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Abstract—The soft-attention mechanism is regarded as one
of the representative methods for image captioning. Based
on the end-to-end Convolutional Neural Network (CNN)-Long
Short Term Memory (LSTM) framework, the soft-attention
mechanism attempts to link the semantic representation in text
(i.e., captioning) with relevant visual information in the image
for the first time. Motivated by this approach, several state-
of-the-art attention methods are proposed. However, due to
the constraints of CNN architecture, the given image is only
segmented to the fixed-resolution grid at a coarse level. The
visual feature extracted from each grid indiscriminately fuses
all inside objects and/or their portions. There is no semantic
link between grid cells. In addition, the large area “stuff” (e.g.,
the sky or a beach) cannot be represented using the current
methods. To address these problems, this paper proposes a new
model based on the Fully Convolutional Network (FCN)-LSTM
framework, which can generate an attention map at a fine-
grained grid-wise resolution. Moreover, the visual feature of
each grid cell is contributed only by the principal object. By
adopting the grid-wise labels (i.e., semantic segmentation), the
visual representations of different grid cells are correlated to
each other. With the ability to attend to large area “stuff”, our
method can further summarize an additional semantic context
from semantic labels. This method can provide comprehensive
context information to the language LSTM decoder. In this
way, a mechanism of fine-grained and semantic-guided visual
attention is created, which can accurately link the relevant
visual information with each semantic meaning inside the text.
Demonstrated by three experiments including both qualitative
and quantitative analyses, our model can generate captions of
high quality, specifically high levels of accuracy, completeness,
and diversity. Moreover, our model significantly outperforms all
other methods that use VGG-based CNN encoders without fine-
tuning.

Index Terms—image captioning, attention mechanism, fine-
grained resolution, semantic guidance, Fully Convolutional
Network-Long Short Term Memory framework.

I. INTRODUCTION

V ISUAL captioning is a challenging multi-modal scene
understanding task, requiring a deep understanding of

two totally different types of media data, i.e., vision and
language. In this sense, this task bridges Computer Vision
and Natural Language Processing [1]. “Vision” refers to a raw
appearance of open-ended and free-form real-world scenes [2],
whereas “language” refers to a high-level extraction with
a strict structure. Therefore, the nature of this task makes
multi-modal learning [3] on these two types of modal data
challenging, specifically shared feature space modeling [4] and
semantic alignment learning [5]. Although the task is easily
handled by humans, it is difficult for AI. Therefore, visual
captioning is regarded as an important AI-complete task, as it

aims to achieve the ultimate AI goal. Through the automatic
generation of captions based on a comprehensive understand-
ing of real-world scenes, visual captioning can benefit human-
machine interaction, autonomous/assisted driving, and intelli-
gent navigation for visually impaired people. Currently, most
research focuses on the problems associated with two major
tasks: image captioning [6]–[19] and video captioning [20],
[21]. Video captioning is the more difficult task of the two, as
video involves an extra temporal dimension [4].

An accurate and diverse description requires a comprehen-
sive understanding of objects and/or “stuff” [22], and their
mutual relationships/interactions in all the different image
regions, which are then selectively dealt with according to their
semantic relationships to each generated word. Such a visual
attention mechanism has attracted a great deal of research
interest, leading to significant performance improvement [6]–
[11], [19]–[21]. Generally, the attention mechanism has two
roles. The first one is to learn a shared features space, where
vision and language can be jointly modeled. The second one
is learning semantic alignment, by mapping together related
visual elements and words/phrases. This mechanism can be
further extended to multiple types of multimedia data [2],
[21], [23], Affective Analysis and Retrieval [3], context mod-
eling [5], semi-supervised annotation [24], etc.

Most state-of-the-art spatial visual attention models are
based on the Convolutional Neural Network (CNN)-Long
Short Term Memory (LSTM) framework in an end-to-end
trainable way [7]–[9], [19]–[21]. CNN plays the role of
image encoder, responsible for understanding visual regions
and encoding them into region-specific features at different
locations. There are two main ways of capturing regions. The
most common method is to divide the image into grid cells
based on the model structure of CNN [7]–[9], [20], [21], which
is a hard way of splitting regions. To encode each grid region
in the image, the outputs of the last convolutional layer in
CNN are usually extracted as the visual feature representation
for each region. Another method involves capturing regions at
the object level using bounding box [19], which is adaptive
and accurate. Similar to CNN for grid-based region features,
Region-CNN (R-CNN) is used for providing object candidates
and extracting their visual features. As a caption decoder,
LSTM is responsible for understanding all words that have
been generated and generating the following word at each
time step. The attention mechanism serves as an agent between
CNN encoder and LSTM decoder. In generating each word,
the mechanism makes joint inferences and adaptively attends
to those semantically related image regions by generating a
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Fig. 1. The overview of our proposed framework.

distinct attention weight for each region. Based on this weight
map, a visual context feature is firstly summarized through the
weighted sum of all region features encoded by CNN and is
then fed into the LSTM for language inference. In general, an
accurate and comprehensive understanding of all grid regions
at the image encoder side is the premise for a stronger attention
mechanism, and hence plays a fundamental role in generating
high-quality captions in terms of accuracy, completeness, and
diversity.

