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Passive quantum error correction of linear optics networks through error averaging
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We propose and investigate a method of error detection and noise correction for bosonic linear
networks using a method of unitary averaging. The proposed error averaging does not rely on
ancillary photons or control and feed-forward correction circuits, remaining entirely passive in its
operation. We construct a general mathematical framework for this technique then give a series
of proof of principle examples including numerical analysis. Two methods for the construction of
averaging are then compared to determine the most effective manner of implementation and probe
the related error thresholds. Finally we discuss some of the potential uses of this scheme.

I. INTRODUCTION

The evolution of a multi-mode bosonic quantum state
in a linear network can be simply described by a linear
set of equations relating input and output bosonic modes.
These types of interactions are of interest as they are
simple to arrange for most experiments involving elec-
tromagnetism but nevertheless are useful and have inter-
esting quantum information applications.

Linear networks are not universal for quantum infor-
mation processing on their own. However, they can
be made universal using post-selection and feed forward
methods with a polynomial overhead in the number of
photons [I-3]. More recently they have been shown to
deterministically generate quantum statistics that can-
not be efficiently computed using classical computing
resources alone (i.e. the BosonSampling problem) [4].
They also form the basis for optical quantum walks, for
which numerous applications have been described, and
been subject to widespread experimental demonstration
[5-0].

Linear networks for quantum optics experiments have
traditionally been implemented using bulk optical devices
[3]. However efforts to build integrated optical circuits
have meant that the size of the networks has the potential
to be made orders of magnitude smaller and consequently
there is a great potential for their complexity to increase
[10].

In theoretical proposals for optical quantum informa-
tion tasks using linear networks, it is often assumed that
it is possible to configure an arbitrary linear network
rapidly and with high precision. This paper considers
the second of these requirements by studying the effects
of imprecision in configuring linear networks.
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The model we consider assumes that large linear net-
works can be configured arbitrarily but with some addi-
tional noise. This may be due to experimental impre-
cision of defining linear network parameters which shot-
by-shot results in fluctuations of the parameters around
their mean values. We wish to concentrate on the effects
due to linear network errors so we assume ideal gener-
ation of Fock basis states and the ability to make ideal
Fock basis detections. Furthermore, we also assume the
networks have no loss at any stage be that in the injec-
tion of states, the out-coupling to detection devices or in
the network itself.

We show that by redundantly encoding the network
matrix describing a desired linear network, it is possible
to generate an effect which tends towards the target net-
work matrix when averaging over the redundant encod-
ing. The averaging effect occurs in a non-deterministic
manner and hence the transformation acts as a filter
where noise is directed into outputs which are then post-
selected away (see Fig. 1). The central limit theorem
applies to the individual matrix elements of the averaged
transformation and hence their variance decreases as %
The form of the average matrix and the distribution of
the transformations on a finite number of averages de-
pends on the details of the noise applied to the network
encoding. The results presented in this paper analyse
these details showing conditions in which this technique
may be of utility.

The next section introduces the averaging scheme and
some mathematical details that apply in the most gen-
eral case. Section III includes numerous proof of principle
examples which serve to highlight the effects of Error Av-
eraging with a focus on the behaviour of the probability
of success. Section IV studies two different ways of re-
dundantly encoding a single mode phase shift and the
effects of the different encodings on the resultant error
and probability of success. We then numerically analyse
the averaging method for a four-mode operation in sec-
tion V. We will discuss some of the consequence of these
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FIG. 1: Comparison of output probability distributions
with and without error averaging. N corresponds the
the number of redundant copies of the unitary being

employed. Here the effect post selection has on the
output distribution can be seen. The blue bars
represent the probability of observing the photon in the
correct output mode, green corresponds to observing
the photon in the incorrect output mode and red
corresponds to observing the photon in any of the error
detection modes. The probabilities are based on a single
photon in a Mach-Zehnder interferometer with an
individual phase shifters variance v = 0.5 rad®.

results as well as future directions in Section VI and draw
comparisons between Error Averaging and standard error
correction in Section VII before making some concluding
remarks.

II. GENERAL UNITARY ERROR AVERAGING

Here we are concerned with the case of bosonic linear
scattering networks. These are evolutions of a multi-
mode bosonic field where the Heisenberg equations of
motion for the annihilation operators of each mode can
be written as a linear combination of all annihilation op-
erators. That is, if Uy is a unitary operation on a m
mode system, then

UUaiUT = ZUijaj (1)
J

where, to preserve commutation relationships, U must be
a unitary matrix. It is the network matrix U that we will
focus on.

Consider a linear network whose elements are those of
a Discrete Fourier Transform (DFT). That is, we have
a Heisenberg style evolution between mode annihilation
operators of the form

1 N-1
rk
al,ﬂ—>—§ wa; 2
7, N i J.k ()

where w = e 7/N and zero-indexing has been used,

that is, K = 0 corresponds to the first mode. The first
subscript for the annihilation operator denotes the input
mode and the second describes a quantity of redundancy
N which we explain shortly.

We then act the N copies of a target unitary U. By
this we mean that there is some variation between the
copies but the intention was to implement the unitary
U. This can be described by the transformation

m—1
ajr = Y (Ui (3)
=0

where N noisy copies of U are made, denoted here as
Ui,Us, ..., Uy, where we assume an independent error
model across the redundancies.

After this the DFT matrix is applied again. This re-
sults in the overall transformation

1 m—1 N-—1
r+k)k’
Gr 7N 2 kZ_O(Uk')ljw( Oy . (4)

We consider the case where all redundant modes are ini-
tialised in the vacuum state and post-select on the cases
where no photons are present in the output of the redun-
dant modes. This means that we only need consider the
parts of this transformation expression where the second
subscript of the annihilation operator is zero. In this case
we have

m—
aj0 = Z
1=0 k
where M is a matrix defined by

1
- =5 U (6)
=y 2

This matrix is then the effective linear network matrix for
the post-selected system. It includes information about
the probability of success and so in general it will be not
unitary. The remainder of this paper is directed towards
analysing the scenarios that arise from the multitude of
choices for Uy that form the expression.

For the main theorem of our work we consider a general
linear network described by a unitary network matrix U
with any dimensionality.

