Doped ZnO nanostructures for optoelectronics: growth, properties and devices

Md. Azizar Rahman

A thesis submitted in fulfilment for the degree of Doctor of Philosophy

School of Mathematical & Physical Sciences Faculty of Science

UNIVERSITY OF TECHNOLOGY SYDNEY AUSTRALIA

January 2019

Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by an Australian Government Research Training Program Scholarship.

Production Note: Signature removed prior to publication.

Signature of Student

Date: 05-01-2019

Abstract

Zinc oxide (ZnO) semiconductor is a highly attractive material for optoelectronic and photonic applications due to its high exciton binding energy (60 meV) and large bandgap (3.37 eV) at room temperature. In addition, ZnO doped with group III elements is a promising system for wavelength-tunable plasmonics because of its low absorption loss in the infrared region compared with metals. However, poor understanding of native defects and of their interaction with impurities has limited the development of practical ZnO-based photonic and plasmonic devices. The primary aim of this project was to investigate the effects of the incorporation of donor and acceptor impurities on the optoelectronic properties of ZnO nanostructures and to exploit new properties in optoelectronic devices.

First, Li dopants were used to produce multi-colour emitting ZnO films fabricated by the spray pyrolysis technique. The pyrolytic films exhibit multi-colour emissions of yellow, green and blue, which can be tuned by varying the Li concentration. Simulation of the cathodoluminescence spectra from the Li-doped films using the Huang-Rhys model enables the determination of the energy levels of luminescence centres and their electron-phonon coupling strength. These centres are attributable to either V_{Zn} or Li_{Zn} acceptor states.

Second, Ga was used to enhance the electrical and optical properties of ZnO nanorods. A large number of ZnO nanowires and nanorods were fabricated with various Ga concentration up to 1.4 at% by the vapour phase transport method. It was found that Ga incorporation activates the Cu luminescence centres, which lead to the emergence of a characteristic fine structure in the green luminescence (GL) band of ZnO. The emergence of the structured GL is due to the Cu⁺ state being

stabilized by the rise in the Fermi level above the $0/-(Cu^{2+}/Cu^{+})$ charge transfer level as a result of Ga donor incorporation. From a combination of optical characterisation and simulation using the Brownian oscillator model, the doublet fine structures are shown to originate from two hole transitions with the Cu⁺ state located at 390 meV above the valence band.

Third, bandgap engineering in a single ZnO microrod was demonstrated through crystal defect mediation. ZnO microrods with graded distribution of Ga dopants were fabricated by the vapour phase transport method. The near-band-edge (NBE) emission of the graded microrods was found to be red shifted by ~ 0.6 eV due to the merging of Ga-related impurity bands with the ZnO energy bands, consistent with the bandgap shift as calculated by the Density Function Theory. The results demonstrate self-regulation of charged defect compensation and the possibility of multi-wavelength light sources within a microrod.

Finally, Ga-doped ZnO nanorods were optimised and electrically integrated into Si-based photonic devices in order to fabricate light emitting diodes (LEDs). LEDs fabricated from the Ga-doped ZnO nanorod/p-Si heterojunction display bright and colour-tunable electroluminescence (EL). These nanorod LEDs possess a dramatically enhanced performance and an order of magnitude higher EL compared with equivalent LED devices made with pristine nanorods. These results point to an effective route for large-scale fabrication of conductive, single-crystalline Ga-doped ZnO nanorods for photonic and optoelectronic applications.

Acknowledgements

First of all, I express my profound gratitude to my supervisors A/Prof. Cuong Ton-That, Prof. Matthew Ronald Phillips, Dr. Angus Gentle for their constructive criticism, continuous guidance, and inspiration in conducting my PhD research and writing up this thesis. I would like to thank Geoff McCredie, Katie McBean, Herbert Yuan, and Mark Berkahn for giving me the valuable technical support in my experimental work in the Microstructural Analysis Unit.

