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Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes
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Qubit loss and gate failure are significant problems for the development of scalable quantum
computing. Recently various schemes have been proposed for tolerating qubit loss and gate failure.
These include schemes based on cluster and parity states. We show that by designing such schemes
specifically to tolerate these error types we cause an exponential blow-out in depolarizing noise. We
discuss several examples and propose techniques for minimizing this problem. In general this intro-
duces a tradeoff with other undesirable effects. In some cases this is physical resource requirements,

while in others it is noise rates.
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Quantum computing holds great promise for solving
computational problems intractable on classical comput-
ers. A major obstacle facing all quantum computing ar-
chitectures is the introduction of errors. In particular,
qubit loss and gate failure are significant problems in
some architectures. Most notably this affects photonic
schemes, such as linear optics quantum computing |1, 12].
Here these types of errors arise through the physical loss
of photonic qubits, the inefficiency of photon sources and
detectors, and the non-determinism of multi-qubit gates.

Recently there have been several proposals for tolerat-
ing qubit loss, including ones based on cluster |3] and par-
ity [4] states. There have also been proposals for tolerat-
ing gate failure |, [6]. These schemes achieve loss/failure
tolerance through redundant encoding. This allows mul-
tiple attempts at performing measurement or gate op-
erations, suppressing loss/failure rates. However, redun-
dancy also introduces additional opportunities for other
types of noise to be introduced, increasing effective error
rates. We demonstrate that in general this results in an
exponential blow-out in depolarizing noise.

In a variety of contexts this can be a serious prob-
lem. When embedded into a fault tolerant quantum com-
puting architecture it could strongly reduce the effective
fault tolerant threshold. In a loss-tolerant quantum mem-
ory it could quickly reduce the memory to a dephasing
(i.e. classical) channel. In the context of state prepara-
tion strategies, which have applications beyond quantum
computing, it could result in the preparation of highly
mixed states.

We go on to show that in general these problems can
be significantly reduced with appropriate modifications
to the schemes. However, doing so introduces a tradeoff
between loss/failure tolerance and other undesirable ef-
fects — in some cases physical resource requirements, and
in others different error types. This fundamentally limits
the loss/failure tolerance of these schemes.

We begin by introducing the notion of error teleporta-
tion, sometimes referred to as error propagation. This

occurs when qubits in an entangled state are subject
to noise and subsequently measured, causing the noise
to be teleported onto the other qubits. Error teleporta-
tion is the physical basis for undesirable error scaling in
the schemes we discuss. We then apply this principle to
two examples: a gate-failure-tolerant state preparation
scheme, and a loss-tolerant quantum computing scheme.
Both these examples rely on the cluster state model for
quantum computing. We do not review cluster states here
and suggest the unfamiliar reader refer to Refs. |7, 8, 19].

The first example we consider is a gate-failure-tolerant
scheme for constructing cluster states, which are a re-
source for universal quantum computation. We show that
while this scheme is tolerant against gate failure, it expo-
nentially magnifies the effects of depolarizing noise. We
describe a modification to the scheme which minimizes
this problem. However, this introduces a tradeoff between
failure tolerance and physical resource requirements. We
also provide a more general discussion of state prepara-
tion strategies in the context of error propagation.

The second example is a scheme for tolerating qubit
loss in the cluster state model for quantum computing.
We demonstrate that the loss tolerance of this scheme
also causes an exponential blow-out in error rates. Again
we suggest a modification to the protocol to overcome
this problem. Doing so presents a tradeoff between loss-
and error-tolerance and significantly reduces the other-
wise very high loss-tolerance promised by the scheme.

Our results suggest that specialized loss/failure toler-
ant protocols will be limited to dealing with compara-
tively modest levels of loss/failure, and in realistic sce-
narios will be unable to achieve their otherwise very high
thresholds.

We now describe the principle of error teleportation.
Consider an n qubit, maximally entangled state. If any
single qubit is measured, the state of the remaining qubits
is projected into a smaller pure state. Now suppose the
measured qubit was first depolarized. This decorrelates
the qubit from the remaining qubits and the measure-
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ment outcome will have no correlation with the remain-
ing state. Thus, depolarization followed by measurement
is equivalent to tracing a qubit out. This leaves the re-
maining state in the completely mixed state — the noise
has been teleported onto the other qubits.