HMZ

m—1
Uk’ Jijaro = Y (My)ae (5
1=0

Theorem 1. Given N linear networks described by uni-
tary matrices {Uy,Us,...,Un} that are random with in-
dependent and identically distributed statistics such that

foralli € 1,...,N, (U;) = M. Then the random vari-
able
| X
N =5 ; Ui (7)

is a matriz with mean value M and whose matriz ele-
ments have variance scaling as O(1/N).



Proof. Our aim in the proof is to use the central limit
theorem. Consider matrix element r, s of M. This is a
random variable

1 N
(MN)TS = NZ(UZ)TS (8)

As the matrix elements (U;),s are constructed from uni-
tary matrices, their magnitude is bounded by 1. Given
this finite domain, the real and imaginary parts have
maximum variance and covariance of 1 (though these ex-
tremal values are not simultaneously achievable). Given
this bounded variance, we can use the central limit the-
orem to conclude that the matrix element (My),, is a
random variable with mean value M,,. The variance
of the real or imaginary part of (My),s is then upper
bounded by 1/N as per the central limit theorem. [ ]

The question now is what forms the mean average ma-
trix M as defined in Theorem 1, can take. First we con-
sider the trivial case where the unitary matrices are 1 x 1
dimensional.

Corollary 1. If each {Uy,...,Un} are 1 x 1-
dimensional, then M is a complex number with magni-
tude |M| < 1.

Proof. Write Uy, = €' where p(6) is the probability den-
sity function for each of the angles ;. From Theorem 1
we need to compute the mean value

’ e p(0)do. 9)

—T

M =

This is exactly the characteristic function of p(#) evalu-
ated at 1. The characteristic function is complex valued
and has bounded magnitude of 1, which is the desired
result. |

By corollary 1 it can be concluded that for the 1 x 1-
dimensional case we can write M = cU where 0 < ¢ <1
and U = € has magnitude 1.

Next consider higher dimensional matrices whose dis-
tribution is generated by a single parameter. In this case,
for any hermitian matrix 7', which can be thought of as
an infinitesimal generator from the u(n) Lie algebra, we
have

M= / 07 p(6)do. (10)

We can make a change of variables in 6 so that the dis-

J

tribution is changed to one that has mean zero
M = / e BT (1 4+ 0')do' (11)

= / ¢ Tp(0")do’ (12)

where p(0) = p(p1+6) so that it has mean value zero. By
expanding the matrix exponential this expression can be
written as

M=>Y" )" / 0"p(60)do, (13)

n!

which now relates to the moments of the underlying dis-
tribution in 6. Assuming p(f) were a Gaussian distribu-
tion with mean zero and variance o2 then we can write

M= Y (i:!)n(nfl)!!(j" (14)

neeven

where n!! = n(n — 2)(n —4) ... is the double factorial.
This series can be written back in the form of a matrix ex-
ponential, and by reintroducing the mean value we have

M =etTe= 2T (15)

If T? = I, which would be the case when choosing a Pauli
matrix for 7', then this expression would simplify to

o2

M=Ue > (16)

where U is the unitary generated by the average parame-
ter for p(6). The decaying exponential for the magnitude
depends only on the variation in the distribution of 6.

In the full parameter case, provided the target unitary
U again commutes with all errors a similar result can be
found as discussed in corollary 2.

Corollary 2. If {Ui,...,Un} are random n-
dimensional unitaries such that U, = Uexp{i)_, cuT1}
with n? generators Ty that are all hermitian and satisfy
T? = I, the parameters oy distributed independently
with PDF p;(oq) which are all Gaussian with mean zero
and small (but possibly different) variances so that all Uy,
approximately commute with each other, then M = cU
where 0 < ¢ < 1 and U is a unitary matrix.

Proof. We will extend the proof of Corollary 1 to the
n-dimensional case. From the independence of the dis-
tributed parameters, we can write a PDF for all parame-
ters as p(aq, ..., Qp2) = p1(a1) X ... X ppz(ayz). The ap-
proximate mutual commutivity for this expansion means

/ / [Oékln7 O‘kam}pl(al)pm (am,)daldam ~ 0 Vl, m, (17)

—T —T



or in other words, that the ay;7; are all small with high probability. With this we can write M as

M= U/ . / / exp{i Z aTitpr(aq) ... ppe(ap2)dagdas . . . day,: (18)
-7 - J—7 1

%U/_:.../_:/_:Hexp{ialﬂ}pl(al)...

=U exp{ialTl}pl(al)dal/

—T —T

2,2
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)
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where o7 is the variance of p; and the final approximation
is assuming the distribution is small so that the bounds of
the integration do not matter. Using the T} = I require-
ment on the generators the final product of exponentials
can be identified with the value ¢, we have the desired
result. ]

The requirement of T? = I merely reflects a simpli-
fication where the generators are built from the Pauli
matricies which are the constructions we will focus on
in this paper. If this is not the case then2 ig is possible
to identify the hermitian operator [], e~ "7 as a state
dependant decay in the amplitude of the operator.

Finding expressions for the matrix M outside of the
situations just outlined is an open problem. In the most
general case, M is not proportional to a unitary matrix.
Furthermore, is not guaranteed that M will satisfy the
conditions for a normal matrix and hence cannot be uni-
tary diagonalised. So it is unclear if in general this post-
selected regime has any connection to unitary quantum
evolution at all. Nevertheless, we will begin to exam-
ine situations which approach this domain through de-
compositions into single parameter problems and using
numerical computations.

III. IMPLEMENTATION

This section demonstrates how Error Averaging can be
implemented for various example optical systems. These
examples also serve as a verification of the range of valid-
ity of the approximately commuting errors assumption.
It can also be noted that Equation 7 can become the ap-
propriate transformation for duality quantum computing
by allowing the U; to be arbitrary[11].

