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Abstract

Soft-attention is regarded as one of the representative
methods for image captioning. Based on the end-to-end
CNN-LSTM framework, it tries to link the relevant visual
information on the image with the semantic representation
in the text (i.e. captioning) for the first time. In recent
years, there are several state-of-the-art methods published,
which are motivated by this approach and include more el-
egant fine-tune operation. However, due to the constraints
of CNN architecture, the given image is only segmented to
fixed-resolution grid at a coarse level. The overall visual
feature created for each grid cell indiscriminately fuses all
inside objects and/or their portions. There is no semantic
link among grid cells, although an object may be segmented
into different grid cells. In addition, the large-area stuff
(e.g. sky and beach) cannot be represented in the current
methods. To tackle the problems above, this paper proposes
a new model based on the FCN-LSTM framework which can
segment the input image into a fine-grained grid. Moreover,
the visual feature representing each grid cell is contributed
only by the principal object or its portion in the correspond-
ing cell. By adopting the pixel-wise labels (i.e. semantic
segmentation), the visual representations of different grid
cells are correlated to each other. In this way, a mechanism
of fine-grained and semantic-guided visual attention is cre-
ated, which can better link the relevant visual information
with each semantic meaning inside the text through LSTM.
Without using the elegant fine-tune, the comprehensive ex-
periments show promising performance consistently across
different evaluation metrics.

1. Introduction
Image captioning is an important AI-complete task of

scene understanding, which is an ultimate goal of artificial
intelligence. Through the automatic generation of captions
based on a comprehensive understanding of the real-world
scene, it can benefit the human-machine interaction, au-
tonomous/assistant driving, and intelligent navigation for
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Figure 1. The overview of our proposed framework.

visually impaired people. Moreover, this task bridges to-
gether Computer Vision and Natural Language Process-
ing [12]. An accurate description requires a comprehen-
sive understanding of objects, stuff, and their mutual rela-
tions/interactions at all different image regions, which are
then selectively attended to due to their semantic relations
to each generated word. Such visual attention mechanism
has attracted lots of research interests, leading to a large
performance gain [3, 5, 14, 24, 25, 28].

Most state-of-the-art spatial visual attention models are
based on the CNN-LSTM framework in an end-to-end train-
able way [5, 14, 24]. CNN plays a role of image encoder,
responsible for understanding visual information and en-
coding them into region-wise features at different grid loca-
tions. As a caption decoder, LSTM is responsible for under-
standing all words that have been generated, and generating
the following word at each time step. As an agent between
CNN and LSTM, the attention mechanism makes joint in-
ferences and adaptively attends to those semantically re-
lated image regions by generating a distinct attention weight
for each region. Based on this weight map, a visual context
feature is firstly summarized through the weighted sum of
all region features encoded by CNN, and then fed into the
LSTM for language inference.

However, to the best of our knowledge, current soft-
attention-based approaches only use CNN as the image



encoder to create the attention module. Their underlying
CNN-LSTM framework has four limitations in providing
an accurate attention mechanism. 1) Due to the constraints
of current CNN architecture, the attention mechanism has
a fixed low grid resolution (e.g. VGG [20] supports grid
dimension 14x14 and ResNet [8] supports grid dimension
7x7) in the soft-attention framework. It is impossible to lift
it to fine-grained level. 2) The representation of each grid
cell is indiscriminately a mix of visual information of all
objects and/or their portions inside this cell. So, it lacks the
semantic correspondence related to the most salient visual
cue within the grid cell. 3) Due to the lack of mutual refer-
ence information across grid cells, those different grid cells
containing partial visual information from the same objects
cannot be correlated to each other. The semantic visual
guidance just does not exist across grid cells. 4) Because of
object-oriented CNN encoder, existing soft-attention frame-
work is not able to recognize and describe large-area stuff,
like sky, beach, and grass. Hence, the context information
cannot be well represented based on only object informa-
tion.