Next we consider how error teleportation scales in a
situation where multiple qubits are measured. We as-
sume an independent depolarizing noise model, which
is applied post-state-preparation. We let each qubit be
subject to a depolarizing channel of the form £(p) =
(1 = perror)p + pcrmrf/2, where p is the error rate. When
any n — 1 qubits are measured, the remaining qubit will
be depolarized if any of the original qubits were depolar-
ized. The effective error rate on the remaining qubit is
therefore pegr = 1 — (1 — Perror)™. In the regime of small
Derrors Peff Scales roughly linearly with n. For larger peyror,
Deft €xhibits asymptotic behavior, approaching 1 for large
n.

We now turn our attention to our first example, a
scheme for implementing scalable quantum computing
using probabilistic entangling gates [3, 6]. This scheme is
very general and applicable to architectures where there
is negligible qubit loss, but entangling operations have
non-zero failure probability (1 — pgate). By exploiting the
properties of cluster states it is shown that scalable quan-
tum computing is possible for any non-zero pgate, at the
expense of a polynomial resource overhead.

The scheme describes how to efficiently construct
square lattice cluster states. Efficient scaling is achieved
using a resource of ‘+’-clusters. These have ‘arms’ of re-
dundant qubits which allow multiple attempts at apply-
ing entangling gates. The protocol is described in Fig. [l
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FIG. 1: Gate-failure-tolerant approach to constructing clus-
ter states. The fundamental building block is the ‘+’-cluster.
This has a central node (shown in gray) which will ultimately
belong to the constructed square lattice. The central node
is bonded to four linear chain clusters, each of length n;.
These ‘arms’ provide redundancy, allowing multiple bonding
attempts. To grow a cluster, rather than bond two cluster
qubits together directly, we utilize +-clusters and attempt
bonding starting at the ends of the arms (a). If this fails we
lose two qubits from the respective arms, but can recover the
remainder of the cluster by measuring the neighboring qubits
in the Z-eigenbasis. We can keep reattempting the gate un-
til there are no qubits remaining in the arms. When bonding
succeeds we have the two desired cluster nodes with some re-
maining arm qubits left between them. These are removed by
measuring them in the X-eigenbasis (b).

After successfully bonding two arms we are left with
an irregular lattice cluster which contains leftover arm

qubits. The final step in the protocol is to reduce the
cluster to a square lattice by measuring out these leftover
qubits. This reduction stage is very similar to the multi-
qubit error teleportation scenario described previously
[19]. Consider the case where the first bonding attempt
between two +-clusters succeeds. We have two central
node qubits with 2n; redundant arm qubits remaining
between them, which must all be measured out. When-
ever one of these qubits suffers a phase-flip an error will
be teleported onto the root qubit. Following reduction of
all redundant arm qubits, an error will remain on the pre-
pared cluster qubit if an odd number of Z-errors occured
on the measured arm qubits. This probability scales ex-
ponentially with n;, which is inversely proportional to
Dgate- Therefore, for a given effective error rate, the tol-
erable physical error rate scales down exponentially with
Dgate- 1hus, while the scheme can tolerate arbitrary pgate
in principle, in practise it is fundamentally limited.

Other related proposals, such as Nielsen’s [L0] micro-
cluster approach to efficiently constructing cluster states
using non-deterministic gates, ought to exhibit similar
characteristics since they also rely on reducing clusters by
measuring out redundant qubits. Both these schemes are
variations of the ‘divide-and-conquer’ approach to state
preparation. This is a common trick to overcoming expo-
nential reduction in success probability in the presence of
loss or gate failure and has applications beyond quantum
computing. Our results potentially have broad implica-
tions for state preparation protocols. For example, Kiel-
ing et al. |11] recently investigated optimal strategies for
constructing cluster states using non-deterministic gates.
Their analysis was entirely classical, and attempted to
optimize physical resource requirements. Our results sug-
gest that such analyses ought to be re-evaluated to con-
sider error propagation properties.