Constructions for the redundant encoding using the
DFT implementation from the previous section are use-
ful mathematically but may be inconvenient to imple-
ment in practice. The transformation of Eq. 5 can also
be achieved using an array of beam-splitters as shown in
Fig. 2. This beam-splitter array has the desirable prop-
erty of being generated by a recursive pattern. As shown

exp{icaTs}pa(as)das . .. /

Pn2 (Oénz )daldag N dan2 (19)

exp{ic,2 T2 }pne (a2 )day,: (20)
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by the bounding rectangles in Fig. 2, the outer and inner
layers share the same basic structure.
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FIG. 2: Redundant encoding using 50:50 beam-splitters
for N = 8. The boxes labelled U; can be single or
multi-mode. In the multi-mode case the encoding

beam-splitter network is repeated for each mode input

and output. Output modes that are post-selected on
the vacuum are not shown here. The red box shows an
N = 2 level encoding and the blue box shows N = 4.

Further nesting of this arrangement can achieve any N

being a power of two.

All linear networks can be generated by arranging net-
works of beam-splitters and phase shifts [12]. Carolan
et. al. [13] have experimentally probed a linear network
where all possible networks can be generated using con-
trollable phase shifts and unvarying beam-splitters. In
their experimental implementation they demonstrated
the ability to implement many quantum logic gates and
linear optical protocols with a high fidelity. Following



this same methodology one can generate controllable
beam-splitters using a Mach-Zehnder (MZ) interferom-
eter consisting of a controllable phase shift in one arm
and two fixed 50 : 50 beam splitters.

Within this type of architecture the controllable phase
shift is the key source of non-systematic noise. Further-
more, redundantly encoding phase shifts are well charac-
terised by the results presented above from Corollary 1.
So we will focus on phase shift induced errors for the
analysis of this section and the next. The model we will
use assumes 50 : 50 beam-splitters which are fixed and
phase shifts that vary and are the source of all noise.

The noise in a controllable phase-shift can be written
as €(?19) where 6 is a real number representing the phase
shift to be applied and ¢ is a zero-mean random variable
representing the error. For the identity operation 6 = 0.
We will assume the distribution for § to be Gaussian with
variance v. For values of v that are comparable to 72 the
multi-valued nature of phase shifts becomes important.
But initially we will focus on the limit where v < 72.

The remainder of this section considers the above im-
plementation of a tunable beam-splitter as a MZ inter-
ferometer with the phase shift being error averaged. The
error averaging will be performed using the concatenated
beam-splitter network, hence N = 2" n € N and all
beam-splitters used in this system will be fixed and with
a splitting ratio of 50:50. We will analyse two key cases,
the single photon and two photon performance. The for-
mer involves the classical wave nature of the probabil-
ity distribution for a single photon. The latter includes
Hong-Ou-Mandel [14] style quantum interference.

A. 1 photon inputs

The 1 photon network considered here is shown in Fig-
ure 3 both without any correction 3a and for the N = 2
case 3b.

The input single photon state is |¢) = a|0). After
traversing the error averaged network, the resulting un-
normalised output state conditional on all encoded modes
being vacuum is

i0 N
- € 1 i(sj 1 1t
=15 1{% ;e +5]a

+ ﬂ iZN:i‘SJ Lo 0). (22)
2 | N&° 2 '

which is consistent with Theorem 1. Here 6; = 6 + J;
with 6 a constant and ; a random variable.

As linear networks conserve photon number, and we
have post-selected the cases where energy exits via the re-
dundant encoding modes, we know that the output state
always contains one and only one photon. The proba-
bility that the photon is measured in a particular mode

IO\ 1)
> 6

)

(a
IO\ 1) [0}

a
(b)

FIG. 3: Diagram of MZ based tunable beam-splitter.
(a) An uncorrected beam splitter implemented via MZ
interferometer and (b) such a beam splitter corrected by
redundantly encoding the phase shift, here for N = 2. a
and b label output modes and ¢ labels an error
detection mode. The input state shown is used for both
one and two photon calculations. The phase shift
elements are marked with 6; and are random variables.

can therefore be equated to the average photon num-
ber in that mode. Using this we can calculate from the
un-normalised state |1) the probability of observing the

photon in the @ and b modes without post-selection to be

(| ata|y) ~ cos? (6/2) + ﬁ _ %«9/2) (23)
and
.2
(6] 5D ) ~ sin? (8/2) + —= — WS O/2) o)

AN 2

where we have taken a first-order expansion in the phase
shift variance v. The probability of success is the sum of
the probabilities of the ¢ mode and b mode. This is

P(success) = (] ala |v) + (| Tb[¢) (25)
v v
~1l4+ ———. 26
+ 2N 2 (26)
In the large N limit, this corresponds to the linear
approximation of Equation 16 where we can identify
P(success) = c.



Without any noise, choosing # = 0 results in complete
interference and the input single photon state will be
transferred to a single output. Any deviations from this
are attributed to non-ideal interferometer performance.
In this case the probability of observing the output in
the correct mode without post-selection is

2N — 1)v
ata ~1-— @GN =1 27
(wlatay) o~ (27)
After post-selection this becomes
(yla'aly) v
-zl - —. 2
P(success) 4N (28)

Figure 4 shows how these two quantities scale with
N. In particular, it can be seen that after post-selection
the likelihood of the photon exiting the interferometer in
the correct mode can be made arbitrarily close to unity
by increasing N. Also, while the probability of success
decreases for increasing N it asymptotes to a constant

J

1,1) +

N N
W) =g 1+ | e

j=1k=1

where we have chosen § = 0 when computing this state.
This is done, as above, to simplify the form of the equa-
tions and does not change the effect of the redundant
encoding on the errors. Because of this choice, the ac-
tion of the interferometer on the input state should be
the identity operation and hence |1,1) is the desired out-
put state. Note that we could have chosen the input state
to be |2,0), but this would not necessarily show any new
behaviour, just the single photon results independently
applied to the two input photons.

We can again write probabilities as expectation values
of occupation number. Using the form of Eq. (29), the
ideal output is achieved when

(¥l atab’h |y) = 1. (30)
This expectation value for the state including the phase
shift noise is

(wlatabth ) = < LR SR

2

N N
Z Z 805 +k) >

j=1k=1
1\ v e e
J J=1k#j
N N N
« Z 621'6, + Z Z ei(51+5m) >
l =1 m#l

~1l—-v (31)

value. This implies that as N increases, even though the
total quantity of errors added to the system increases,
the effects of the combined errors on the interferometer
is less. This result is also not dependent on the value
chosen for 6. Explicitly as the intended phase shift can
be factored out in Eq. 22 similarly to the result shown in
Eq. 16 the effects of errors and our error correction can
be considered separately from the transformation being
applied.