I appreciate the assistance of Sumin Choi and Saskia Fiedler have provided me in photoluminescence and X-ray photoelectron spectroscopy experiments, respectively. I am grateful to Sajid Ali, my friend, for helping with theoretical bandgap calculations of Ga-doped ZnO. I would like to thank Mika T. Westerhausen for the ICP-MS measurements of Ga-doped ZnO nanowires. I am also grateful to John Scott for his useful advice on TEM. I am also thankful to Liangchen Zhu and Olivier Lee for their valuable tips and suggestions on the use of the cathodoluminescence spectrometer.

Finally, I would like to express my special gratefulness to my family, especially Urfi Tabassum, for their moral support and sustaining inspiration. This dissertation would never be possible without their love and affection.

List of Publications

Journal papers

- M. Azizar Rahman, Matthew R. Phillips, Cuong Ton-That, "Efficient multi-coloured Li-doped ZnO thin films fabricated by spray Pyrolysis" Journal of Alloys and Compounds, 691 (2017) 339.
- M. Azizar Rahman, Mika T. Westerhausen, Christian Nenstiel, Sumin Choi, Axel Hoffmann, Angus Gentle, Matthew R. Phillips, and Cuong Ton-That, "Charge state switching of Cu acceptors in ZnO nanorods", Applied Physics Letters, 110 (2017) 121907.
- M. Azizar Rahman, John A. Scott, A. Gentle, Matthew R. Phillips, Cuong Ton-That, "A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods, Nanotechnology, 29 (2018) 425707.
- 4. **M. Azizar Rahman**, Sajid Ali, Michael J. Ford, Matthew R. Phillips, and Cuong Ton-That, "Ga-mediated optical emission from ZnO microrods", in preparation.
- A. M. M. Tanveer Karim, M. Azizar Rahman, M. Sazzad Hossain¹, M. K. Rahman Khan, M. Mozibur Rahman, M. Kamruzzaman and Cuong Ton-That "Multi-Colour Excitonic Emissions in Chemical Dip-Coated Organolead Mixed-Halide Perovskite", Chemistry select, 3 (2018) 1

Conference presentations

- M. Azizar Rahman, Matthew R. Phillips, Cuong Ton-That, "Structured green emission band and electron-phonon coupling in Ga-doped ZnO nanowires", ICONN, 7 – 11 February 2016, Canberra, Australia.
- M. Azizar Rahman, A. Gentle, Matthew R. Phillips, Cuong Ton-That, "Activating the Cu acceptors in ZnO nanorods by Ga doping", ICONN, 29 January – 2 February 2018, Wollongong, Australia.

Table of Content

Declaration of Authorship	i
Abstract	ii
Acknowledgements	iv
List of Publications	v
List of Figures	ix
List of Tables	xii
List of Acronyms	xiii

Chapter 1. General background and motivation

1.1	Background	1
1.2	Aims of the project	4
1.3	Structure of the thesis	4

Chapter 2. ZnO: defects, impurities and optoelectronic devices

2.1	Native	defects in ZnO	8
2.2	Ga-rel	ated defects	15
2.3	Li-rela	ted defects	20
2.4	Cu im	purities	21
2.5	Growth of doped ZnO nanowires and films		24
	2.5.1	Vapour phase transport method	25
	2.5.2	Spray pyrolysis method	31
2.6	Light e	emitting devices based on doped ZnO	34

Chapter 3. Experimental details

3.1	Spray	pyrolysis method	42
	3.1.1	Synthesis of Li-doped ZnO thin films	44
	3.1.2	Thin film thickness measurement	45
3.2	Vapor	r phase transport method	46

	3.2.1	Advantages of the VPT method	48
	3.2.2	Growth of Ga-doped ZnO nano/microrods	48
3.3	Fabric	ation of nanorod-based LEDs	52
3.4	Struct	ural and morphological characterisation	54
3.5	Lumin	escence spectroscopy	55
	3.5.1	Experimental setup of cathodoluminescence (CL)	57
	3.5.2	Experimental setup of electroluminescence	58
	3.5.3	CL calibration	59
	3.5.4	Simulation of CL generation depth	62
	3.5.5	Excitation density-dependent CL	65
3.6	Electr	ical measurements	66
	3.6.1	Current-voltage characteristics	66