However, to the best of our knowledge, current soft-
attention-based approaches only use CNN as the image en-
coder to create the attention module. Their underlying CNN-
LSTM framework has four limitations in providing an accurate
attention mechanism and high-quality captions: 1) Due to
the constraints of current CNN architecture, the attention
mechanism has a fixed low grid resolution in the soft-attention
framework. [25] supports attention mechanism in a 14 × 14
grid resolution using VGG as CNN encoder. [26] and [20]
supports a 7 × 7 grid resolution using ResNet and Inception
V3. Moreover, it is impossible to elevate it to a fine-grained
level. 2) The representation of each grid cell is indiscriminately
a mix of visual information about all objects and/or their
portions inside this cell. Therefore, it lacks the semantic
correspondence related to the most salient visual cue within the
grid cell. 3) Due to the lack of mutual reference information
across grid cells, those different grid cells containing partial
visual information of the same objects cannot be correlated
to each other. The semantic visual guidance just does not
exist across grid cells. 4) Due to the object-oriented nature of
the CNN encoder, existing soft-attention frameworks are not
able to recognize and describe large area stuff, like the sky,
beaches, and grass. Hence, the context information cannot be
well represented based only on object information. Therefore,
overcoming these four limitations would enhance the caption
quality.

In addition, there are some special CNN-LSTM variants that
use R-CNN as the image encoder [19], [27], [28]. Specifi-
cally, [19] proposed an object-level attention mechanism. This
improvement can mitigate limitations 1) and 3) to a certain
extent by attending to object proposals. The entire object
region can be attended in a bounding box, preventing the

splitting of one object into several grid-cell regions. However,
it still suffers from the other two limitations. Other visual
information is still mixed in the bounding box region. Only
objects can be attended to by a bounding box, which is not
the case for stuff of irregular shape [22]. Moreover, semantic
connections between objects are overlooked.

In this paper, we propose a novel image captioning model
with fine-grained and semantic-guided visual attention based
on a novel Fully Convolutional Network (FCN)-LSTM frame-
work, inspired by the soft-attention framework [9]. It leverages
the spatially dense and semantically abundant outputs of FCN
to solve the above-mentioned limitations. FCN is particularly
designed for semantic segmentation task, specifically the dense
pixel-level predictions [29], [30]. Therefore, it naturally excels
in generating both visual features and semantic labels in
the form of a spatial grid at a fine-grained level, which
theoretically can reach the pixel level. Therefore, our model
has five strengths:

1) Our model can have a fine-grained visual attention at
a higher grid resolution, given the same sized image.
It can attend to relevant object regions accurately, and
hence can extract a precise context feature with a limited
amount of noises. Moreover, the grid resolution of our
attention module can be flexibly adjusted.

2) As the FCN encoder is both object-oriented and stuff-
oriented, our model can extract a comprehensive repre-
sentation of context information by attending to large
area stuff, such as the sky or a beach. Therefore, the
contextual inference is more comprehensive and accu-
rate.

3) Based on pixel-level semantic labels, our model can
represent each grid cell based on the dominating area
that is associated with an object or its portion inside the
cell. This saliency-related semantic correspondence can
be maintained when the resolution is adjusted.

4) Guided by the semantic labels of all grid cells, our model
can grasp the semantic layout across grid cells, and
efficiently associate the grid cells containing different
portions of the same object. In this way, incorrect
inferences can be mitigated.

5) The semantic context feature can also be summarized
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from semantic labels to form the joint context feature
with a visual context feature. This joint context feature
can provide strong context information to the LSTM
decoder.

Having the fine-grained and semantic-guided attention
mechanism, our FCN-LSTM model demonstrates state-of-the-
art performance on the Microsoft Common Objects in COn-
text (MSCOCO) dataset [31] on metrics such as BLEU@N
(BiLingual Evaluation Understudy @ N-gram) [32], ME-
TEOR [33], and CIDEr (Consensus-based Image Description
Evaluation) [34]. Specifically, this study is based on three
experiments, demonstrating that our model can generate high-
quality captions with high levels of accuracy, completeness,
and diversity. In experiment 1, the high attention resolution can
enhance the accuracy of both the attention map and meaningful
words, particularly for small area objects. In experiment 2,
integrating the semantic guidance into our model can further
enhance the attention accuracy, particularly for large area
objects and stuff. Iit can also make the single caption more
complete by generating new meaningful words. In experiment
3, the diversity of the top three captions is enhanced by se-
mantic guidance. Regarding semantic guidance in experiment
2 and 3, three forms of integration are combined: Saliency
Guidance (Case 2), Explicit Semantic Guidance (Case 3), and
Semantic Context Feature (Case 4).

This paper is organized into five sections: This first section
is an introduction, which is followed by the second section
about related works. In section three, our model will be
described in detail. Section four will provide the experiment
details. The last section will be a conclusion of this study.

II. RELATED WORKS

Image captioning has attracted a great deal of research
interests, and many different models have been proposed. Re-
cently, due to substantial advances in Deep Neural Networks
(DNNs) [19], [25], [26], [29], [30], [35], most state-of-the-art
approaches are mainly based on this framework. In particular,
the best one is the encoder-decoder neural framework [6]–
[11], [19], [36]–[43] inspired by Machine Translation [36].
In this mainstream framework, CNN is generally used as the
visual encoder that is responsible for understanding the visual
scene, and RNN serves as the language decoder, understanding
and generating language. Specifically, the CNN encoder is re-
sponsible for extracting image features at the highest semantic
level. These image features are then fed into RNN decoder to
generate the natural language caption in a sequential manner,
word-by-word.

Attention mechanism is a significant area of research,
which can achieve the state-of-the-art performance. Caption
generation is a dynamic decoding process in which each
different time-step needs a different combination of visual
information. To this end, the attention mechanism bridges the
CNN encoder and Recurrent Neural Network (RNN) decoder
together efficiently by enabling the RNN decoder to adaptively
attend to, via a weight map, only those image features that are
semantically related to the word to be generated at a certain
time-step. Based on this weight map, a context feature is

summarized by using the weighted sum, and it is then fed into
the RNN decoder for language inference. So far, the attention
mechanism has been researched in three respects. They all try
to establish an alignment between visual information and word
information in an LSTM style. The major difference between
these attention methods lies in the outputs of the encoder.