B. 2 photon inputs

The single photon interference effects in linear net-
works can be explained using classical wave interference.
Now we will consider two photon interference to demon-
strate the behaviour of quantum interference when using
the redundant encoding. As such here |1,1) is used as
the input state. Again, a diagram of the explicit set-up
with and without the redundant encoding can be seen
in Figure 3. For two photons the un-normalised output
state for the a and b modes is

N N
Zzei(6j+6k) -1

j=1k=1

(12,00 +10,2))  (29)

(

where the approximation is assuming v small. Post-

selection will increase this to
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FIG. 4: Probability of single photon being detected at
the a output port as shown in Figure 3 as a function of
the redundant encoding size N = 2. Here the phase
shifts are sampled from a distribution with mean value
0 and variance v = 0.1 rad?. The blue values give the
probability of success and the orange values corresponds
to the probability of obtaining the correct result
conditional on the photon not exiting the added
redundant encoding modes, that is, with post-selection.
Eq. (26) predicts an asymptote of 0.95 without
post-selection and Eq. (28) predicts an asymptote of 1
with post-selection. The asymptotic behaviour is
consistent with the plotted data.

(w|atablb|y)

P(coincidence) =

v
~1——

2N

where P(coincidence) is the probability the photons exit
modes a and b individually and the binomial approxima-
tion has been used to keep only variance terms to first
order. Finally the probability of success, which is the
probability no photons exit the encoding modes is

v

P(success) =1 —v + 5N (33)
Again, the large N limit of this equation the result
matches the prediction of Equation 16. Also, the proba-
bility of success has a % scaling which is the same as for
the single photon input case.

In this section we have demonstrated how redundantly
encoding variable components can reduce the resulting
variance within a system for the simple but highly impor-
tant case of a single beam splitter. We have also shown
that the results match what is expected from the couple
of solved exact cases discussed in Section II. In the fol-
lowing section we will give some more complex examples
to give a clearer insight into how this redundant encod-
ing might best be applied, and its effect in the situations
where the mathematical machinery introduced earlier is

(| atabth|y) + 0.5 (¥| atataa ) + 0.5 (] bTbTbD )

(

not easily solvable.

IV. COMPARISON BETWEEN AVERAGING
TECHNIQUES

In this section we will study two different methods,
which we will refer to as averaging at the end and av-
eraging each step. To illustrate the two approaches we
consider a simple system of phase-shifters. Fig. 5 shows
schematically these two configurations as well as a base-
line comparison. The system analysed is applying a sin-
gle mode phase-shift generated by M sequential phase
shifters. Averaging across the entire system applies the
M phases and redundantly encoding this N times (Fig-
ure 5b). The method of averaging each step involves a
redundancy of N for each of the M applied phase shifts
(Figure 5c¢). When averaging each component individ-
ually significantly more encoding beam-splitters are re-
quired, however we will show this leads to more stability
in the output state for larger errors. In the low error limit



FIG. 5: Three methods of applying three phase shifts,
each marked with a in series. (a) Three phase shifts
with no error averaging. (b) Three phase shifts when

averaging across the system. (c) Three phase shifts
when averaging across each phase shifter individually.

Averaging across the system will in general require far

fewer encoding resources.

however these two methods yield equivalent results. Be-
cause of this the difference in clearer when results are
taken to the the higher order and as such in the follow-
ing section all approximations will be taken to the second
order in the variance as opposed to the first order as done
above.

Following an approach motivated by the previous sec-
tion the applied phase shifters were placed in one arm of
a MZ interferometer. The applied phase shift was chosen
to have mean zero with a Gaussian random noise with a
variance v. This choice allows for the errors here to be
compared with those modelled in sections III A and II1 B.
The probability of success is now defined as the photon
number expectation value evaluated at the end of the
phase applying systems while the strength of the error is
defined as the photon number expectation value of the
MZ interferometer system at the expected output given
no photon exited any of the redundant encoding modes.

A. No Averaging

Starting with the baseline comparison case where no
Error Averaging is used (Fig. 5a), the output state for a
single photon going through M phase shifters will be

M .
¥) = (H 6“”) 1) (34)
k=1

As there is no path for the photon to exit the system, the
probability of success is always 1.

To quantify the error the phase applying system it was
then inserted into a MZ interferometer giving a total out-
put state |¥). As the mean phase shift is zero, the error
is manifest in the photon expectation value at the correct
output mode after post-selection. As however the prob-
ability of success is 1 no post selection occurs here. The
output state from the MZ interferometer is

1 M M R
) =5 (H e’ + 1) atlo) + (H e’ — 1) b'0) .
k=1 k=1

(35)
The measure to the quantity of error which was used to
compare the three situations chosen is the probability of
observing the correct result conditional on the photon
not being detected in an error mode, or P(correct). For
no averaging this is

P(correct) = (U] n, |T)

1
3 (1 + cos (a))

o Mo a2
- 4 16

(36)
where o = Zi\/le 0, and Gaussian statistics have been
used to write higher order moments in terms of the vari-
ance.

B. Averaging Across the Entire Phase System

We now consider averaging across the whole system, as
shown in Figure 5b. Proceeding as before, the state for a
single photon after passing through M phase shifters in
series which is being averaged across N times will simply
be

=5 ( 5) ) (37
k=1

The probability of success is thus

P (success) = (¥|)

A [1 — <1 — ;) (Mv - ;M%?)}(%)

This result is similar to the what was found in previous
sections, see Eq.26 and Eq.33, with the probability of
success asymptotically approaching some fixed value for
large N.