In this paper, we propose a novel model based on the
FCN-LSTM framework that augments the spatial visual at-
tention, inspired by the Soft-Attention framework [24]. It
leverages the spatially dense and semantically abundant out-
puts of Fully Convolutional Network (FCN) to solve above-
mentioned limitations. FCN is particularly designed for Se-
mantic Segmentation task to do dense pixel-level predic-
tions [4, 19]. Therefore, it naturally excels in generating
both visual features and semantic labels in the form of a
spatial grid at a fine-grained level, which theoretically can
reach up to the pixel level. Thus, 1) this enables our model
to have a fine-grained visual attention at a high grid res-
olution, given the same-size image. It can attend to rel-
evant object regions more accurately, and hence extract a
more precise context feature with fewer noises. Moreover,
the grid resolution of our attention module can be flexi-
bly adjusted. 2) Based on pixel-level semantic labels, our
model can represent each grid cell based on the dominat-
ing area which is associated with an object or its portion in-
side the cell. This saliency-related semantic correspondence
can be kept when the resolution is adjusted. 3) Guided by
the semantic labels of all grid cells, our model can grasp
the semantic layout across grid cells, and efficiently asso-
ciate the grid cells containing different portions of the same
object. In this way, wrong inferences can be mitigated.
4) As the FCN encoder is both object-oriented and stuff-
oriented, our model can extract a better representation of
context information by attending to large-area stuff, such as
sky and beach. So, the contextual inference is more com-
prehensive. 5) Semantic context feature can be also sum-
marized from semantic labels to form the joint context fea-
ture with visual context feature. This joint context feature

can provide a stronger context information to LSTM de-
coder. Specifically, our FCN-LSTM model is designed with
fine-grained and semantic-guided attention mechanism, and
demonstrates state-of-the-art performances on MSCOCO
dataset on metrics BLEU@N, METEOR, and CIDEr.

This paper is organized into five sections. The first sec-
tion is the introduction, followed by the section of related
works. In section three, the method of our model is de-
scribed in detail. Section four specifies the experiment de-
tails. The last section is the conclusion.

2. Related Works
Most state-of-the-art models for image captioning are

based on Deep Neural Networks [4, 8, 9, 19, 20]. The best
one is the encoder-decoder neural framework [1, 3, 5, 6,
7, 15, 14, 16, 23, 24, 25, 26, 27, 28] inspired by the Ma-
chine Translation [1]. In this mainstream framework, CNN
encoder is responsible for extracting image features at the
highest semantic level, which are then fed into RNN de-
coder to generate the natural language caption in a sequen-
tial word-by-word way. Attention mechanism bridges CNN
encoder and RNN decoder together efficiently, by enabling
the RNN decoder to adaptively attend to, via a weight map,
only those image features that are semantically related to
the word to be generated at a certain time-step. So far, the
attention mechanism has been researched in two manifolds.
They all try to establish alignments between visual infor-
mation and word information in a LSTM style. The major
difference lies in the outputs of the encoder.

Grid-wise visual feature without semantic label. This
type of attention focuses on which spatial regions to attend
to [24, 14, 5]. The features of regions at different loca-
tions are extracted by the CNN-encoder from its last con-
volutional layer, and fed into the attention model for rela-
tivity inference. This kind of attention mechanism is gener-
ally integrated into an end-to-end trainable encoder-decoder
framework, and trained implicitly without any explicit su-
pervision. However, all these spatial attention models have
a fixed low grid resolution, which is difficult to be converted
to high grid resolution. Moreover, they are only object-
oriented due to the use of CNN-encoder, and not able to
recognize large area stuff as sky and beach. Another prob-
lem is that it has a lack of representation on the connections
among the grid cells on the image.

Attribute-based visual representation. This kind of
attention chooses which semantic concepts to be focused
[28, 29]. The image feature is represented by a vector of
confidences on all concepts, which is a mixture of objects,
stuff, attributes, interactions, relations, etc. Although in-
volving abundant semantic concepts, these semantic atten-
tion models suffer from lack of the significant spatial layout.

To the best of our knowledge, our FCN-LSTM model
is the first work to propose a novel attention mechanism



that combines the grid-wise visual representation with grid-
wise semantic label at a fine-grained resolution. Moreover,
our model can grasp the semantic connections among all
objects and stuff in the image.