A. Grid-wise visual feature without a semantic label

This type of attention model focuses on which spatial
regions need to be attended to. The features of regions at
different locations are extracted by the CNN encoder from
its last convolutional layer and fed into the attention model
for relativity inference. This type of attention mechanism
is generally integrated into an end-to-end trainable encoder-
decoder framework, and it is trained implicitly without any
explicit supervision. As the pioneer in attention mechanism
research, [9] proposed a 14x14 grid resolution (VGG) spatial
attention model for image captioning using two different
pooling methods. The ”soft” attention model combines all
spatial features based on soft probabilistic attention weights,
whereas the ”hard” attention model attends to the only one
region feature with the highest relevance based on hard bi-
nary weights. [20] applied this pipeline to video captioning,
extending the attention mechanism from the spatial dimension
to the temporal dimension. [8] further proposed a time-wise
adaptive attention model, at a 7x7 grid resolution (ResNet),
by introducing a visual sentinel. For each word generation,
this model can automatically determine when to attend to
the image regions and when to simply rely on the decoder
knowledge. Based on the nature of CNN structure, [7] pro-
posed a novel channel-wise and multi-layer spatial attention
model, which additionally attend to related channels among the
multi-layer feature maps. Different channels in a certain layer
represent a specific semantic concept, which has a different
level of semantic abstraction as a different layer. However, all
these spatial attention models have a fixed low grid resolution,
which is difficult to convert to high grid resolution. Moreover,
being object-oriented due to the nature of the CNN encoder,
they are not able to recognize large area stuff as the sky or a
beach. Another problem is that it lacks the ability to represent
the connections between the grid cells on the image.

B. Attribute-based visual representation

This type of attention model chooses which semantic con-
cepts need to be prioritized. The image feature is represented
by a confidence vector for all concepts, which is a mixture
of objects, stuff, attributes, interactions, relations, etc. [11]
proposed a semantic attention model to attend to related visual
attributes for inputs and outputs respectively. These attributes
are detail-oriented and are trained by convolutionalized CNN
with Multiple Instance Learning (MIL) in a separate stage.
Based on the gLSTM model, [44] proposed a text-conditional
semantic attention model. Using this attention model, the
caption generator can automatically learn on which parts of
the image feature it should focus, given previously generated
text. Although such models involve rich semantic concepts,
they lack the significant spatial layout.
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C. Objectness-based visual representation

This model aims to identify the latent correspondence
between sentence segments and image regions which corre-
sponds to the objects detected in the image. [28] proposed
an alignment model, based on Region-CNN (R-CNN) and
Bidirectional RNN (BRNN), to infer the latent alignments
between image regions and segments of sentences by treating
the sentences as weak labels. Then, an end-to-end multi-
modal RNN model was proposed to generate descriptions
for image regions. To be able to automatically locate and
describe object regions, [27] proposed an end-to-end trainable
Fully Convolutional Localization Network (FCLN) model to
resolve a dense captioning problem, namely localizing and
describing the salient regions of images. By further integrating
the image-level feature as a global context with object-level
features, [19] proposed a global-local attention model. The
model can attend to related local objects and global context
information simultaneously. However, these methods focus too
much on objectness rather than the large area stuff using the
bounding box, and they overlook the connections between
these detected objects.

To the best of our knowledge, our FCN-LSTM model is
the first work to propose a novel attention mechanism that
combines grid-wise visual representation with the grid-wise
semantic label at a fine-grained resolution. Moreover, our
model can grasp the semantic connections between all objects
and stuff in the image.

III. METHOD

We firstly describe the overall FCN-LSTM framework for
our captioning model in Section A, and then further introduce
our fine-grained and semantic-guided attention modules in
Section B.

A. FCN-LSTM Framework for Image Captioning

Similar to the mainstream CNN-LSTM framework, our
novel FCN-LSTM framework is also a variant of the Encoder-
Decoder framework for image captioning. It can be regarded
as a translation from vision to language. The FCN encoder
firstly extracts both visual representations and semantic labels
from the input image at the pixel level, then the LSTM decoder
generates caption word-by-word based on joint understanding
over the visual and semantic information. Given an image and
its corresponding caption, the FCN-LSTM model maximizes
the probability of word sequence:

θθθ∗ = argmax
θ

∑
(III,yyy)

log p(yyy|III;θθθ) (1)

where θθθ represents the model parameters, III is the image, and
y = {y1,y2, · · · ,yt} is the word sequence of corresponding
caption. Based on chain rule, the log likelihood of the joint
probability distribution over y is comprised of TTT conditional
probabilities:

log p(yyy) =

T∑
t=1

log p(yt|yt−1, · · · , y1, III) (2)

where TTT is the total length of the caption. Here, the depen-
dency on model parameters θθθ is removed for convenience.
During the training phase, (III,yyy) is a training image-caption
pair, and the overall optimization objective is the sum of log
probabilities over all training pairs in the training set. During
the testing phase, only image III is fed into the model for
caption generation.

Specifically, our FCN-LSTM framework consists of three
parts: FCN encoder, LSTM decoder, and soft-attention model
(Figure 1). It firstly uses the FCN encoder to extract both
spatial visual features and semantic representations from the
image at the pixel level. Then, the fine-grained and semantic-
guided soft-attention summarizes all outputs of the FCN
encoder into a joint context feature for the LSTM decoder
to generate captions.