Chapter 4. Li acceptors in ZnO

4.1	Introd	uction	69
4.2	Structural properties of Li-doped ZnO films		71
4.3	Optica	Optical properties of Li acceptors in ZnO	
	4.3.1	Li-related emissions in ZnO	76
	4.3.2	Recombination kinetics in Li-doped ZnO	78
	4.3.3	Depth-resolved characteristics of Li acceptors	80
	4.3.4	Properties of Li luminescence centres in ZnO films	82
4.4	Conclusions		85

Chapter 5. Cu acceptors in ZnO nanorods

5.1	Introd	uction	86
5.2	Cu im	purities in ZnO nanorods	87
5.3	Lumir	escence of Cu acceptors mediated by Ga doping	93
	5.3.1	Optical characteristics of Ga donors in ZnO	93
	5.3.2	Activating Cu acceptors in ZnO by Ga doping	94
	5.3.3	Temperature dependence of Cu-related emission	98
	5.3.4	Kinetics of radiative recombination at Cu acceptors	99

	5.3.5 Depth-resolved characteristics of Cu acceptors	101
5.4	Valence band structure of Ga-doped ZnO nanorods	103
5.5	Cu-related emission in ZnO nanorods	110
5.6	Conclusions	113

Chapter 6. Bandgap engineering and doping of ZnO

6.1	Introduction	114
6.2	Tapered diameter Ga-doped ZnO microrods	117
6.3	Luminescence properties of lightly Ga-doped ZnO microrod tips	120
6.4	Bandgap engineering in heavily Ga-doped ZnO microrods	122
6.5	Recombination kinetics of Ga-related emissions	125
6.6	Defect-mediated bandgap engineering	127
6.7	Conclusions	133

Chapter 7. Optimisation of ZnO nanorods for LED devices

7.1	Use of	f ZnO nanowires in optoelectronic applications	135	
7.2	Fabric	Fabrication of ZnO nanorod-based LEDs		
7.3	Curren	nt-voltage characteristics of ZnO nanorod-based LEDs	139	
7.4	Optica	l properties of Ga-doped nanorod-based LEDs	144	
	7.4.1	Temperature-dependent excitonic emissions	144	
	7.4.2	Colour-tunable emission in ZnO by Ga doping	148	
	7.4.3	Recombination kinetics of Ga-related defects in ZnO	151	
	7.4.4	Thermal behaviour of Ga-related defects in ZnO	153	
	7.4.5	Colour-tunable LEDs in ZnO by Ga doping	157	
7.5	Concl	usions	163	
Cha	apter 8	8. Conclusions and outlook		

8.1	Conclusions	164
8.2	Outlook	166
Refe	rences	168

List of Figures

2.1	Formation energies of native point defects	9
2.2	Energy levels of different defects in ZnO	14
2.3	Local atomic geometry of $Ga_{Zn} - V_{Zn}$ and $Ga_{Zn} - O_i$ defects	15
2.4	Formation energies of Ga-related defects	16
2.5	Comparison of optical loss among doped ZnO and metals	19
2.6	Li-related defects and their formation energies	20
2.7	Cu-related structured green and excitonic emissions	22
2.8	Nanorods growth mechanism	25
2.9	SEM image of Au coated substrate and nanorods	26
2.10	Catalyst-free different ZnO nanostructures	27
2.11	ZnO nanowires grown by the self-catalyst VPT method	28
2.12	Thin film growth mechanism	32
2.13	p-type Sb-doped ZnO/n-type Ga-doped ZnO LEDs	35
2.14	n-type Ga-doped/p-type Sb-doped ZnO LEDs	35
2.15	Ga-doped ZnO microrod-based EL devices	36
2.16	Ga-doped ZnO nanowires/p-GaN heterojunction LED	38
2.17	An individual Ga-doped ZnO microrod/p-GaN LED	39
2.18	Ga-doped ZnO nanowires/p-PEDOT LED	40
2.19	n-Ga-doped ZnO /SiO ₂ /p-Si heterojunction LED	40
3.1	Experimental setup of spray pyrolysis method	43
3.2	Thin film thickness measurement	45
3.3	Vapour phase transport method	47
3.4	Leica EM ACE600 sputtering machine and Au coated substrate	50
3.5	Different stages of Ga-doped ZnO nanorods growth	51
3.6	Schematic of ZnO nanorod-based LEDs fabrication process	53
3.7	Schematic of different recombination channels	56
3.8	Schematic of the experimental setup for CL	57
3.9	Schematic of the experimental setup for EL	58