Let us substantiate this further by considering a sim-
ple comparison of two state preparation strategies: a
‘single-shot’; and a divide-and-conquer approach. Divide-
and-conquer is clearly superior from a physical resource
perspective since it exhibits polynomial resource scaling
compared to the exponential scaling of the single-shot
approach. However, from a fault-tolerance perspective
things are quite different. Divide-and-conquer necessarily
requires the reduction of redundant qubits, which prop-
agates errors. Single-shot on the other hand does not. In
this simple comparison it is evident that resource and
error scaling are competing parameters.

This observation suggests an approach for minimizing
error accumulation effects in divide-and-conquer based
approaches. Consider the protocol discussed previously.
Referring to Fig. @l we begin with a resource of clus-
ters of the form shown in (a), which we fuse together to
form clusters of form (b). Similarly, two (b) clusters can
be used to construct a cluster of form (c). Suppose the
initial resource of +-clusters is produced using a single-
shot approach. Thus, the initial resource states do not



suffer from accumulated errors. Ordinarily a (b) cluster
suffers error accumulation associated with the measure-
ment of redundant arm qubits. This can obviously be
avoided by instead beginning with a resource of (b) clus-
ters, prepared using a single-shot approach. This avoids
the measurement of the interstitial redundant qubits. In
general, error accumulation can be further suppressed by
beginning with larger resource states.

This technique effectively allows us to tailor a strategy
which presents an arbitrary tradeoff between the single-
shot and divide-and-conquer strategies. The tradeoff be-
tween competing resources is clear. For a given bound
on the effective error rate, using larger resource states
allows us to tolerate higher local error rates, since error
accumulation is reduced. However, because they are pre-
pared using a single-shot approach, this requires physical
resources growing exponentially with their size, and poly-
nomially with gate failure rate. This places fundamental
limitations on practically tolerable gate failure rates.
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FIG. 2: Examples of different resource states that can be em-
ployed in the scalable construction of cluster states using non-
deterministic gates.

A simple numerical example is illustrative. From
Ref. [6], constructing a 100 qubit cluster state with 10%
success probability, using CPHASE gates operating with
99% success probability requires a resource of +-clusters
with arm length n; ~ 11. Suppose we construct the re-
source states using single-shot. The preparation of each
+-cluster succeeds with probability psuccess = Pgate™™ =
0.64. Next we join two +-clusters together to form a
cluster of type (b). With a physical depolarizing rate of
Perror = 1073, after measurement of redundant qubits,
the effective depolarizing rate is peg ~ 1.1 x 1072, an
order of magnitude increase. Alternately, we could pro-
duce type-(b) clusters directly. Now the single-shot suc-
cess probability is psuccess = Pgate’™ T ~ 0.51. However,
there are no accumulated errors associated with joining
the +-clusters, so the effective error rate is just the phys-
ical error rate of 1073,

While this example exhibits a significant reduction in
effective error rates, it is clear that we are limited to a
high pgate regime. For lower values of pgate, we loose our
ability to directly prepare type-(b) clusters, and single-
shot can only be used to construct smaller states. While
this approach is limited, this example illustrates the ben-
efits of shifting as much of state preparation into single-
shot as possible.

As a second example we consider the Varnava et al. |3
approach to tolerating qubit loss in cluster states. This
scheme relies on the principle of indirect measurement,
where the measurement outcome of a lost qubit can be
inferred by measuring correlated qubits.

The important feature of cluster states, from which in-
direct measurement properties follow, is their stabilizer
representation. Associated with every qubit ¢ in a clus-
ter state is a stabilizer of the form S; = X; ®j@(i) Zj,
where v(7) is the set of qubits neighboring i. The stabi-
lizers define correlations in measurement outcomes. Indi-
rect measurement exploits these correlations to infer the
measurement result of a lost qubit using only the mea-
surement results of correlated qubits.