3. Method
We first describe the overall FCN-LSTM framework for

our captioning model in Sec 3.1, and then further introduce
our fine-grained semantic-guided attention modules in Sec
3.2.

3.1. FCN-LSTM Framework for Image Captioning

Similar to the mainstream CNN-LSTM framework, our
novel FCN-LSTM framework is also a variant of Encoder-
Decoder framework for image captioning. It can be re-
garded as a translation from vision to language. The FCN-
encoder firstly extracts both visual representations and se-
mantic labels from the input image at the pixel level, then
the LSTM-decoder generates caption word-by-word based
on joint understanding over these visual and semantic in-
formation. Given an image and its corresponding caption,
the FCN-LSTM model directly maximizes the probability
of word sequence:

θθθ∗ = argmax
θ

∑
(III,yyy)

log p(yyy|III;θθθ) (1)

where θθθ are the parameters of the model, III is the image,
and y = {y1,y2, · · · ,yt} is the word sequence of corre-
sponding caption. Based on chain rule, the log likelihood
of the joint probability distribution over y is comprised of
TTT conditional probabilities:

log p(yyy) =

T∑
t=1

log p(yt|yt−1, · · · , y1, III) (2)

where TTT is the total length of the caption. Here, the depen-
dency on model parameters θθθ is removed for convenience.
During training phase, (III,yyy) is a training image-caption
pair, and the overall optimization objective is the sum of
log probabilities over all training pairs in the training set.
During testing phase, only image III is fed into the model
for caption generation. Specifically, our FCN-LSTM frame-
work consists of three parts: FCN-encoder, LSTM-decoder,
and soft-attention (Figure 1). It firstly uses FCN-encoder to
extract both spatial visual features and semantic representa-
tions from image at pixel level. Then, the fine-grained and
semantic-guided soft-attention summarizes all outputs of
FCN-encoder into a joint context feature for LSTM-decoder
to generate captions.

FCN-encoder. Particularly designed for the Seman-
tic Segmentation task, Fully Convolutional Network (FCN)
can directly perform pixel-wise classification. To encode

image, our framework employs the FCN to directly extract
both visual feature and semantic label for each different
pixel in the image. First of all, the N × N size image III
can be represented by the spatial visual features:

V = FCNv(III) = {v1, v2, · · · , vk} (3)

where k = N2 is the number of image pixels. Each feature
vi ∈ Rd is a d dimensional representation corresponding to
an image pixel. Specifically, the visual features are taken
from the second last layer of FCN. This is similar to what
CNN encoder does in the CNN-LSTM framework. Differ-
ently, the image III also has a corresponding spatial semantic
representations:

S = FCNs(III) = {s1, s2, · · · , sk} (4)

where si is a semantic label for each pixel indicating which
object or stuff it may belong to. Note that the concatenation
of 2-D image pixels into 1-D form does not break the spatial
correspondence.

LSTM-decoder. As each conditional probability in
Equation 2 can be naturally modeled based on Recurrent
Neural Network (RNN), our model adopts the Long-Short
Term Memory (LSTM) as the caption decoder. At time
t, the previous conditional variable-length word sequence
{y1, y2, · · · , yt−1} and image I are represented by a fixed-
length hidden state ht of LSTM as following:

xt =Weyt−1 (5)

ht = LSTM(xt, ht−1, ct) (6)

Here, yt−1 is the output word at time t − 1. As the cur-
rent new input, xt is word embedding of yt−1 based on
embedding matrix We. Each word yi is simply encoded
as the one-hot vector. ht−1 is the hidden state represent-
ing the conditional word sequence {y1, y2, · · · , yt−2} and
image I . ct is the context feature extracted from image at
time t, via the attention mechanism. This context feature
represents the dynamic combination of visual and semantic
information from image I .