To determine the size of the error, the phase applying
system was again inserted into one arm of a MZ inter-
ferometer giving a total output state |¥). The error is
then given by the photon expectation value in the correct
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output mode with post selection. The output state is

1 1 N M .
W =5 | ¥ (He“;"*")—l—l at 1oy (39

j=1 \k=1
1 N M
- iéj,k _1 A‘i’ 4
+ N;(He ) bh 0y (40)

So the photon number expectation value for the expected
output from the interferometer will be

+ (1 - ;) (M’U - ;M202>> (41)

Similarly for the incorrect output port, the photon number expectation value will be

1 2 &
(U] W) = 4<1+ (Wly) *NZ

> (42)

Therefore, our error measure, the conditional probability of observing the correct result, will now be

o= [ (0= 222 (3) e e )]« - (- 3) (-]

C. Averaging Across Each Phase Shifter
Individually

If each phase shifter is averaged individually, as seen in
Figure 5c¢, then the state for a single photon after passing

3 Mv M?*»?

1 2
P(correct) =~ 4—44_1;4_4(1_(@_”2)(

Importantly, for both this case as well as when averaging
each step, if only the first order approximation is used
and M = 1 then the error matches the error found in
section III A. However we see that with the second order
terms included the two results diverge from one another.
This can be seen most clearly in Figure 7.

[
through the phase applying system will be
| Mo N
R 1 D3 I
k=1 \j=1

Reproducing the above calculations with this state yields
a probability of success of

pisueess = (1- (o= 2) (1- 1)) o

and a conditional probability of observing the correct re-
sult of

D. Summary of Errors and Probabilities

Figure 6 shows how the error, as measured by looking
at expected photon number values in the output port of
a MZ interferometer, varies as the number of phase com-
ponents increases as well as how the error changes with
increasing Error Averaging, N. The behaviour as NV in-
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FIG. 6: Probability of obtaining the correct result as
measured by the Mach-Zehnder interferometer set up as
a function of the number of phase components M. Here

a probability of 1 corresponds to no error and the
smaller the probability the larger the error. The blue
line represents the no Error Averaging applied result,

the orange line corresponds to the error when averaging
across the entire system and the green line is the error
when each component is averaged across individually.

All three graphs were created with the variance of the

error in a single phase shifter being 0.005 rad® and for
(a) N=2,in (b) N =4 and in (¢) N = 16.
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creases is as expected with the error close to disappearing
for low M, that is, a small number of phase shifters in se-
ries, and N = 16. Interestingly a difference between the
two Error Averaging methods can be seen from M = 6
onwards. This could either be suggesting an issue with
the quality of the second order approximations, as seen
in Figure 7 or that there is some more fundamental point
at which there is a clear benefit to averaging each com-
ponent individually. The next consideration was how the
probability of success changes with M.

Figure 7 shows how the probability of success changes
as the number of phase shifters in a series increases when
averaging across the entire system as well as when aver-
aging across each component individually. The effect of
varying the amount of averaging is also shown for both
the first and second order analytical solution. The top
four graphs were plotted for a low value of the variance
on the individual phase shifters. This was done so that
the behaviour when the first and second order approxi-
mations diverge can be clearly seen.

As the total number of components increases with both
increasing M and N, the probability of success decreases.
However it does so at a decreasing rate which is impor-
tant for scaling to large systems. The two methods of Er-
ror Averaging also show very similar behaviour in their
overall trends although the variation between the first
and second order approximations in the two encoding
methods diverges. This is suggestive of a manifestation
of the Zeno effect, whereby continuously correcting pro-
duces less variation than doing the same amount of cor-
rection at the end. First and second order solutions in
the averaging over the entire system case diverge very
early when compared with those for averaging every step.
Interestingly it appears that the first order analytical ap-
proximation is suitable when averaging each component
individually even for larger or equivalently higher error
systems. This can most clearly be seen in Figure 7e where
the first order approximation diverges from the second or-
der approximation almost instantly while in Figure 7f the
first and second order approximations both follow each
other closely. It is again observed that as N increases,
the probability of success goes down. This could also be
suggesting that the variation in the statistical simulation
is also reduced, implying a greater amount of averaging
reduces the variability in any given sample of the applied
phase.

E. Statistical Modelling of the Applied Phase

Given the variability in the higher order terms for
larger errors in can be concluded that, in general all or-
ders need to be considered to fully understand the be-
haviour of the corrected systems. As this is intractable
and to better understand the behaviour of the three phase
applying systems, the total applied phase was modelled
numerically using Mathematica with phase values cho-
sen from a Gaussian random distribution with mean 0
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FIG. 7: Probability of success as a function of the
number of phase components M for averaging across
the system (left) and averaging across each component
(right). The blue line is the first order approximation
and orange is the second order approximation of the
analytical value. ag and b) individual phase shifter
variance is 0.005 rad” with N =4, ¢) and d) individual
phase shifter variance is 0.005 rad® with N = 16 and e)
and f) individual phase shifter variance is 0.1 rad® with
N = 16.

and variance v. This corresponds to Equation (9) with
6 = ][, 0;. This was repeated 5000 times and the re-
sults are shown in Figures 8 and 9. This again shows
a difference between averaging across the entire system
and averaging at each step. The variability of the to-
tal applied phase is smaller when each phase shifter is
corrected individually, an indication that averaging each
step is more effective. By comparing Figure 8 with Fig-
ure 6 at M = 15 we can infer that the difference between
the two error correction methods seen in Figure 6 is not
entirely due to the quality of the approximations used in
each case.

The variance of the applied phase was estimated based
on the statistical simulation of the total applied phase.
Figure 10 shows this variance as a function of M, the
number of phase shifters in a series. Given the individ-
ual applied phases are uncorrelated they are expected to
simply add, such that the variance without any Error
Averaging is expected to be

Total Variance = vM (45)
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FIG. 8: Top: Total applied phase over 5000 runs for no
averaging (orange), averaging across the entire system
(green) and averaging each phase shifter individually
(blue). Bottom: Histogram of the total applied phases.
Each individual phase shifter has a variance of 0.1 rad®
and each system has 15 phase shifters in series. The two
error averaged circuits are each averaged 4 times.
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FIG. 9: Top: Total applied phase over 5000 runs for no
averaging (orange), averaging across the entire system
(green) and averaging each phase shifter individually
(blue). Bottom: Histogram of the total applied phase.
Each individual phase shifter has a variance of 0.3 rad®
and each system has 8 phase shifters in series. The two
error averaged circuits are each averaged 4 times.