1) FCN Encoder: Particularly designed for the semantic
segmentation task, FCN can directly perform the pixel-wise
classification. To encode the image, our framework employs
the FCN to directly extract both visual feature and semantic
label for each different pixel in the image. First of all, the
N×N sized image III can be represented by the spatial visual
features:

V = FCNv(III) = {v1, v2, · · · , vk} (3)

where k = N2 is the number of image pixels. Each feature
vi ∈ Rd is a d dimensional representation corresponding to an
image pixel. Specifically, the visual features are taken from the
second last layer of FCN. This is similar to what CNN encoder
does in the CNN-LSTM framework. Differently, the image III
also has corresponding spatial semantic representations:

S = FCNs(III) = {s1, s2, · · · , sk} (4)

where si is a semantic label for each pixel indicating which
object or stuff it may belong to. Note that the concatenation
of 2-D image pixels into 1-D form does not break the spatial
correspondence.

2) LSTM Decoder: As each conditional probability in
Equation 2 can be naturally modeled based on the RNN,
our model adopts the LSTM as the caption decoder. At
time t, the previous conditional variable-length word sequence
{y1, y2, · · · , yt−1} and image I are represented by the fixed-
length hidden state ht of LSTM as following:

xt =Weyt−1 (5)

ht = LSTM(xt, ht−1, ct) (6)

Here, yt−1 is the output word at time t − 1. As the current
new input, xt is the word embedding of yt−1 based on the
embedding matrix We. Each word yi is simply encoded as
the one-hot vector. ht−1 is the hidden state representing the
conditional word sequence {y1, y2, · · · , yt−2} and image I .
ct is the context feature extracted from image at time t by
the attention mechanism. This context feature represents the
dynamic combination of visual and semantic information from
image I .

Specifically, the detailed definition of the LSTM decoder is
as follows:

it = σ(Wixxt +Wihht−1 +Wicct + bi) (7)
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ft = σ(Wfxxt +Wfhht−1 +Wfcct + bf ) (8)

ot = σ(Woxxt +Wohht−1 +Wocct + bo) (9)

gt = tanh(Wgxxt +Wghht−1 +Wgcct + bg) (10)

mt = ft �mt−1 + it � gt (11)

ht = mt � ot (12)

Here, it, ft, ot, gt, mt, ht are the input gate, forget gate, output
gate, modulated input, memory, and hidden state of the LSTM
at time t respectively. Moreover, the operation σ, tanh, � are
the sigmoid, hyper tangent, and element-wise multiplication
respectively.

Finally, the probability of generating word yt at time t is
modeled based on the input (previous word), hidden state, and
context feature as follow:

p(yt|yt−1, · · · , y1, III) = f(ht, xt, ct)

= softmax(W tanh(Whht +Wcct + xt + bh) + b)
(13)

B. Fine-Grained Grid-Wise Soft-Attention

Traditionally, the soft-attention mechanism [36] selectively
attends to relevant regions in the image with reference to
previously generated words and generates an attention dis-
tribution in the form of a weight map over all regions. A
higher attention weight indicates that the region has a higher
relevance (or importance) to the generation of the next word
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Fig. 4. An illustration of the attention distribution prediction layer (a) and
joint context computation layer (b).

and vice versa. Then, based on the attention distribution, the
information of relevant regions is summarized together and
fed into the LSTM decoder as the above-mentioned context
feature ct. Therefore, this attention mechanism serves as an
agent between the FCN encoder and the LSTM decoder by
sending needed information from the former to the latter. A
better attention mechanism provides a more accurate context
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feature to the LSTM decoder, which can then generate a more
correct word for a caption of higher quality.

Our soft-attention mechanism is enhanced by the fine-
grained attention resolution based on this novel FCN-LSTM
framework. It can attend to relevant regions more accurately
based on a higher resolution weight map, which will make
the visual context feature ct more accurate. Specifically, our
fine-grained attention inherits the pixel-wise nature of the FCN
encoder, which is practically grid-wise so far. Therefore, the
fine-grained grid-wise resolution is determined by the resolu-
tion of the FCN encoder’s grid output, which can theoretically
reach up to the pixel level. Actually, most FCN encoders
can only reach a certain small-patch level, and each grid cell
corresponds to a small patch (n× n pixels) in the image. Due
to this, all regions of relevant objects/stuff can be attended to
with a high spatial accuracy, as smaller patch can distinguish
the object/stuff boundary more precisely. Particularly, at the
object boundary, the grid patch contains pixels of both this
object and its neighbors (including other objects and stuff).
Using a smaller grid patch (i.e., fine-grained grid) can mitigate
the noisy information created by neighbor objects and stuff.
Hence, the context feature will be more accurate because of
less irrelevant information.

Therefore, our fine-grained grid-wise attention is modeled
as Equation 14. It requires three inputs: V and S from the
FCN encoder, and ht−1 from the LSTM decoder. V represents
the spatial visual features through which the attention model
attends to relevant regions locally. S represents the spatial
semantic representations related to pixel-wise semantic labels.
M × M is the grid resolution, and g = M2 is the number
of locations. The fine-grained grid-wise nature of V and S
contributes to the fine-grained attention. αti represents the
attention weight for the grid cell at the location i = 1, 2, ..., l
and the time t. ht−1 is the hidden state of the LSTM decoder
at the time t− 1, which contains previously generated words
and their corresponding relevant image information.

ct = fatt(ht−1, V, S) (14)

V = {v1, v2, · · · , vg} (15)

S = {s1, s2, · · · , sg} (16)

αtαtαt = {αt1, αt2, · · · , αtg} (17)

Note that we use a different symbol g to indicate the original
grid resolution, which equals to the resolution of the FCN
encoder’s outputs. This would equal to k (in Equation 3,4)
when the FCN encoder achieves the pixel level. S plays the
role of semantic guidance, which will be illustrated in below
parts.