Specifically, the detailed definition of LSTM model is as
follows:

it = σ(Wixxt +Wihht−1 +Wicct + bi) (7)

ft = σ(Wfxxt +Wfhht−1 +Wfcct + bf ) (8)

ot = σ(Woxxt +Wohht−1 +Wocct + bo) (9)

gt = tanh(Wgxxt +Wghht−1 +Wgcct + bg) (10)

mt = ft �mt + it � gt (11)

ht = mt � ot (12)

Here, it, ft, ot, gt, mt, ht are the input gate, forget gate,
output gate, modulated input, memory, and hidden state of
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Figure 2. The detailed structure of our fine-grained and semantic-guided attention model.

the LSTM at time t respectively. Moreover, the operation
σ, tanh, � are sigmoid, hyper tangent, and element-wise
multiplication respectively.

Finally, the probability of generating word yt at time t is
modeled based on input (previous word), hidden state, and
context feature:

p(yt|yt−1, · · · , y1, III) = f(ht, xt, ct)

= softmax(W tanh(Whht +Wcct + xt + bh) + b)
(13)

Soft-attention. Traditionally, the soft-attention mecha-
nism [1] selectively attends to relevant regions in the image
with reference to previously generated words, and gener-
ates an attention distribution in the form of a weight map
over all regions. A higher attention weight indicates that the
region has a higher relevance (or importance) to the gen-
eration of next word, and vice versa. Then, based on the
attention distribution, the information of relevant regions is
summarized together, and fed into the LSTM-decoder as the
above-mentioned context feature ct. Therefore, this atten-
tion mechanism serves as an agent between FCN-encoder
and LSTM-decoder by sending needed information from
the former to the latter. A better attention mechanism pro-
vides a more accurate context feature to the LSTM-decoder,
which can then generate a more accurate word for a higher
quality caption.

Our novel soft-attention mechanism is enhanced by both
the fine-grained resolution and the semantic guidance on the
basis of this novel FCN-LSTM framework. It can attend to
relevant regions more precisely based on a high-resolution
weight map. Moreover, the region-wise semantic guidance
provides a global view of semantic relations among all re-
gions. Both will make the context feature ct more accurate.
Details are further described in Section 3.2.

3.2. Fine-grained and Semantic-guided Attention

Illustrated by Figure 2, our attention mechanism com-
prises three layers: saliency pooling layer, attention distri-
bution prediction layer, and joint context computation layer.
It requires three inputs: V and S from FCN-encoder, and

ht−1 from LSTM-decoder. V is the spatial visual features
through which the attention model attends to relevant re-
gions locally. S is the spatial semantic representations re-
lated to pixel-wise semantic labels. It serves as a guidance
to provide the attention model a global view. The pixel-wise
nature of V and S contributes to the fine-grained attention.
ht−1 is the hidden state of LSTM at time t− 1, which con-
tains previously generated words and their corresponding
relevant image information. After the extraction of com-
pact visual features Vc and semantic representations Sc, it
predicts the attention distribution weight map αt over all
regions. Then, the context feature ct is computed by adding
two weighted sums of visual features Vc and semantic fea-
tures Se. Correspondingly, the attention model is specifi-
cally defined as:

ct = fatt(ht−1, V, S) (14)

which will be specifically described in the following five
parts:

Fine-grained Grid Attention. Our fine-grained grid
attention depends on pixel-wise nature of FCN-encoder,
which is demanded by the Semantic Segmentation task.
Therefore, the fine-grained grid resolution is determined by
the resolution of FCN-encoder’s grid output, and hence can
reach up to pixel level. Practically, most FCN-encoders can
only reach a certain small-patch level, and each grid cell
corresponds to a small patch (n×n pixels) in the image. Due
to this, all regions of relevant objects/stuff can be attended
to with a high spatial accuracy, as smaller patch can distin-
guish the object/stuff boundary more precisely. Particularly,
along the object boundary, the grid patch contains pixels of
both this object and its neighbors (including other objects
and stuff). Using smaller grid patch (i.e. fine-grained grid)
can mitigate the noisy information created by neighbor ob-
jects and stuff. Hence, the context feature will be more ac-
curate because of less irrelevant information.