where M is the number of phase shifters and v is the vari-
ance in the individual phase shifter. The total variance
when Error Averaging is similarly expected to be

M
Total Variance = % (46)

where N is the number of times the system is averaged,
again N = 1 implies no averaging. As the phase is an
angle with a finite range, this behaviour cannot hold for
arbitrarily large vM. A completely random phase 6 is
still limited by the possible range of values, in our case
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FIG. 10: Variance in the total applied phase without
Error Averaging (orange), when averaging across the
entire system (green) and when averaging each
component individually (blue), all plotted as a function
of the number of phase shifters in series (M ). The
variance of a single phase shifter is 0.1 rad® and the two
error averaged systems averaged 4 times. The
predicted, linear variance without any averaging
(orange) and with averaging (blue) is also shown. These
ignore the fact that the variance is actually the angular
variance and so has some maximum allowable value
given by Eq. 47, which is also shown in black.

chosen to be —m < 6 < w. If the value of 0 is indeed
completely random then one will expect a uniform prob-
ability distribution of P () = 5~. This then implies the
maximum variance will be given by

Maximum variance = 62P (0) do

=T (47)

Figure 10 shows that the two methods of error cor-
rection do indeed initially have the same effect. However
the averaging across the system method departs from this
linear regime from approximately M = 6 after which it
follows the general form of applying no correction. This
suggests there is some limit to the total variation in a sys-
tem Error Averaging can handle. This is not unexpected
due to the limited domain for a phase shift or beam split-
ter ratio. The fact that averaging across the entire system
mirrors the no averaging trend suggest that the positive
effects of Error Averaging completely disappear in this
regime. Averaging each step however does not appear to
fall out of the linear regime. The lower slope at higher
total output variance can be attributed to the variance
approaching the maximum possible variance. To deter-
mine if and when the averaging each step method of error
correction fails, this process was repeated as a function
of the variance in a single beam splitter. The total vari-
ance was determined from 50000 data points for each
value of v. Figure 11 demonstrated that again the two
error correction methods initially are equivalent. Once
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FIG. 11: Variance in the total applied phase without
Error Averaging (orange), when averaging across the
entire system (green) and when averaging each
component individually (blue), all plotted as a function
of the variance in each individual phase shifter. Each
system applied 4 phase shifters in series, that is M = 4,
and the two error averaged systems averaged 4 times,
that is N = 4. The predicted variance without any
averaging (orange) and with averaging (blue) is also
shown along with the maximum allowable variance.

more averaging across the system departs from the lin-
ear regime and now we can clearly see that so too does
the averaging each step.

This is suggestive of the existence of some threshold for
the amount of error in a system before Error Averaging
fails to be beneficial. A single phase shifter with vari-
ance vy is effectively equivalent to m phase shifters with
individual variance v = 7 if the entire system is being
averaged across. This allows the phase error threshold
to be estimated at about 0.5 rad® when averaging across
each element and g—frad2 when averaging across a sys-
tem of m phase shifters. Explicitly, this suggests a phase
variance threshold of 0.5 rad? within the corrected uni-
tary. If each individual beam splitter has a variance of
0.1 rad?, averaging across the system would be expected
to be in the linear regime when M < 5 which is precisely
what is seen in Figure 10. These two thresholds obvi-
ously do not apply to a general error however it is hoped
that with further study might reveal the values for such
a threshold.

It can now be concluded that some hybrid method of
Error Averaging would be most suitable in general. The
entire system would need to be broken into x smaller
systems, which are independently averaged across. The
specific value of z would be such that the number of com-
ponents in the system, m, is maximised while the total
error within each subsystem is kept below the appropri-
ate threshold.



V. FOUR MODE IMPLEMENTATION
COMPARISON

To gain a better understanding of how useful this
method of Error Averaging actually is, a more complex
system was also investigated along with both methods of
redundant error correction. Specifically, a four mode sys-
tem with four beam splitters, each implemented as above,
that is each being its own MZ interferometer as shown
in Figure 12. Three different input states were chosen:
a single photon input in the top mode and the vacuum
state at all other modes(|1,0,0,0)), two photons, both in
the top mode (]2,0,0,0)) and two photons spread across
the top two modes (|1, 1,0,0)). For simplicity the system
was chosen to target the identity and error reduction was
then applied using both implementations. That is, by av-
eraging each beam splitter as done in section III A and by
concatenating the entire system in an interferometer as
shown in Figure 13. All results were found using Math-
ematica to sample from the appropriate transformation
matrix representing the system and then compute the
second order approximation of the photon number ex-
pectation values and probabilities for N = 1,2 and 4.
All results can be found in Appendix A

FIG. 12: Diagram of the four mode linear optical
network which forms the basis of the four mode set-ups.

These results show that the two correction methods
produced equivalent results under the approximations
used. The 1/N scaling in error after post selection, as
seen above, was also observed, suggesting this pattern
holds for higher numbers of modes and arbitrary system
as expected from Theorem 1. The analysis that follows
is based on the trends observed from these simulations.
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FIG. 13: Diagram of the four mode linear optical
network averaged across the system once. A two mode
system averaged in this fashion could be considered as

an Error Averaged dual rail single qubit unitary

transformation.

1. Generalising Example Results

Starting with no error reduction, and given the correct
output state [¢) the following sequence can be defined.
First defining the probability of obtaining the correct re-
sult when N =1 takes the form:

Py(correct) =1 — %v. (48)
1

The probability of an incorrect state is therefore

Py (wrong) = o (49)

b .
At this stage there are no error ports and so P;(wrong)+
P;(correct) represents the probability of success as pre-
viously defined. Note that the subscript indexes the cor-
responding number of averaging rounds. Explicitly i + 1
corresponds to a system with twice as much averaging as
i. So, using the same observed form for the probability,
averaging once changes these values to:

2@1 =+ ].
P. t)=1-—
»(correct) 2%, v
ag
=1-— 50
o (50)
Py(wrong) = 72ab11 v
as
= — 51
5y (51)
which can be further iterated. In general
2an,1 + 1
P, t)=1— ——
(correct) %,
(anlal + (2n71 _ 1))
=1- 52
2n71b1 v ( )
P, (wrong) = -1,
n g) = 2%, 1
L (53)

2n71b1



The probability of obtaining the correct state with post
selection will then be

P, (correct [post selection)

— _ al
- (1 2n—1b1”> —— 1 (54)

The probability of success is

(2"t —1) (a1 + DN

P, (success) =1 — =

Hence we get an asympotitic expression for the probabil-
ity of success to be

1
lim P, (success) =1— <a1 + ) v (55)

n—00 b1

The result can be understood to be the first order ap-
proximation to Equation 21. The “tl coefficient does
not quite match what might be expected from Equation
21 however one might only expect qualitative agreement
as there is not any clear isomorphic map between the pa-
rameters in the system and the error coefficients of the
Lie algebra generators.