This part aims to enhance the accuracy of the attention map
via merely fine-grained visual features, which would further
enhance the meaning accuracy of generated keywords. In this
way, the caption quality is improved specifically in terms of
accuracy. The improvement of this part is demonstrated by
Experiment 1 in Subsection C of Experiment.

C. Semantic-Guided Attention

In addition to the fine-grained attention resolution, the grid-
wise semantic labels also serve as the semantic guidance
for the attention model. Firstly, it provides a global view of
semantic relationships among all grid-cell regions and hence
can enhance the accuracy of the attention map and keyword.
Moreover, it enriches the context feature with semantic context
feature, which can benefit the completeness and diversity of
captions. Illustrated by Figure 2, our attention mechanism
comprises three layers: the saliency pooling layer, the attention
distribution prediction layer, and the joint context computation
layer. The saliency pooling layer firstly extracts compact visual
features Vc and semantic representations Sc. With both as
inputs, the next layer predicts the attention distribution weight
map αt over all regions. Then, the context feature ct is
computed by adding two weighted sums of visual features
Vc and semantic features Se.

1) Saliency Pooling Layer: Ideally, FCN may ultimately
provide pixel-level visual features and semantic labels, which
then could be fed into rest layers of the attention model for
further processing. However, in practice, due to the constraint
of GPU memory and computation power, the rest layers can
process the limited number of patches, although the patch
can be of fine-grained size because of the nature of FCN.
That means the visual features and semantic representations of
pixels inside a patch of a given size have to be pooled together.
Normally, this process on visual features can be carried out
through a common average pooling which simply sums up
the visual features of all pixels inside the patch with equal
weights. In this paper, we propose a novel saliency pooling
method which only pools the visual features of those salient
pixels. The salient pixels are defined as those pixels whose
pixel labels generated by FCN dominate inside the patch. The
pooling process can be modeled as:

(Vc, Sc) = Poolingsp(V, S) (18)

Vc = {vc1, vc2, · · · , vcl} (19)

Sc = {sc1, sc2, · · · , scl} (20)

Displayed in Figure 3, it pools visual features V of the
original grid resolution to compact visual features Vc at an
acceptable lower level (i.e., Mc × Mc), under the guidance
of semantic representations S. Sc is the compact semantic
representation. Let ssali denote the labels of pixels which
dominate the area inside the patch i, where i = 1, 2, ..., l.
Then, sci in Equation 20 can be defined as:

sci = ssali (21)

Correspondingly, the number of grid locations is reduced to
l = M2

c . Each vci is a brief visual feature pooled from those
original visual features inside the pooling field i. The saliency
pooling layer generates the visual feature vci in Equation 19
based on the salient pixels only. In the Equation 22 below, vc
is a generic representation of any patch vci, where i = 1, 2, , l.

vc =
1∑w2

j=1 fsal(sj)

w2∑
j=1

vj · fsal(sj) (22)
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fsal(sj) =

{
1, sj = ssal

0, sj 6= ssal
(23)

where j stands for the relevant location of each pixel inside
the w × w pooling field. w × w is the size of the patch
where the pooling processing is carried out. vj is the visual
feature of each pixel. w2 represents the number of pixels inside
the pooling field. It may be seen that if fsal(sj) is enforced
to be 1, the saliency pooling is equivalent to the common
average pooling. Illustrated in Figure 3, the output of saliency
pooling layers are the salient visual features on the patches
(i.e., pooling visual feature on salient pixels in the patch) and
salient pixel labels of the patches.

This part aims to enhance the accuracy of attention map
via compact and accurate visual features at a relatively lower
grid resolution, which is implemented by integrating semantic
labels as the saliency guidance for the saliency pooling layer.
This form plays a role of an implicit semantic guidance based
on the common average pooling. Similarly, it would also
further enhance the meaning accuracy of generated keywords,
and the caption quality is improved specifically in terms of
accuracy. The improvement of this part is demonstrated by
Experiment 2 in Subsection D of Experiment.

2) Attention Distribution Prediction Layer: In Figure 2, the
inputs of the attention distribution prediction layer include
visual feature pooling (i.e., the proposed saliency pooling
or the simple common average pooling), explicit semantic
guidance, and the hidden state ht−1 feedback from LSTM.
In the existing CNN-LSTM framework [7]–[9], there is no
such explicit semantic guidance.

Similar to the word embedding for the LSTM decoder, the
compact semantic representations Sc are a map of semantic
label words, which are encoded as one-hot vectors. Therefore,
they need to be embedded into dense semantic features via the
embedding matrix Wes.

Se =WesSc = {se1, se2, · · · , sel} (24)

The attention prediction model is specifically designed as
a two-layer perception. The first layer is mainly responsible
for feature fusion. From different feature spaces, the hidden
state ht−1, compact visual features Vc and the dense semantic
features Se are mapped into a shared feature space by the
embedding matrices Whe, Wv , and Wse respectively. As the
hidden state ht−1 does not have the spatial dimension, an all-
one vector 1̂̂1̂1 is used to extend its spatial dimension by simple
copying. Then, these three embedded features are merged via
the element-wise sum and fed into the hyperbolic tangent
activation function. The overall process can be illustrated in
Figure 4. The fused feature zt is then fed into the second layer
with a softmax function to generate the attention weights over
l grid regions.

zt = tanh(Wheht−11̂̂1̂1 +WvVc +WseSe + bz) (25)

αtαtαt = softmax(Wattzt + batt) = {αt1, αt2, · · · , αtl} (26)

where αti represents the attention distribution for the grid
location i = 1, 2, ..., l at the time t.