3.10	CL intensity calibration	60
3.11	CL wavelength calibration	61
3.12	E-beam interaction volume for ZnO and Ga-doped ZnO	64
3.13	Method for the calculation of series and shunt resistances	67
4.1	XRD patterns of undoped and Li-doped ZnO films	72
4.2	Texture coefficient as a function of Li doping	74
4.3	AFM images of undoped and Li-doped ZnO films	75
4.4	CL spectra undoped and Li-doped ZnO films	77
4.5	Power-resolved CL spectra of undoped and Li-doped ZnO films	79
4.6	Depth-resolved CL spectra Li-doped ZnO films	81
4.7	Huang-Rhys simulation of Li-related emissions	83
5.1	SEM, EDS and TEM analysis of Ga-doped ZnO nanorods	88
5.2	ICP-MS spectra for undoped and Ga-doped ZnO nanorods	90
5.3	XRD patterns of undoped and Ga-doped ZnO nanorods	91
5.4	Raman spectra for undoped and Ga-doped ZnO nanorods	92
5.5	Near-band-edge PL of undoped and Ga-doped ZnO nanorods	93-94
5.6	Deep level PL spectra of undoped and Ga-doped ZnO nanorods	95
5.7	Temperature-dependent Cu-related green emission	99
5.8	Power-resolved CL spectra of Cu-related green emission	100
5.9	Depth-resolved CL spectra of Cu-related green emission	102
5.10	Valence band spectra of undoped and Ga-doped ZnO nanorods	104
5.11	Photoemission yield spectra of Ga-doped ZnO nanorods	106
5.12	Transmittance and reflectance spectra of Ga-doped ZnO	107
5.13	Determination of direct bandgap	109
5.14	MBO simulation of Cu-related green emission	111
5.15	Recombination mechanism of Cu centres in ZnO	112
6.1	SEM image and EDS spectra of Ga-doped ZnO microrods	118
6.2	TEM image and SEAD pattern of Ga-doped ZnO microrod	119
6.3	Near-band-edge CL of Ga doped ZnO microrods	121
6.4	Bandgap engineering in heavily Ga-doped ZnO	123
6.5	Band potential fluctuation as a function of Ga in ZnO	124

6.6	Power density plots of Ga-mediated emissions	126
6.7	Local atomic geometry of $Ga_xZn_{1-x}V_{Zn}$ and $Ga_xZn_{1-x}O_i$ defects	129
6.8	Density of states of ZnO with Ga concentration	130
6.9	Theoritical and experimental bandgap shift in Ga-doped ZnO	131
7.1	Optimisation of ZnO nanorods and LED device structure	138
7.2	I-V characteristics of ITO/nanorods/p-Si heterojunction LEDs	140
7.3	Shunt and series resistances versus Ga concentration plots	142
7.4	Turn-on voltage versus Ga concentration plots	143
7.5	Temperature-resolved NBE CL of undoped and Ga-doped ZnO	145
7.6	Arrhenius plots of D°X for undoped and Ga-doped ZnO	147
7.7	Deep level CL spectra at different Ga doping concentrations	150
7.8	Power-density plots of Ga-mediated deep level emissions	152
7.9	Temperature-dependent CL spectra of Ga-mediated deep level	153
7.10	Temperature-dependent peak energy of Ga-mediated deep level	154
7.11	Arrhenius plots of Ga-mediated deep level emissions	155
7.12	EL spectra of Ga-doped ZnO nanorods/p-Si LEDs	158
7.13	Voltage-dependent EL of Ga-doped ZnO nanorods/p-Si LEDs	160
7.14	Energy band diagram for p-Si/Ga-doped ZnO heterojunction	162
8.1	Hexagonal Ga-doped ZnO microrod showing optical resonance	167

