
    

 

 
 

Doped ZnO nanostructures for optoelectronics: 
growth, properties and devices 

 
  
 
 

 

Md. Azizar Rahman 
 
 

 

 

 

A thesis submitted in fulfilment for the degree of Doctor of Philosophy 

 

 

 
School of Mathematical & Physical Sciences 

Faculty of Science 
 

UNIVERSITY OF TECHNOLOGY SYDNEY 
AUSTRALIA 

January 2019 



i

Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree 

nor has it been submitted as part of requirements for a degree except as part of the 

collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received 

in my research work and the preparation of the thesis itself has been acknowledged. 

In addition, I certify that all information sources and literature used are indicated in 

the thesis.

This research is supported by an Australian Government Research Training 

Program Scholarship.

Signature of Student

Date: 05-01-2019

Production Note:

Signature removed prior to publication.



 
 

ii 
 

Abstract     
 
Zinc oxide (ZnO) semiconductor is a highly attractive material for optoelectronic 

and photonic applications due to its high exciton binding energy (60 meV) and large 

bandgap (3.37 eV) at room temperature. In addition, ZnO doped with group III 

elements is a promising system for wavelength-tunable plasmonics because of its 

low absorption loss in the infrared region compared with metals. However, poor 

understanding of native defects and of their interaction with impurities has limited 

the development of practical ZnO-based photonic and plasmonic devices. The 

primary aim of this project was to investigate the effects of the incorporation of 

donor and acceptor impurities on the optoelectronic properties of ZnO 

nanostructures and to exploit new properties in optoelectronic devices.   

First, Li dopants were used to produce multi-colour emitting ZnO films fabricated 

by the spray pyrolysis technique. The pyrolytic films exhibit multi-colour emissions 

of yellow, green and blue, which can be tuned by varying the Li concentration. 

Simulation of the cathodoluminescence spectra from the Li-doped films using the 

Huang-Rhys model enables the determination of the energy levels of luminescence 

centres and their electron-phonon coupling strength. These centres are attributable 

to either VZn or LiZn acceptor states.  

Second, Ga was used to enhance the electrical and optical properties of ZnO 

nanorods. A large number of ZnO nanowires and nanorods were fabricated with 

various Ga concentration up to 1.4 at% by the vapour phase transport method. It 

was found that Ga incorporation activates the Cu luminescence centres, which lead 

to the emergence of a characteristic fine structure in the green luminescence (GL) 

band of ZnO. The emergence of the structured GL is due to the Cu+ state being 
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stabilized by the rise in the Fermi level above the 0/- (Cu2+/Cu+) charge transfer 

level as a result of Ga donor incorporation. From a combination of optical 

characterisation and simulation using the Brownian oscillator model, the doublet 

fine structures are shown to originate from two hole transitions with the Cu+ state 

located at 390 meV above the valence band.  

Third, bandgap engineering in a single ZnO microrod was demonstrated through 

crystal defect mediation. ZnO microrods with graded distribution of Ga dopants 

were fabricated by the vapour phase transport method. The near-band-edge (NBE) 

emission of the graded microrods was found to be red shifted by ~ 0.6 eV due to 

the merging of Ga-related impurity bands with the ZnO energy bands, consistent 

with the bandgap shift as calculated by the Density Function Theory. The results 

demonstrate self-regulation of charged defect compensation and the possibility of 

multi-wavelength light sources within a microrod. 

Finally, Ga-doped ZnO nanorods were optimised and electrically integrated into  

Si-based photonic devices in order to fabricate light emitting diodes (LEDs). LEDs 

fabricated from the Ga-doped ZnO nanorod/p-Si heterojunction display bright and 

colour-tunable electroluminescence (EL). These nanorod LEDs possess a 

dramatically enhanced performance and an order of magnitude higher EL compared 

with equivalent LED devices made with pristine nanorods. These results point to 

an effective route for large-scale fabrication of conductive, single-crystalline  

Ga-doped ZnO nanorods for photonic and optoelectronic applications.  
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