In this scheme each cluster qubit is replaced with a
‘tree’ cluster, with its root node planted in place of the
cluster qubit. The tree structure facilitates multiple at-
tempts at indirect measurement of a lost root qubit, sup-
pressing effective loss rates. The is described in Fig.
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FIG. 3: Using a tree cluster to perform indirect Z-
measurement of a lost qubit. The qubit below the lost qubit
is measured in the X-eigenbasis, and each of the qubits below
that in the Z-eigenbasis. If the X-measurement fails, we can
make another attempt on the next branch. If any of the Z-
measurements fail they can be indirectly measured by moving
further down the tree.

Indirect measurement exhibits similar error telepor-
tation properties to the previous example — an error
will propagate onto the lost root qubit if an odd num-
ber of measurement results were incorrect. Based on re-
sults from Ref. [3], achieving an effective loss rate of
ceff = 1073 given a physical loss rate of glpss = 0.2, Te-
quires tree clusters with roughly @ ~ 1000 qubits. Sup-
pose an indirect measurement requires measuring half the
tree on average. This will magnify a physical error rate of
Perror =~ 1073 to an effective error rate on the indirectly
measured qubit of peg &~ 0.32, an increase of more than
two orders of magnitude.

This scheme can also be modified to overcome expo-
nential error scaling through a minor adjustment to the
protocol. Referring to Fig. Bl we have multiple attempts
at a given indirect measurement, one for each branch
in the tree. While in principle only one indirect mea-
surement is required to measure a lost qubit, by utiliz-
ing all available branches we can exploit the fact that
all indirect measurement outcomes ought to be consis-
tent and implement a majority vote. This was first rec-



ognized by Browne, Rudolph and Varnava [12]. If in-
direct measurement is performed in parallel via by [20]
branches, the probability of an error propagating into the
measurement outcome scales as peg = EXPfl(bl) with
Dsingle; the probability of any single indirect measure-
ment being incorrect. On the other hand, psingle scales as
Psingle = EXP(POLY([bs, ..., bg]) With perror, where POLY
represents some polynomial function of its parameters.
Therefore, for an appropriate choice of branching param-
eters {b;}, one expects that exponential error scaling can
be eliminated.

Loss rates determine the effective value of by. Thus,
higher loss rates imply lower confidence in the majority
vote, increasing error rates. This undermines the other-
wise very high loss thresholds promised by this scheme.
To illustrate this, we performed a numerical analysis of
a simple two-level tree structure with branching param-
eters by = by = 3. This structure improves the effective
loss rate (i.e. €oft < Eloss) TOT E10ss < 0.195. Under the orig-
inal scheme, this loss rate would increase an error rate of
Perror = 1072 to an effective error rate of peg ~ 4 x 1073,
With the introduction of majority voting this reduces to
pet ~ 1.7 x 1073. Furthermore, there is a ‘break-even’
point on €)0ss, below which there is no degradation in er-
ror rates (i.e. Peff < Perror). In this example this occurs
at €1oss = 0.1, roughly half the in-principle loss tolerance
rate. Thus, if the scheme is to be operated in a regime
where error rates do not suffer, the loss threshold is sig-
nificantly reduced.

Other loss-tolerant architectures ought to exhibit sim-
ilar properties to those presented here for loss-tolerant
cluster states. For example, in the loss-tolerant scheme
of Ralph et al. |4] logical qubits are encoded into maxi-
mally entangled parity states. One of the fundamental op-
erations in this scheme is re-encoding, where new qubits
are ‘grafted’ onto an existing parity state and all the old
ones measured out. This provides a situation completely
analogous to the multi-qubit teleportation scenario and
exhibits identical exponential error scaling properties.

Recent proposals for loss- and failure-tolerance have
been constructed to deal with a specific and very limited
error model. Consequently, they often promise extremely
high loss/failure thresholds. While effective within this
limited context their disadvantage is that the effects of
other error types are magnified exponentially. This arises
from the introduction of redundant qubits, which provide
new opportunities for errors to occur. This fundamentally
limits the extent to which such schemes can be used and
undermines their loss/failure tolerance.