List of Tables

2.1	Summary of energy levels of different native defects in ZnO	11
2.2	Peak positions and chemical origins of deep level emissions in ZnO	12
2.3	Summary of bound exciton lines in ZnO	18
2.4	Survey on growth parameters used in VPT method	29
2.5	Survey on emission colours of Ga-doped ZnO-based LEDs	37
4.1	Structural parameters in Li-doped ZnO films	73
4.2	Parameters used in Huang-Rhys simulations	84
5.1	Peak energies of Cu ZPLs and their replicas in ZnO	96
7.1	Activation energies of Ga-related defects in ZnO	156

List of Acronyms

AFMAtomic force microscopeBLBlue luminescenceCLCathodoluminescenceCVDChemical vapour depositionCCDCharge-coupled deviceCTLCharge transfer levelD*XIonised donor bound excitonD*XNeutral donor bound excitonD*XDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXGeneralized gradient approximationLDLogal density approximationLDLocal density approximationLDLocal density approximationMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	A°X	Neutral acceptor bound exciton
BLBlue luminescenceCLCathodoluminescenceCVDChemical vapour depositionCCDCharge-coupled deviceCTLCharge transfer levelD'XIonised donor bound excitonD'XNeutral donor bound excitonD'XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXGreen luminescenceGGAGreen luminescenceGGAGreen luminescenceGGALight Emitting diodeLDALocal density approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyNBOMultimode Brownian oscillatorMDCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	AFM	Atomic force microscope
CLCathodoluminescenceCVDChemical vapour depositionCCDCharge-coupled deviceCTLCharge transfer levelD*XIonised donor bound excitonD*XNeutral donor bound excitonD*XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGreen luminescenceGGALocal density approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	BL	Blue luminescence
CVDChemical vapour depositionCCDCharge-coupled deviceCTLCharge transfer levelD'XIonised donor bound excitonD^*XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	CL	Cathodoluminescence
CCD CTLCharge-coupled device CTLCTLCharge transfer levelD*XIonised donor bound excitonD^XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	CVD	Chemical vapour deposition
CTLCharge transfer levelD*XIonised donor bound excitonD*XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBENear-band-edge emissionNISTNational institute of standard and technology	CCD	Charge-coupled device
D*XIonised donor bound excitonD^XNeutral donor bound excitonDXNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDonsity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescence Generalized gradient approximationLEDLight Emitting diode LDALOALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopy Longitudinal opticsMBO MBEMultimode Brownian oscillator Molecular beam epitaxyNBE NISTNear-band-edge emission National institute of standard and technology	CTL	Charge transfer level
D°XNeutral donor bound excitonDAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGreen luminescenceGGALocal density approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMBCMultimode Brownian oscillatorMBENear-band-edge emissionNISTNational institute of standard and technology	D^+X	Ionised donor bound exciton
DAPDonor acceptor pairDLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescence Generalized gradient approximationLEDLight Emitting diode LDALDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillator MoCVDMBENear-band-edge emission NISTNBENear-band-edge emission National institute of standard and technology	D°X	Neutral donor bound exciton
DLDeep levelDFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGreen luminescenceGLGreen luminescenceGAGreen add gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOMultimode Brownian oscillatorMBOMultimode Brownian oscillatorMBENear-band-edge emissionNJSTNational institute of standard and technology	DAP	Donor acceptor pair
DFTDensity function theoryDOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMBCMultimode Brownian oscillatorMBENear-band-edge emissionNISTNational institute of standard and technology	DL	Deep level