This result hints at the self correcting nature of Error
Averaging. By considering the inner corrected system
with error laden beam splitters as the initial step in the
sequence then each further step will be averaging across
both the fixed beam splitters and the original error laden
system. This could allow some of the beam splitters to
be corrected making the base assumptions on the qual-
ity of the fixed beam splitters less restrictive. This is
highlighted in Figure 2 where, depending on which com-
ponents are considered to be the system, it is averaged
either 8, 4 or 2 times.

VI. DISCUSSION

The analysis presented in sections III to V concen-
trated on implementing a single-mode phase shift either
on it’s own or as part of a Mach-Zender interferome-
ter implementing a beam-splitter type transformation.
These could then be further used to build up higher-
dimensional unitary transformations using any particular
choice of decomposition, for which a specific decomposi-
tion was analysed in Section V.

On the other hand, one may want to redundantly en-
code an entire unitary rather than just the phases defin-
ing the internal parameters. In this case we can use equa-
tion 21 and for simplicity consider the specific case with
TP =1

M=UJ[e % =ve i, (56)
l

where the n? term appears as the product over all n?
generators. This would result in an effective operator
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transformation for a k& photon state as

N k
at;

2 _2 ].
—kn“c*/2 T
o —e T E Uija'; (57)
J

The coefficient here represents a reduction in the ampli-
tude should this transformation be applied to a state, and
hence represents the probability of success. To achieve a
O(1) probability of success, then the operator noise must
obey 0 = O(k~'/?) and 0 = O(n~') as k,n — oo. These
results are dependant on the assumptions and the de-
sired performance, in terms of probability of success, will
depend on the specific application. However, it must be
kept in mind that no error correction has been performed
yet it is still possible to achieve a constant success proba-
bility with a reasonable scaling of the noise with respect
to the network size.

Within the constructions presented here some optical
elements utilised have been assumed ideal. In particular,
the encoding beam-splitters were assumed to have ex-
actly 50:50 reflectivities. A more general consideration is
that of the fault-tolerance of this encoding. That is, can
the ideal elements be error corrected whilst maintaining
the error correcting power of the scheme. In this paper
we have focused on merely the error correcting power of
different arrangements of phase shifts and how it varies
across two choices of decomposition. But there will be
many and varied choices about how to implement fault
tolerant constructions with some better than others, in
much the same way as is applicable for discrete system
in quantum computing implementations. Never-the-less,
the fact that, under an approximation of small errors
the encoding tends to the ideal operation in the limit
of large encoding sizes, it would be reasonable to expect
that fault-tolerant constructions exist.

VII. COMPARISON WITH CONVENTIONAL
QUANTUM ERROR CORRECTION

It is insightful to qualitatively discuss the parallels be-
tween conventional qubit quantum error detection and
correction techniques, and our error averaging technique.
The simplest code to see this parallel is by considering the
3-qubit code, which is able to detect and correct at most
a single physical bit-flip error on a 3-fold redundantly en-
coded logical qubit. In the 3-qubit code the logical qubit
is encoded via GHZ-type entanglement across the three
physical qubits using two maximally entangling CNOT
gates. Specifically, encoding implements the redundant
mapping «|0) + 8]1) — «|000) + S]111) in the logical
basis. In our scheme, on the other hand, the redundant
encoding takes the form of W-like entanglement, imple-
mented via an optical fanout operation, where a single
excitation in a single mode is mapped to a superposition
of a single excitation across multiple modes. Specifically,

the encoding is of the form d]; — Tlﬁ(l;‘; 4+t (}}LV)



This is qualitatively very distinct from the previous GHZ-
type encoding, since GHZ states are maximally-entangled
states, whereas W-states are not. Unlike GHZ states,
which collapse onto a perfectly mixed N — 1 qubit state
upon loss of just a single qubit, the loss of a single mode
from a W-state preserves most entanglement for large V.
This leads us to speculate that this property of W-states
enables much of the structure of encoded states to be
preserved upon localised errors. Indeed, for N > 1 we
anticipate that the failure of a relatively small subset of
the redundant operations will have little impact on the
integrity of the entire encoded state, owing to this unique
property of the structure of loss in W-states.

Like conventional quantum error correction, we ob-
served error threshold behaviour in our analysis. That
is, we are only able to improve the fidelity of a state if
its initial fidelity is above an error correction threshold.
Below this threshold the error correction technique fails
to improve the state. Indeed, non-zero thresholds must
necessarily apply so as not to violate the quantum no-
cloning theorem.

We observed that a simple form of circuit concate-
nation, whereby the protocol is recursively embedded
within itself to construct larger nested codes, enables
higher degrees of error correction, asymptoting to some
maximum. This is congruent with conventional codes,
where code concatenation asymptotically improves error
correction at the expense of increased physical resources
to mediate the more complex encoding.

In our scheme the post-selection upon detecting no
photons in the designated failure modes is equivalent
to syndrome measurement in traditional qubit codes.
Successful post-selection effectively projects the encoded
state back into the codespace, whereas failure heralds an
unsuccessful syndrome extraction, thereby mapping the
unitary error to a located loss error. The probability of
detecting no photons in the failure modes can be asso-
ciated with the error detection probability in traditional
codes, and the respective conditional probability of mea-
suring the correct output state with the error correction
probability.

