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A cat state is a superposition of macroscopically distinct states. In quantum optics one such type
of state is a superposition of distinct coherent states. Recently, a protocol has been proposed for
preparing large optical cat states from a resource of smaller ones. We consider the effects of mode-
mismatch and loss in the preparation of large cat states using this protocol with a view to understand
experimental limitations. (This paper is written in an experimental rapid communication format).

A cat state is defined as a superposition of two distinct
macroscopic states. In optics’ we use distinct coherent
states2,

jeat) = |a) £] - a), (1)

where £ determines the parity?.

Lund et al. |4] demonstrated that larger cat states can
be prepared from two smaller ones using a ‘breeding’ pro-
tocol. A slight variation* on their protocol is shown in
Fig. @ We consider the effects of mode-mismatch and
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FIG. 1: Breeding a larger cat state from two smaller ones.
One of the small cats is even parity, while the other is odd
parity. They are mixed on a 50/50 beamsplitter and one of
the outputs is conditioned upon detecting no photons.

loss on this protocol.

I. MODE-MISMATCH

First we model the temporal /spectral structure of pho-
tons using using mode-operators [5], which create pho-
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1 Optical cat states have uses in quantum information process-
ing [1, 2]. The preparation of small optical cat states has been
demonstrated in |3].

2 For large a, (o] —a) — 0. Thus, for large o the states are macro-
scopically distinct.

3 An odd (even) cat state is one with only odd (even) photon num-
ber terms in their expansion. These are defined as the negative
and positive superpositions respectively.

4 In the original protocol the ‘O’ conditioning is not performed
directly, but using an interference effect. We model the condi-
tioning directly for simplicity. We expect our later results for
state fidelity to represent an upper bound on the achievable fi-
delity in the original scheme, since there there is an additional
opportunity for mode-mismatch to arise.

tons according to a particular spectral wave-function

w(w),
1)y = / bl @) dw ) = AL0). ()

Let the state incident at one input be characterized
by mode-function ¥ (w), and at the other input by ¢(w).
The input consists of one even cat state and one odd cat
state, in distinct spectral modes,

[¥)in = (la)y —[ = a)y) @ (J)s +[ = )s)  (3)

We apply the beamsplitter transformation to this state
and perform the conditioning. Finally, we trace out the
spectral modes orthogonal to the desired one, 1, to ob-
tain the effective output state, i.e. the state that will be
‘seen’ by homodyne tomography (see Appendix [A]).
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FIG. 2: (top) Fidelity of the effective output state. (bottom)
Magnitude of the prepared cat state. 17 is the mode-overlap at
the beamsplitter. « is the magnitude of the incident states.

In Fig. 2lwe plot the fidelity of the effective state com-
pared to the expected state, and its magnitude. As «
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increases, so does the rate at which fidelity degrades as
a function of mode-overlap. Thus, the scheme becomes
infeasible for large cat magnitudes.

A cross section of the fidelity plot is shown in Fig. [3
with mode-overlap fixed at = 0.99, which is roughly in
the regime of present-day experiments. Beyond a =~ 1 the
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FIG. 3: Fidelity of the effective output state with mode-
overlap fixed at n = 0.99.

fidelity drops rapidly with the magnitude of the incident
state. Roughly speaking, to obtain a fidelity of 90% with
a mode-overlap of 99%, we are limited to incident states
of magnitude a < 4.7.

Note that our calculations assume a resource of F' =1
cat states. Thus, in practise we expect our plots to rep-
resent and upper bound on achievable fidelities.

II. LOSS

Next consider the effects of loss on a prepared cat state.
This was first considered in Ref. [6]. We model loss as a
beamsplitter acting on a state of the form shown in Eq.
m

Applying a beamsplitter with reflectivity n and tracing
out the reflected mode we obtain

Ploss = |\/Woz><\/;a| + | - Wa><—ﬁa|
+ V) (= al + 1= V) (Vn'al, (4)

where ' = 1 —n, and v = (/o] — /na) = e=2m0”,
This is a superposition of the coherent states |n'a) and
| — n'a), where the coherence between the two terms is
determined® by ~.

We calculate the fidelity between pjoss and the cat state
with magnitude® v/n’a. It can be shown that the fidelity
is then

F= % (1 + e*mzn) . (5)

The fidelity is plotted if Figs. @l and Bl The rate at
which fidelity drops with loss increases dramatically with

5 When v = 1 we have a perfect cat state, whereas when v = 0 we
have a mixture of the two terms.
6 This choice of magnitude maximizes the fidelity.

magnitude. Roughly speaking, with a loss rate of 5%, if
we wish to maintain the fidelity of a cat state at at least
90%, the magnitude can be at most « & 1.5.
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FIG. 5: Fidelity against cat state magnitude with loss rate
fixed at 5%.