DOSDensity of stateELElectroluminescenceEDSEnergy dispersive spectroscopyFWHMFull width at half maximumFXFree excitonGLGreen luminescenceGGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyMBOMultimode Brownian oscillatorMBCMocvDMBENear-band-edge emissionNSTNational institute of standard and technology	DFT	Density function theory
EL EDSElectroluminescence Energy dispersive spectroscopyFWHM FXFull width at half maximum Free excitonGL GGAGreen luminescence Generalized gradient approximationLED LDA LOALight Emitting diode Local density approximation Laser ablated inductively coupled plasma mass spectroscopy Longitudinal opticsMBO MOCVD MBEMultimode Brownian oscillator Molecular beam epitaxyNBE NISTNear-band-edge emission National institute of standard and technology	DOS	Density of state
EDSEnergy dispersive spectroscopyFWHM FXFull width at half maximum Free excitonGL GGAGreen luminescence Generalized gradient approximationLED LDA LA-ICP-MS LOLight Emitting diode Local density approximation Laser ablated inductively coupled plasma mass spectroscopy Longitudinal opticsMBO MOCVD MEEMultimode Brownian oscillator Molecular beam epitaxyNBE NISTNear-band-edge emission National institute of standard and technology	EL	Electroluminescence
FWHM FXFull width at half maximum Free excitonGL GGAGreen luminescence Generalized gradient approximationLED LDALight Emitting diode Local density approximationLA-ICP-MS LOLaser ablated inductively coupled plasma mass spectroscopy Longitudinal opticsMBO MOCVD MEEMultimode Brownian oscillator Molecular beam epitaxyNBE NISTNear-band-edge emission National institute of standard and technology	EDS	Energy dispersive spectroscopy
FXFree excitonGLGreen luminescenceGGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOMultimode Brownian oscillatorMBOMultimode Brownian oscillatorMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	FWHM	Full width at half maximum
GL GGAGreen luminescence Generalized gradient approximationLED LDALight Emitting diode LDA Local density approximationLA-ICP-MS LOLaser ablated inductively coupled plasma mass spectroscopy Longitudinal opticsMBO MOCVDMultimode Brownian oscillator Molecular beam epitaxyNBE NISTNear-band-edge emission National institute of standard and technology	FX	Free exciton
GGAGeneralized gradient approximationLEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOLongitudinal opticsMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	GL	Green luminescence
LEDLight Emitting diodeLDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOLongitudinal opticsMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	GGA	Generalized gradient approximation
LDALocal density approximationLA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOLongitudinal opticsMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	LED	Light Emitting diode
LA-ICP-MSLaser ablated inductively coupled plasma mass spectroscopyLOLongitudinal opticsMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	LDA	Local density approximation
LOLongitudinal opticsMBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	LA-ICP-MS	Laser ablated inductively coupled plasma mass spectroscopy
MBOMultimode Brownian oscillatorMOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	LO	Longitudinal optics
MOCVDMetal-organic chemical vapour depositionMBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	MBO	Multimode Brownian oscillator
MBEMolecular beam epitaxyNBENear-band-edge emissionNISTNational institute of standard and technology	MOCVD	Metal-organic chemical vapour deposition
NBENear-band-edge emissionNISTNational institute of standard and technology	MBE	Molecular beam epitaxy
NIST National institute of standard and technology	NBE	Near-band-edge emission
	NIST	National institute of standard and technology

NIR	Near infrared region
NRs	Nanorods
PL	Photoluminescence
PMMA	Poly-methyl-methacrylate
PEDOT	Poly(3,4-ethylenedioxythiophene)
RL	Red luminescence
SEM	Scanning electron microscope
SEAD	Selected area diffraction
TEM	Transmission electron microscope
UV	Ultraviolet
VPT	Vapour phase transport
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
YL	Yellow luminescence
ZPL	Zero phonon line