Saliency Pooling Layer. Ideally, FCN may ultimately
provide pixel-level labeling and pixel-level visual feature,
which then may be fed into rest layers of the neural network
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Figure 3. An illustration of saliency pooling layer for a single field (a) and the entire image (b).

for further processing. However, in practice, due to the con-
straint of computation power, the rest layers can process a
limited number of patches although the patch can be of fine-
grained size because of the nature of FCN. That is, the vi-
sual feature and semantic representation of pixels inside a
patch of given size have to be pooled together. Normally,
this process on visual feature can be carried out through a
common average pooling which simply sums the visual fea-
tures of all pixels inside patch equally. In this paper, we pro-
pose Saliency Pooling which only pools the visual features
of salient pixels. The salient pixels are defined as those pix-
els whose pixel labels generated by FCN dominate inside
the patch. The pooling process can be modeled as:

(Vc, Sc) = Poolingsp(V, S) (15)

Vc = {vc1, vc2, · · · , vcl} (16)

Sc = {sc1, sc2, · · · , scl} (17)

Displayed in Figure 3, it pools visual features V of the orig-
inal grid resolution to a compact visual features Vc at an
acceptable lower level (i.e. Mc ×Mc), under the guidance
of semantic representations S. Sc is the compact semantic
representation. Let ssali denote the labels of pixels which
dominate the area inside the patch i, where i = 1, 2, ..., l.
Then, sci in Equation 17 can be defined as:

sci = ssali (18)

Correspondingly, the number of grid locations is reduced
to l = M2

c . Each vci is a brief visual feature pooled
from those original visual features inside the pooling field
i. Saliency pooling layer generates the visual feature vci in
Equation 16 based on salient pixels only. In the Equation 19
below, vc is a generic representation of any patch vci, where
i = 1, 2, , l.

vc =
1

w2

w2∑
j=1

vj · fsal(sj) (19)

fsal(sj) =

{
1, sj = ssal

0, sj 6= ssal
(20)

where j stands for the relevant location of each pixel inside
the w × w pooling field. w × w is the size of patch where
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Figure 4. An illustration of attention distribution prediction layer
(a) and joint context computation layer (b).

pooling processing is carried out. vj is the visual feature of
each pixel. w2 represents the number of pixels inside the
pooling field.

From Equation 19, it may be seen that if fsal(sj) is en-
forced to be 1, saliency pooling is equivalent to the common
average pooling. As seen in Figure 3, the output of saliency
pooling layers are the salient visual features on the patches
(i.e. pooling visual feature on salient pixels in the patch)
and salient pixel labels of the patches.

Attention Distribution Prediction Layer. In Figure 2,
the inputs of Attention Distribution Prediction Layer in-
clude visual feature pooling (i.e. the proposed saliency
pooling or the simple common average pooling), explicit se-
mantic guidance, and the hidden state ht−1 feedback from
LSTM. In the existing CNN-LSTM framework [5, 14, 24],
there is no such explicit sematic guidance.

Similar to the word embedding for LSTM-decoder, the
compact semantic representations Sc are a map of semantic
label words, which are encoded as the one-hot vector. So,
they need to be embedded into dense semantic features via
the embedding matrix Wes.

Se =WesSc = {se1, se2, · · · , sek} (21)

The attention prediction model is specifically designed
as a two-layer perception. The first layer is mainly respon-



sible for feature fusion. From different feature spaces, the
hidden state ht−1, compact visual features Vc, and dense se-
mantic features Se are mapped into a shared feature space
by embedding matrices Whe,Wv , and Wse respectively. As
the hidden state ht−1 does not have the spatial dimension,
an all-one vector 1̂̂1̂1 is used to extend its spatial dimension
by simple copying. Then, these three embedded features
are merged via the element-wise sum and fed into the hy-
perbolic tangent activation function. The overall process
can be illustrated as in Figure 4. The fused feature zt is fed
into the second layer with a softmax function, to generate
the attention weights over the l grid regions.

zt = tanh(Wheht−11̂̂1̂1 +WvVc +WseSe + bz) (22)

αtαtαt = softmax(Wattzt + batt) = {αt1, αt2, · · · , αtl} (23)

where αti represents the attention distribution for grid loca-
tion i = 1, 2, ..., l at time t.

