 
No. correct 16 17 17 16 20 
Accuracy 55% 68% 63% 67% 63% 

Table 4: Group 1 round 2 accuracy with rough training data (2/3 for training 
and 1/3 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 58 50 54 48 64 
No. Test 29 26 28 23 32 
No. correct 15 16 19 19 18 
Accuracy 56% 67% 65% 71% 61% 

Table 5: Group 1 round 3 accuracy with rough training data (2/3 for training 
and 1/3 for testing) 
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 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 65 57 61 53 72 
No. Test 22 19 21 18 24 
No. correct 13 13 14 12 16 
Accuracy 59% 68% 67% 68% 67% 

Table 6: Group 2 round 1 accuracy with rough training data (3/4 for training 
and 1/4 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96
No. Train 65 57 61 53 72 
No. Test 22 19 21 18 24
No. correct 12 14 14 14 17 
Accuracy 55% 74% 68% 78% 71%

Table 7: Group 2 round 2 accuracy with rough training data (3/4 for training 
and 1/4 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 65 57 61 53 72 
No. Test 22 19 21 18 24 
No. correct 15 13 15 13 15 
Accuracy 68% 68% 71% 72% 63% 

Table 8: Group 2 round 3 accuracy with rough training data (3/4 for training 
and 1/4 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 66 57 63 54 72 
No. Test 21 19 19 17 24 
No. correct 13 13 13 13 14 
Accuracy 61% 70% 67% 74% 65% 

Table 9: Group 2 round 4 accuracy with rough training data (3/4 for training 
and 1/4 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 70 61 66 57 77 
No. Test 17 15 16 14 19 
No. correct 12 11 11 12 15 
Accuracy 71% 73% 68% 86% 79% 

Table 10. Group 3 round 1 accuracy with rough training data (4/5 for training 
and 1/5 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 70 61 66 57 77 
No. Test 17 15 16 14 19 
No. correct 12 10 11 10 13 
Accuracy 71% 67% 68% 71% 68% 

Table 11. Group 3 round 2 accuracy with rough training data (4/5 for training 
and 1/5 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 70 61 66 57 77 
No. Test 17 15 16 14 19 
No. correct 11 11 10 12 14 
Accuracy 65% 73% 62% 86% 74% 

Table 12. Group 3 round 3 accuracy with rough training data (4/5 for training 
and 1/5 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 70 61 66 57 77 
No. Test 17 15 16 14 19 
No. correct 10 11 11 10 13 
Accuracy 59% 73% 68% 71% 68% 

Table 13. Group 3 round 4 accuracy with rough training data (4/5 for training 
and 1/5 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 68 60 64 56 76 
No. Test 19 16 18 15 20 
No. correct 10 12 13 11 13 
Accuracy 68% 75% 72% 73% 65% 

Table 14. Group 3 round 5 accuracy with rough training data (4/5 for training 
and 1/5 for testing) 
 

B. Classification with DTW selected training data and cross-
validation 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 50 46 50 42 57 
No. Test 29 25 27 24 32 
No. correct 23 22 22 20 27 
Accuracy 79% 88% 81% 83% 84% 

Table 15. Group 1 round 1 accuracy with DTW selected training data (2/3 for 
training and 1/3 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 50 46 50 42 57 
No. Test 29 25 27 24 32 
No. correct 23 20 25 22 29 
Accuracy 79% 80% 93% 92% 91% 

Table 16. Group 1 round 2 accuracy with DTW selected training data (2/3 for 
training and 1/3 for testing) 
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 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 50 46 50 42 57 
No. Test 29 26 28 23 32 
No. correct 27 23 21 22 29 
Accuracy 93% 88% 75% 96% 91% 

Table 17. Group 1 round 3 accuracy with DTW selected training data (2/3 for 
training and 1/3 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96
No. Train 60 51 55 48 65 
No. Test 22 19 21 18 24
No. correct 19 16 19 18 24 
Accuracy 86% 84% 90% 100% 100%

Table 18. Group 2 round 1 accuracy with DTW selected training data (3/4 for 
training and 1/4 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 60 51 55 48 65 
No. Test 22 19 21 18 24 
No. correct 19 17 19 17 22 
Accuracy 86% 89% 90% 94% 92% 

Table 19. Group 2 round 2 accuracy with DTW selected training data (3/4 for 
training and 1/4 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 60 51 55 48 65 
No. Test 22 19 21 18 24 
No. correct 21 17 17 18 21 
Accuracy 95% 89% 81% 100% 88% 

Table 20. Group 2 round 3 accuracy with DTW selected training data (3/4 for 
training and 1/4 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 60 51 55 48 65 
No. Test 21 19 19 17 24 
No. correct 19 17 16 16 24 
Accuracy 90% 89% 84% 94% 100% 

Table 21. Group 2 round 4 accuracy with DTW selected training data (3/4 for 
training and 1/4 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 64 53 58 51 68 
No. Test 17 15 16 14 19 
No. correct 15 13 15 14 19 
Accuracy 88% 87% 94% 100% 100% 

Table 22. Group 3 round 1 accuracy with DTW selected training data (4/5 for 
training and 1/5 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 64 53 58 51 68 
No. Test 17 15 16 14 19 
No. correct 16 13 14 14 18 
Accuracy 94% 87% 88% 100% 95% 

Table 23. Group 3 round 2 accuracy with DTW selected training data (4/5 for 
training and 1/5 for testing) 
 

 Sedan Van Truck Bus Non-
vehicle 

No. total 87 76 82 71 96 
No. Train 64 53 58 51 68 
No. Test 17 15 16 14 19 
No. correct 16 14 16 14 17 
Accuracy 94% 93% 100% 100% 89% 

Table 24. Group 3 round 3 accuracy with DTW selected training data (4/5 for 
training and 1/5 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 64 53 58 51 68 
No. Test 17 15 16 14 19 
No. correct 16 14 15 13 19 
Accuracy 94% 93% 94% 93% 100% 

Table 25. Group 3 round 4 accuracy with DTW selected training data (4/5 for 
training and 1/5 for testing) 

 
 Sedan Van Truck Bus Non-

vehicle 
No. total 87 76 82 71 96 
No. Train 64 53 58 51 68 
No. Test 19 16 18 15 20 
No. correct 18 15 16 15 20 
Accuracy 95% 94% 89% 100% 100% 

Table 26. Group 3 round 5 accuracy with DTW selected training data (4/5 for 
training and 1/5 for testing) 
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