Acknowledgments

We thank Timothy Ralph and Alex Lvovsky for helpful
discussions. This work was supported by the Australian
Research Council and Queensland State Government. We
acknowledge partial support by the DTO-funded U.S.
Army Research Office Contract No. W911NF-05-0397.

APPENDIX A: PROOF OF OUTPUT STATE
WITH MODE-MISMATCH

The incident cat states are of the form shown in Eq.
[ (up to normalisation). We begin with one odd parity
and one even parity state. The second copy undergoes
mode-mismatch, following which it resides in the mode
characterized by ¢.

We decompose the state into components in mode
and orthogonal to mode 1/, which we label 1). When the
states interfere on the beamsplitter, only the overlapping
components of the wave-function will interact [|5]. Thus,
we decompose the second wave-function into overlapping
and non-overlapping components,

$(w) = V(W) + /1 — np(w), (A1)



where 1 measures the mode-overlap. Since the modes
¥(w) and (w) are orthogonal, this effectively imple-
ments a beamsplitter transformation. For a coherent
state this is

|y = [v/na)ylv/1—mna)g

Thus, the second copy of the input state has the form
|O/7 BI> :t | - O/u _ﬁ/>

where o/ = \/na and ' = /T —na. We have used the
shorthand |a, B) = |a)y|B),;- Thus, the input state to the
cat booster device is

[Yin) = (lo, 0) = | =, 0)) @ (|o/, ') + | — o', =) .
(A1)

To simplify the analysis, we assume that the experi-
menter has created matched coherent states which max-
imize interference. That is, a4 = oz, where A and B
denote the two spatial modes. This can be done by ad-
justing the strength of the coherent amplitude of the cat
states which are input into the device.

This state is mixed on a 50/50 asymmetric beamsplit-
ter. The output state is

[Yous) = |V20,0,8'/v2,8'/V2)

|07 _\/5055 ﬂ//\/ia ﬂ//\/i>

+ |07 \/5055 _B//\/ia _ﬂ//\/i>

- | - \/§a7 07 _ﬁ//\/iu _ﬁ//\/i>

where |Oé, Bu 75 5> = |a>A,1ZJ |B>B,w|7>A,'J)|6>B,'J)

Detection of the output mode requires that zero pho-
tons are measured in mode B. Two components of this
state contribute to the detection result — modes 2 and
4. These modes must have zero photons total for the
measurement to give the required outcome. So projecting
these modes onto the zero photon state gives

(A2)

(A3)

(A5)

[Wproj) = V20, 8'/V/2) — 710, 8'/V/2)
+ 6_a2|07 _ﬁ//\/i> - | - \/5047 _ﬁ//\/i>7
(A6)

where |av, 8) = [o) 4,418) 4 5-
For later convienence, we rewrite this state as
[Wproj) = [W4)[8'/V2) = [9_)| = 8'/V2), (A7)
where [¥1) = | +/2a) — e=’|0). Here the second mode
is that which is not matched to the analyser.

When a state like this is measured using, for example,
homodyne tomography, the measurement device will be
tuned so as to maximize mode-overlap with the state.
This is optimized by tuning to the mode defined by ¥,
the desired mode. A homodyne measurement will be in-
sensitive to the component of the state orthogonal to the
chosen mode, in which case the information from that
mode is lost. Thus, we calculate the state seen by the
measurement device by tracing out mode 1. Thus, the
effective output state is

ﬁcff = trlzj(/;proj)
= (U )W+ [T}
— (B2 = B /V2) (W) (W] + [T ) (T4 ]) .
(A8)

Expressed in terms of coherent states,

[V2a)(V2a| + | — v2a)(—v2a]

— e (V20)(~v2a| - | - V20)(v20])
+ e (e P = 1)(IV2a)(0] + |0) (V20
+ | = V2a)(0[ +0)(—V2al)

+ 2e72%(1 = e 7)|0)(0].

ﬁcﬁ'

(A9)

Note that the output cat state has been mixed with the
vacuum state. The non-zero overlap of the coherent states
with the vacuum state has also introduced coherences
between the cat state and the vacuum. Note also that as
B8 — 0 the state reduces to

pert = (|V2a) + | — V2a)) ® H.c., (A10)

which is the odd cat state as desired.
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