Note that the semantic aggregation serves as the explicit
guidance, as the semantic meanings of labels are fully used
for guiding the prediction model. Specifically, the seman-
tic labels are firstly embedded into dense semantic features,
and then mapped into a shared feature space so as to guide
the layer to predict the attention distribution explicitly.

Joint Context Computation Layer. Based on the at-
tention weights, the visual context feature cvt is computed
as the weighted sum of compact visual features Vc, and the
semantic context feature cst is calculated as the weighted
sum of dense semantic features Se. See Figure 4 (b). Then,
the joint context feature ct is computed as the element-wise
sum of cvt and cst, and fed into LSTM-decoder for word
generation.

cvt = αtαtαt · Vc =
l∑
i=1

αtivci (24)

cst = αtαtαt · Se =
l∑
i=1

αtisei (25)

ct = cvt + cst (26)

In Equation 26, without considering cst, ct will become
the aggregated visual feature based on attention distribution
only. That is, ct only presents the visual context instead
of joint context. The initial states of LSTM-decoder are
provided in supplementary material.

4. Experiment
Experiments are designed to demonstrate two advan-

tages of our model: the fine-grained grid attention, and se-
mantic guidance. The saliency guidance is used in saliency
pooling layer. The explicit semantic guidance is adopted
in attention distribution prediction layer. The joint con-
text computation layer summarizes the context of semantic
guidance for LSTM-decoder.

Table 1. Performances compared with the state-of-the-art models
on MSCOCO test split via all metrics

Method B@1 B@2 B@3 B@4 MTR CIDEr
NIC v1 [22] 0.666 0.461 0.329 0.246 - -
DeepVS [11] 0.625 0.450 0.321 0.230 0.195 0.660

emb-gLSTM [10] 0.670 0.491 0.358 0.264 0.227 -
m-RNN [17] 0.670 0.490 0.350 0.250 - -

SCA-VGG-1layer [5] - - - 0.281 0.235 0.847
Soft-Attention [24] 0.707 0.492 0.344 0.243 0.239 0.773
Hard-Attention [24] 0.718 0.504 0.357 0.250 0.230 -

Our model 0.712 0.514 0.368 0.265 0.247 0.882

4.1. Datasets and Metrics

Our experiments use two datasets. MSCOCO is the
largest dataset for image captioning, with 82,783 training
images, 40,504 validation images, and 40,775 testing im-
ages. For the offline evaluation, we use the same data split
as [24, 28], containing 5000 images for validation and test
respectively. COCO-Stuff is a more semantic-complete
dataset for Semantic Segmentation. In total, it has 10,000
images sampled from MSCOCO training images, and an-
notations for 80 objects, 91 stuff, and 1 unknown back-
ground. Our DeepLab encoder is pre-trained on MSCOCO
80-object dataset and then finetuned on this COCO-stuff
dataset. We use BLEU (B@1, B@2, B@3, B@4) [18],
METEOR [2], and CIDEr [21] as evaluation metrics. Their
scores are calculated via the COCO captioning evaluation
tool [13].

4.2. Settings

FCN-encoder. A elegantly designed DeepLab [4], de-
signed based on VGG-16 [20], is used as the FCN-encoder.
The spatial visual features are extracted as the mean of
four sets of spatial visual features with different Field-Of-
View(FOV) from the outputs of the second last layer. Its
dimension is 81 × 81, 1024d. The spatial semantic repre-
sentations are extracted from the outputs of the final layer,
which has dimension of 81× 81, 1d.

LSTM-encoder. A single-layer LSTM with hidden size
of 1024 is used in our model. The dimension of word em-
bedding is 1024.

Attention model. The output size of Saliency Pooling
Layer is set as 14 × 14, 1024d and 27 × 27, 1024d respec-
tively. 14 × 14 is selected to make comparisons with the
Soft-Attention model [24]. 27×27 is the highest resolution
we can achieve to demonstrate the improvements of fine-
grained attention.