This part aims to enhance the accuracy of the attention map
via extra grid-wise semantic representations, particularly for

large area objects/stuff. Note that the semantic representations
serve as the explicit guidance, as the semantic meanings of
labels are fully used for guiding the attention prediction model.
Specifically, the semantic labels are firstly embedded into
dense semantic features and then mapped into a shared feature
space with visual features, so as to guide the layer to predict
the attention distribution explicitly. This would further enable
the attention model to attend to novel objects/stuff or their
relationships. Therefore, the meanings of captions would be
more accurate and complete. The improvement of this part is
demonstrated by Experiment 2 and Case 3 in Subsection D of
Experiment.

3) Joint Context Computation Layer: Based on the atten-
tion weights, the visual context feature cvt is computed as the
weighted sum of compact visual features Vc, and the semantic
context feature cst is calculated as the weighted sum of dense
semantic features Se. See Figure 4 (b). Then, the joint context
feature ct is computed as the element-wise sum of cvt and cst
and fed into the LSTM decoder for word generation.

cvt = αtαtαt · Vc =
l∑
i=1

αtivci (27)

cst = αtαtαt · Se =
l∑
i=1

αtisei (28)

ct = cvt + cst (29)

This part aims to directly enhance the caption accuracy and
completeness, by integrating an extra semantic context feature
into the language model. This would further enhance the di-
versity of top-k captions. Therefore, the meanings of captions
would be more accurate and complete. The improvement in
accuracy and completeness are demonstrated by Experiment 2
in Subsection D of Experiment. The improvement in diversity
is demonstrated by Experiment 3 in Subsection E.

In Equation 29, without considering cst, ct will become
the aggregated visual feature based on attention distribution
only. That is, ct only presents the visual context instead of
joint context. For the LSTM decoder, the initial hidden state
ht and memory state mt are predicted by feeding the global
average-pooled visual features into two separate single layer
perceptions:

m0 = tanh(Wm0c0 + bm0) (30)

h0 = tanh(Wh0c0 + bh0) (31)

c0 =
1

l

l∑
i=1

vci (32)

IV. EXPERIMENT

This section firstly specifies datasets, evaluation metrics,
and experiment settings. Then, three experiments are designed
to demonstrate three advantages - high levels of accuracy,
completeness, and diversity, in terms of fine-grained resolution
and semantic guidance. Regarding the semantic guidance,
contributions of three forms are further studied. The saliency
guidance is used in saliency pooling layer. The explicit seman-
tic guidance is adopted in the attention distribution prediction
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TABLE I
PERFORMANCES COMPARED WITH THE STATE-OF-THE-ART MODELS ON MSCOCO TEST SPLIT VIA ALL METRICS

Method B@1 B@2 B@3 B@4 METEOR CIDEr
NIC v1 [45] 0.666 0.461 0.329 0.246 - -
DeepVS [28] 0.625 0.450 0.321 0.230 0.195 0.660

emb-gLSTM [46] 0.670 0.491 0.358 0.264 0.227 -
m-RNN [47] 0.670 0.490 0.350 0.250 - -

Soft-Attention [9] 0.707 0.492 0.344 0.243 0.239 0.773
Hard-Attention [9] 0.718 0.504 0.357 0.250 0.230 -

SCA-VGG-1layer [7] - - - 0.281 0.235 0.847
Our Model (Attention Resolution 27 × 27 with Joint Context Feature ) 0.712 0.514 0.368 0.265 0.247 0.882

TABLE II
PERFORMANCES OF OUR ABLATED MODELS ON MSCOCO TEST SPLIT ON ALL METRICS

Attention Resolution Semantic Guidance B@1 B@2 B@3 B@4 METEOR CIDEr
14 x 14 (Base-line Soft-Attention) Case 1 - No Guidance 0.707 0.492 0.344 0.243 0.239 0.773

14 x 14 Case 2 - Saliency Guidance 0.703 0.501 0.354 0.251 0.240 0.827
14 x 14 Case 3 - Explicit Guidance 0.705 0.504 0.358 0.255 0.241 0.846
14 x 14 Case 4 - Joint Context Feature 0.708 0.507 0.360 0.257 0.242 0.846
27 x 27 Case 1 - No Guidance 0.707 0.505 0.357 0.254 0.241 0.837
27 x 27 Case 2 - Saliency Guidance 0.708 0.507 0.359 0.256 0.241 0.839
27 x 27 Case 3 - Explicit Guidance 0.709 0.508 0.361 0.258 0.242 0.844

27 x 27 (Our Best Model) Case 4 - Joint Context Feature 0.712 0.514 0.368 0.265 0.247 0.882

layer. The joint context computation layer summarizes the
context of semantic guidance for the LSTM decoder.

A. Datasets and Metrics

Our experiments use two datasets. MSCOCO [31] is the
largest dataset for image captioning, with 82,783 training im-
ages, 40,504 validation images, and 40,775 testing images. For
the offline evaluation, we use the same data split as [9], [11],
containing 5000 images for validation and test respectively.
The length of the captions is truncated to be no larger than 16.
The word vocabulary is built with only those words occurring
at least 5 times in the training caption set, containing about
8443 words. COCO-Stuff [22] is a more semantic-complete
dataset for semantic segmentation. In total, it has 10,000 im-
ages sampled from MSCOCO training images, and annotations
for 80 objects, 91 stuff, and 1 unknown background. Our
DeepLab encoder is pre-trained on the MSCOCO 80-object
dataset and then finetuned on this COCO-stuff dataset.

We use BLEU@N (B@1, B@2, B@3, B@4) [32], ME-
TEOR [33], and CIDEr [34] as the evaluation metrics. Their
scores are calculated via the COCO captioning evaluation tool
[31]. Among these metrics, CIDEr and METEOR have the
highest correlations with human manual evaluation, and CIDEr
is used for competition ranking in MSCOCO challenge [45].
Therefore, our performance comparison mainly focuses on
CIDEr, METEOR, and BLEU@4.