For the examples cited we discussed techniques to min-
imize the error scaling problem. In the case of the failure-
tolerant scheme, while beneficial in terms of noise tol-
erance, the discussed solution presented a direct trade-
off against physical and temporal resource requirements.
The solution for the loss-tolerant scheme resulted in sig-
nificantly reduced loss thresholds. Our results suggest

that, despite their limitations, these schemes may be use-
ful for dealing with modest loss rates.

An important point is that our discussion is in a non-
fault-tolerant context. We assume a resource of perfect
resource states and that noise acts locally on these states
after construction. In practise, state preparation intro-
duces a plethora of new opportunities for errors to be
introduced, including correlated errors, which none of
the presented solutions can deal with effectively. Such ef-
fects will further reduce the loss/failure tolerance of these
schemes. A comparison with fault tolerant schemes is il-
lustrative. Fault tolerant thresholds for joint depolarizing
and photon loss errors in the cluster state model were
recently studied by Dawson et al. [13]. The loss thresh-
old was estimated to be on the order of 3 x 1073, two
orders of magnitude less than that achievable using the
loss-tolerant schemes discussed here.

While we have demonstrated the concept of error scal-
ing by example of several well-known protocols, we be-
lieve our results have broad implications for loss- and
failure-tolerant protocols, state preparation strategies,
and potentially other schemes which make use of redun-
dant encoding or ancillary states. The central message is
the following: any fault-tolerant protocol must tolerate
a general class of errors. Inevitably, codes tailored to a
specific error type will be more sensitive to others. Sig-
nificant work has been done into developing codes pro-
tecting against depolarizing noise [14, (15, [16, [17]. One
might question whether such codes suffer because they
do not explicitly accommodate for loss errors. This is not
the case since qubit loss can always be trivially mapped
to a depolarizing error, because qubit loss is a located
error. However depolarizing errors cannot be mapped to
loss, because they are unlocated [18]. Tt is this distinc-
tion that makes considerations in the construction of
loss-specific codes inherently different from depolariza-
tion specific codes.

A detailed analysis of the discussed solutions to error
scaling will be presented in a supplementary paper.

We thank Michael Nielsen for the discussion that
motivated this work, and Henry Haselgrove and Alex
Hayes for helpful discussions. This work was supported
by the Australian Research Council and QLD State
Government. We acknowledge partial support by the
DTO-funded U.S. Army Research Office Contract No.
W911NF-05-0397.

* rohde@physics.uq.edu.au; URL: http://www.physics.uq.edu.au/pec

[1] E. Knill, R. Laflamme, and G. Milburn, Nature (London)
409, 46 (2001).

[2] P. Kok, W. J. Munro, T. C. Ralph, J. P. Dowling, and
G. J. Milburn (2005), quant-ph/0512071.

[3] M. Varnava, D. E. Browne, and T. Rudolph (2005),
quant-ph/0507036.


mailto:rohde@physics.uq.edu.au
http://www.physics.uq.edu.au/people/rohde/

[4] T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Phys. Rev.
Lett. 95, 100501 (2005).

[5] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R)
(2005).

[6] L.-M. Duan and R. Raussendorf, Phys. Rev. Lett. 95,
080503 (2005).

[7] M. A. Nielsen, Rep. Math. Phys. 57, 147 (2006).

[8] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86,
5188 (2001).

[9] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys.
Rev. A 68, 022312 (2003).

[10] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).

[11] K. Kieling, D. Gross, and J. Eisert (2006), quant-
ph/0601190.

[12] D. E. Browne, T. Rudolph, and M. Varnava (2005).

[13] C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen,

Phys. Rev. Lett. 96, 020501 (2005).

[14] A.R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098
(96).

[15] P. W. Shor, Phys. Rev. A 52, R2493 (1995).

[16] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[18] P. P. Rohde (2006), quant-ph/0605183.

[19] Cluster states are mot maximally entangled. However
here they exhibit similar error teleportation character-
istics.

[20] b1 ...bs denote the tree’s branching parameters — the
number of branches that emanate from each node at the
respective level of the tree. d is the depth of the tree.