4.3. Quantative Analysis.

The proposed method is motivated by soft-attention [24]
which is based on the spatial visual attention idea. Thus,
it is necessary to compare the performance of the proposed
method against this method. In our implementation, we do
not carry out fine-tuning by re-training the visual encoder



Table 2. Performances of our ablated models on MSCOCO test split on all metrics
Attention Resolution Semantic Guidance B@1 B@2 B@3 B@4 METEOR CIDEr

14 x 14 (Soft-Att) Case 1 - Average Pooling 0.707 0.492 0.344 0.243 0.239 0.773
14 x 14 Case 2 - Saliency Pooling 0.703 0.501 0.354 0.251 0.240 0.827
14 x 14 Case 3 - Explicit Guidance 0.705 0.504 0.358 0.255 0.241 0.846
14 x 14 Case 4 - Joint Context Feature 0.708 0.507 0.360 0.257 0.242 0.846
27 x 27 Case 1 - Average Pooling 0.707 0.505 0.357 0.254 0.241 0.837
27 x 27 Case 2 - Saliency Pooling 0.708 0.507 0.359 0.256 0.241 0.839
27 x 27 Case 3 - Explicit Guidance 0.709 0.508 0.361 0.258 0.242 0.844
27 x 27 Case 4 - Joint Context Feature 0.712 0.514 0.368 0.265 0.247 0.882

Table 3. Qualitative Analysis on the Advantages Provided by Higher Attention Resolution. In the illustration, each image provides two
attention maps corresponding to two most meaningful nouns in the captions under two different attention resolutions. Attention maps with
blue/red boundaries correspond to the words highlighted by blue/red respectively.

Image 1 14 × 14 Attention 27 × 27 Attention Image 2 14 × 14 Attention 27 × 27 Attention

Caption (14 × 14): A boy is playing baseball on a field. Caption (14 × 14): A baseball player swinging a bat at a ball.
Caption (27 × 27): A young boy is playing soccer on a field. Caption (27 × 27): A baseball player is swinging his bat.

Image 3 14 × 14 Attention 27 × 27 Attention Image 4 14 × 14 Attention 27 × 27 Attention

Caption (14 × 14): A fire hydrant on the side of the street. Caption (14 × 14): A man riding a wave on top of a surfboard.
Caption (27 × 27): A yellow fire hydrant sitting on the side of a street. Caption (27 × 27): A man riding a surfboard on a wave in the ocean.

on the large captioning dataset like Adaptive-Attention [14],
MSM [27] and ATT-FCN [28] do. To maintain a fair
comparison in order to show the performance boosted by
fine-grain and semantic-guided attention, this paper only
compares with those approaches using a VGG-based en-
coder like our method, such as DeepVS [11], NIC v1 [22],
emb-gLSTM [10], m-RNN [17], SCA-VGG-1layer [5], and
hard-attention [24].

Table 1 shows results on the test split of MSCOCO
dataset. Our model significantly outperforms all chosen
state-of-the-art models over all metrics. Particularly, when
compared with the base-line model Soft-Attention [24], our
model improves the CIDEr score from 0.773 to 0.882, and
the METEOR score from 0.239 to 0.247, and the B@4 from
0.243 to 0.265.

To better demonstrate the performance improvements
contributed by the key components in our framework, the

intermediate results along with framework are shown in Ta-
ble 2. In this table, two fine-grained attention resolutions
are adopted. For semantic guidance, there are four different
cases according to framework design in Figure 2. Case 1
- Common average pooling scheme is adopted in pooling
layer. Then, the aggregated visual features are fed into the
rest layers without considering semantic information at all.
This is the base-line scheme of the proposed framework.
Case 2 - Instead of common average pooling, the frame-
work adopts saliency pooling in the pooling layer. How-
ever, the semantic aggregation for explicit semantic guid-
ance is not fed into rest layers of the framework. Case 3 -
Saliency pooling results along with explicit semantic guid-
ance are both fed into attention distribution prediction layer.
However, explicit semantic guidance is not fed into the last
context computation. Case 4 - All components are fully
adopted as illustrated in Figure 2. The Soft-Attention [24]



Table 4. Qualitative Analysis on the Advantages Provided by Semantic Guidance. The analysis is carried out on 27 × 27 attention. The
attention maps of different color boundaries (i.e. blue, green and red) correspond to the different words (highlighted by blue, green or
red) in the captions. The words by red color are not discovered without semantic guidance, instead, which are captured by the proposed
methods by using semantic guidance.