B. Experiment Settings

This section describes the implementation details of our
model and training.

FCN encoder: A elegantly designed DeepLab [29], de-
signed based on VGG-16 [25], is used as the FCN encoder.
The spatial visual features are extracted as the mean of

four sets of spatial visual features with different Field-Of-
View(FOV) from the outputs of the second last layer. Its di-
mension is 81×81, 1024d. The spatial semantic representations
are extracted from the outputs of the final layer, which has
dimension of 81× 81, 1d.

LSTM encoder: A single-layer LSTM with the hidden
size of 1024 is used in our model. The dimension of word
embedding is 1024.

Attention model: The output size of the saliency pooling
layer is set as 14×14, 1024d and 27×27, 1024d respectively.
14 × 14 is selected to make comparisons with the Soft-
Attention model [9], and 27 × 27 is selected to demonstrate
the improvement of fine-grained attention.

Training details: We use SGD to finetune DeepLab on
the dataset COCO-stuff for 20 epochs by learning rate 0.001,
momentum 0.9, and weight decay 0.0005. We use the Adam
optimizer with a base learning rate of 0.0001 for LSTM
language model. We also use weight decay 0.95 and dropout
ratio 0.5. There is no finetune for FCN-encoder, as the Soft-
Attention model [9] does not finetune CNN. The network is
trained for up to 30 epochs with early stopping if the CIDEr
[34] score had not improved over the last epochs. We use the
beam size of 3 when sampling the caption for MSCOCO.

Compared methods: The proposed method is motivated
by Soft-Attention [9] which is based on the idea of spatial
visual attention, and the FCN encoder is designed based on
the VGG model. Thus, it is basically essential to compare
the performance of the proposed method against the Soft-
Attention [9]. Moreover, our implementation does not carry
out fine-tuning by re-training the visual encoder on the large
captioning dataset like Adaptive-Attention [8], MSM [43] and
ATT-FCN [11] did. Therefore, this paper also compares with
other approaches DeepVS [28], NIC v1 [45], emb-gLSTM
[46], m-RNN [47], SCA-VGG-1layer [7], and Hard-Attention
[9] that all use the VGG-based encoder and has no fine-tuning



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 1, APRIL 2019 9

TABLE III
QUALITATIVE ANALYSIS OF THE ADVANTAGES PROVIDED BY HIGHER ATTENTION RESOLUTION.

Image 1 14 × 14 Attention 27 × 27 Attention Image 2 14 × 14 Attention 27 × 27 Attention

Caption (14 × 14): A boy is playing baseball on a field. Caption (14 × 14): A baseball player swinging a bat at a ball.
Caption (27 × 27): A young boy is playing soccer on a field. Caption (27 × 27): A baseball player is swinging his bat.
Image 3 14 × 14 Attention 27 × 27 Attention Image 4 14 × 14 Attention 27 × 27 Attention

Caption (14 × 14): A black bear is standing on a rock. Caption (14 × 14): A man riding a wave on top of a surfboard.
Caption (27 × 27): A large brown bear walking across a stone wall. Caption (27 × 27): A man riding a surfboard on a wave in the ocean.

Image 5 14 × 14 Attention 27 × 27 Attention Image 6 14 × 14 Attention 27 × 27 Attention

Caption (14 × 14): A fire hydrant on the side of the street. Caption (14 × 14): A man in a baseball uniform is holding a bat.
Caption (27 × 27): A yellow fire hydrant sitting on the side of a street. Caption (27 × 27): A young boy in a baseball uniform holding a bat.
Each image provides two attention maps corresponding to the two most meaningful nouns in the captions in two different attention resolutions.

Attention maps with blue/red boundaries correspond to the words highlighted by blue/red respectively. (Best viewed in color.)

training as our methods. This aims to ensure a fair comparison
in order to show the performance boosted by fine-grain and
semantic-guided attention.

C. Experiment 1 - Evaluation of Fine-Grained Grid-Wise
Attention

The qualitative analysis is illustrated in Table III, visualiz-
ing the improved quality of attention maps and captions by
increasing the attention resolution from 14× 14 to 27× 27. It
is shown that attention at higher resolution can capture related
regions more accurately. Taking image 2 and 6 as examples,

the 27 × 27 attention model can attend to the “bat” regions
accurately, whereas the 14 × 14 attention model attends to
wrong regions. All blue-colour words, such as the “bear’,
“hydrant”, “player”, “boy” and “man”, have more accurate
attention maps in the 27 × 27 resolution. Moreover, stuff
regions like the “street” and “stone” can also be correctly
located. In the meantime, it is noticed that the overall quality
of captions in higher attention resolution is improved, which
is more meaningful. In Table II, the quantitative analysis is
shown by Case 1 in attention resolution 14×14 (Soft-Attention
method) and 27× 27. The improvements are quite significant,
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TABLE IV
QUALITATIVE ANALYSIS OF THE ADVANTAGES PROVIDED BY SEMANTIC GUIDANCE.

Original Image More Precise Attention Provided by Semantic Guidance New Meaningful Words
Discovered by

No Semantic Guidance Semantic Guidance No Semantic Guidance Semantic Guidance Semantic Guidance

Image 1 Caption (No semantic guidance): A herd of sheep standing on top of a grass covered field.
Caption (Semantic guidance): A herd of sheep gazing on a dry grass field.

Image 2 Caption (No semantic guidance): A cat sitting on a bench next to a wooden bench.
Caption (Semantic guidance): A cat sitting on a bench in the grass.

Image 3 Caption (No semantic guidance): A man in a suit and tie holding a umbrella.
Caption (Semantic guidance): A woman walking down a street holding an umbrella.