An interesting open question is whether the structure
of the redundant encoding we utilise in our protocol may
be translated to other physical architectures or conven-
tional qubit settings, or rather whether it is very specific
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to photonic linear optics.

VIII. CONCLUSION

We have shown how, given multiple noisy copies of a
linear optical unitary network, Error Averaging can be
use to implement a transformation that tends towards
the average with reduced variance at the cost of the prob-
ability of success. After post-selection, Error Averaging
forms a rudimentary error correction protocol by filter-
ing the noise from the redundant copies of the unitary
network. For this to form a true error correction pro-
tocol it will be necessary to introduce some sort of loss
correction. The losses which will need to be corrected
are unique however in that they are heralded and lo-
cated, potentially simplifying the problem enormously.
The variance in the transformations have been shown to
scale as % where N represents the number of redundant
copies of the network. We have provided the mathemati-
cal basis necessary to determine the effect of Error Aver-
aging on an arbitrary linear unitary and with fully char-
acterised solutions for arbitrary single parameter noise
and multiple parameter small Gaussian noise. We have
also analytically determined the photon number expecta-
tion values for two mode systems with both one and two
photon inputs, numerically simulated the output expec-
tation values in four mode systems for both one and two
photon inputs and numerically simulated the variance for
different arrangements of phase shifters.

Two methods of Error Averaging for phase shifts have
been presented which appear to have similar effects un-
der certain conditions. In particular averaging after se-
quentially applying phases has the same behaviour as
averaging each phase provided the errors are small. This
behaviour is conjectured to be explained by considering
the errors as approximately commuting.
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Appendix A: Four Mode Numerical Results

This appendix contains all simulation results for the four mode system discussed in Section V. All results are based
on a second order Taylor expansion with v < 1.

Tables I and IT show the output probabilities and correct result probability with post selection for the single photon
input state |1,0,0,0). These show that, at least for a single photon the two correction methods are equivalent. We
also see the halving of errors as seen in sections 3.2 and 3.4 suggesting this pattern may hold for a single photon with
an arbitrary number of modes.

Tables 1T and IV show the output probabilities and correct result probability with post selection for the single
photon input state |2,0,0,0). What we see is, unsurprisingly, much the same as in the single photon case with a
heightened susceptibility to the error. This includes the halving pattern however this is expected as adding two
photons in the same mode will not necessarily lead to new interference effects being observed.

Tables VI and VI show the output probabilities and correct result probability with post selection for the single
photon input state |1,1,0,0). It can once more be seen that the two methods of error correction appear to be
equivalent. Now there is an underlying pattern clearly forming which appears to hold for arbitrary one and two
photon inputs. This is important as it allows us to conclude about when it is most useful to use each type of
correction. It also allowed a prediction of the error models for applications of Error Averaging, as discussed below.

(

Output State No Error Reduction| Averaging Beam splitters Averaging Beam splitters
Once (N = 2) Twice (N = 4)
[1,0,0,0) 1-2 1-2 -
0,1,0,0) z g 16
0,0,1,0) 0 0 0
0,0,0,1) 7 3 16
[1,0,0,0) with post selection 1-3 1-7 11—

TABLE I: Output probabilities for various levels of correcting the individual beam splitters in a 4 mode set-up given
an input of the state |1,0,0,0) where v is the variance of the phase error .
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Output State

No Error Reduction

Averaging Across the
System Once (N = 2)

Averaging Across the
System Twice (N = 4)

I1,0,0,0) -2 — — T
0,1,0,0) z 3 16
0,0,1,0) 0 0 0
0,0,0,1) 1 5 16
[1,0,0,0) with post selection 1-3 -3 11—

TABLE II: Output probabilities for various levels of correcting the across the system in a 4 mode set-up given an
input of the state |1,0,0,0) where v is the variance of the phase error.

Output State No Error Reduction Averaging Beam splitters
Once (N = 2)
12,0,0,0) 1—w - "7”
10,2,0,0) 0 0
|0,0,2,0) 0 0
|0,0,0,2) 0 0
I1,1,0,0) v v
17 07 17 0> 0 0
1,0,0,1) 5 7
0,1,1,0) 0 0
0,1,0,1) 0 0
|0,0,1,1) 0 0
|2,0,0,0) with post selection 1—v 1—3

TABLE III: Output probabilities for various levels of correcting the individual beam splitters in a 4 mode set-up
given an input of the state |2,0,0,0) where v is the variance of the phase error.

Output State

No Error Reduction

Averaging Beam splitters
Once (N = 2)

Averaging Beam splitters
Twice (N =4)
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TABLE IV: Output probabilities for various levels of correcting the across the system in a 4 mode set-up given an
input of the state |2,0,0,0) where v is the variance of the phase error.
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Output State

No Error Reduction

Averaging Beam splitters

Averaging Beam splitters

Once (N = 2) Twice (N = 4)

2,0,0,0) z 7 v
0,2,0,0) 2 2 :
0,0,2,0) 0 0 0
[0,0,0,2) 0 0 0

3v T 15v

1,1,0,0) 1—1’7 1—vT 1_v8
1707 17O> 5 g E
1,0,0,1) 0 0 0
0,1,1,0) 0 0 0
0,1,0,1) z B 16
0,0,1,1) 0 0 0

[1,1,0,0) with post selection 1-3 -3 1-%

TABLE V: Output probabilities for various levels of correcting the individual beam splitters in a 4 mode set-up

given an input of the state |1,1,0,0) where v is the variance of the phase error.

Output State No Error Reduction Averaging Beam splitters Averaging Beam splitters
Once (N = 2) Twice (N =4)
2,0,0,0) 2 z z
0,2,0,0) 5 7 5
[0,0,2,0) 0 0 0
0,0,0,2) 0 0 0
1,1,0,0) 1-2 1-Z 1— v
1,0,1,0) 5 3 16
1,0,0,1) 0 0 0
0,1,1,0) 0 0 0
0,1,0,1) 2 z =z
[0,0,1,1) 0 0 0
|1,1,0,0) with post selection 1-— 37” 1-— %’ 1- %”

TABLE VI: Output probabilities for various levels of correcting the across the system in a 4 mode set-up given an
input of the state |1,1,0,0) where v is the variance of the phase error.
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