Original Image More Precise Attention Provided by Semantic Guidance New Meaningful
Words Discovered

No Semantic Guidance Semantic Guidance No Semantic Guidance Semantic Guidance by Semantic Guidance

Image 1 Caption (No semantic guidance): A herd of sheep standing on top of a grass covered field.
Caption (Semantic guidance): A herd of sheep gazing on a dry grass field.

Image 2 Caption (No semantic guidance): A man in a suit and tie holding a umbrella.
Caption (Semantic guidance): A woman walking down a street holding an umbrella.

model belongs to Case 1 at the 14× 14 resolution.
By comparing Case 1 under 14×14 and 27×27 attention

resolutions, merely increasing the attention resolution sig-
nificantly improves the performance (e.g. 0.064 in CIDEr
and 0.011 in B@4). Moreover, Case 1 under 27×27 already
outperforms most methods in Table 1. For both attention
resolutions, integrating saliency pooling, explicit guidance,
and joint context feature one by one can all lead to better
performances. Although very modest, the improvements of
adding each component are steady and consistent, and can
be demonstrated as sense-making by below insightful quali-
tative analysis. Furthermore, the accumulated improvement
of all semantic guidances (Case 4 v.s. Case 1 under 27×27)
is also significant. The CIDEr is boosted by 0.045, B@4
by 0.011, and METEOR by 0.006. Our best model under
27 × 27 resolution and with full semantic guidance (Case
4) has the best performance, and can beat nearly all models
in Table 1.

4.4. Qualitative Analysis

We further visualize the improved attention maps and
captions by increasing the attention resolution from 14×14
to 27 × 27. Table 3 shows that attention with higher res-
olution can capture related regions more accurately. In im-
age 2, the 27 × 27 attention model can attend to the ‘bat’
regions accurately, whereas the 14× 14 attention model at-
tends to wrong regions. In image 1, the 14 × 14 attention
model generates the wrong word ‘baseball’ due to inaccu-
rate attention. All blue-color words, such as ‘boy’, ‘player’,
‘hydrant’ and ‘man’, have more accurate attention maps un-
der 27 × 27 resolution. Moreover, stuff region like ‘street’
in image can also be correctly located. In the meantime, it
is noticed that the overall quality of captions under higher

attention resolution is improved, which is more meaningful.
More experimental results of visualizations are provided in
supplementary material.

We also analyze the improvements on semantic compre-
hension that are brought by the semantic guidance in Table
4. Obviously, the semantic guidance helps the model at-
tend to large-area objects/stuffs, such as ‘grass’ in image
1. Besides the improvement on the completeness and/or
correctness of the attention maps, the semantic guidance
can also discover new meanings to make the caption more
meaningful. For image 2, ‘street’ is not captured without
using semantic guidance. After introducing semantic guid-
ance in the proposed method, they are exposed in the new
captions. In image 1, the word ‘gazing’ is more precise than
‘standing’, and attentions have correctly focused onto those
regions where sheeps are eating grass. Therefore, adding
semantic guidance can greatly increase the caption quality.
More experimental results of visualizations are provided in
supplementary material.

5. Conclusion

In this paper, we propose a fine-grained and semantic-
guided attention mechanism over a novel end-to-end FCN-
LSTM framework for image captioning for the first
time. Our model achieves state-of-the-art performances on
MSCOCO dataset, compared with models having a VGG-
based encoder. Moreover, our model is more of a frame-
work that can be easily adapted to all Soft-Attention-based
approaches. The results show that our model has a huge
potential for a comprehensive attention on the abstract vi-
sual relation. Moreover, our framework can have a broad
application in other tasks, like Image QA.
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