The analysis is carried out on 27 × 27 attention. The attention maps of different color boundaries (i.e. blue, green and red) correspond to the different
words (highlighted by blue, green or red) in the captions. The words by red color are not discovered without semantic guidance, instead, which are

captured by the proposed methods by using semantic guidance. (Best viewed in color.)

boosting 0.013 in B@2 and B@3, 0.011 in B@4, and 0.064
in CIDEr. Moreover, the large improvement is proved by the
comparison that the Case 1 in 27× 27 beats most of methods
in Table I.

D. Experiment 2 - Evaluation of Semantic Guidance

The quantitative analysis in Table II further demonstrates
the performance improvements contributed by three forms of
semantic guidance. In this table, two fine-grained attention
resolutions are adopted. For semantic guidance, there are
four different cases according to the framework design in
Figure 2. Case 1 - No semantic guidance is used, as the
common average pooling scheme is adopted in the pooling
layer. The aggregated visual features are fed into the rest
layers without considering semantic information at all. This
is the base-line scheme of the proposed framework, namely
Soft-Attention [9]. Case 2 - Saliency guidance is used, as
the framework adopts the saliency pooling in the pooling
layer rather than the common average pooling. However, the
semantic aggregation for explicit semantic guidance is not
fed into rest layers of the framework. Case 3 - Explicit
Guidance is additionally used, as both semantic grid-wise
features and visual grid-wise features are fed into the attention
distribution prediction layer. However, the aggregated semantic
context feature is not fed into the last context computation
and the LSTM language model. Case 4 - The joint context
feature is used, as all three forms of semantic guidances are

fully integrated into our model, as illustrated in Figure 2.
In both grid resolutions, integrating saliency pooling, explicit
guidance, and joint context feature one by one into our model
can all lead to better performances steadily and consistently,
although they are very modest. In 14× 14, the improvements
of full semantic guidance are obvious, boosting CIDEr by
0.073, B@4 by 0.014, and METEOR by 0.03. However, the
improvements of full semantic guidance are quite modest in
27× 27.

To demonstrate the modest improvements of full semantic
guidance in 27×27 really make sense, the qualitative analysis
is done as illustrated in Table IV. Obviously, the semantic
guidance helps the model attend to large area objects/stuff,
such as the “grass” in image 1, and the “bench” in image 2.
Besides the improvement on the completeness and/or correct-
ness of the attention maps, the semantic guidance can also
discover new meanings to make the caption more meaningful.
For image 2 and 3, the “grass” and “street” are not captured
without using semantic guidance. After introducing semantic
guidance in the proposed method, they are exposed in the
new captions. In image 1, the word “gazing” is more precise
than “standing”, and attention has correctly focused on those
regions where the sheep are eating grass. Therefore, adding
semantic guidance can greatly increase the caption quality.

From Table I, it demonstrates that our model with attention
resolution 27 × 27 and full semantic guidance has the best
performance. All results are calculated on the test split of
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TABLE V
QUALITATIVE ANALYSIS OF CAPTION DIVERSITY.

Original Image Semantic Guidance Generated Top-3 Captions

Yes
Top 1: a truck parked on the side of the road in front of a house.
Top 2: a truck parked on the side of the road in a residential area.
Top 3: a truck parked on the side of the road in front of a building.

No
Top 1: a large white truck parked in a parking lot.
Top 2: a large white truck parked next to a white truck.
Top 3: a large white truck parked in front of a white truck.

Yes
Top 1: a train on a track with a sky background.
Top 2: a train on the tracks in the country side.
Top 3: a train on the tracks in the middle of a rural area.

No
Top 1: a blue and yellow train traveling down train tracks.
Top 2: a blue and white train traveling down train tracks.
Top 3: a blue and yellow train traveling down the tracks.

Yes
Top 1: a group of people riding on the back of a horse drawn carriage.
Top 2: a group of people riding on the back of a carriage.
Top 3: a group of horses pulling a carriage with people in it.

No
Top 1: a group of people riding on the backs of horses.
Top 2: a group of people riding on the back of a horse.
Top 3: a large group of people riding on the back of a horse.

Yes
Top 1: a yellow fire hydrant on sidewalk next to parked cars.
Top 2: a yellow fire hydrant on sidewalk next to cars and buildings.
Top 3: a yellow fire hydrant on sidewalk next to cars and sidewalk.

No
Top 1: a yellow fire hydrant sitting on the side of a street.
Top 2: a yellow fire hydrant on the side of a street.
Top 3: a yellow fire hydrant on the side of the street.

Yes
Top 1: a clock on a pole on a city street.
Top 2: a clock on a pole in front of a tree.
Top 3: a clock on a pole in front of a building.

No
Top 1: a large white clock on a pole.
Top 2: a white and green clock on a pole.
Top 3: a large clock on a pole on a street.

Yes
Top 1: a man sitting on a bench in a park.
Top 2: a man sitting on a bench with a dog on a leash.
Top 3: a man sitting on a bench with a dog in a park.

No
Top 1: a couple of people sitting on a bench in a park.
Top 2: a couple of people sitting on a bench in the park.
Top 3: a couple of people sitting on a bench in the woods.

Yes
Top 1: a skate boarder doing a trick in the air.
Top 2: a skate boarder doing a trick on a cement wall.
Top 3: a skate boarder doing a trick on a cement block.

.
No

Top 1: a skate boarder doing tricks on a skateboard ramp.
Top 2: a skate boarder doing a trick on a skateboard ramp.
Top 3: a skate boarder doing a trick on a skate board.

TABLE VI
PROCESSING TIME OF OUR ABLATED MODELS

Attention Resolution Semantic Guidance Processing Time (ms)
14 x 14 Case 1 & 2 21.1
14 x 14 Case 3 32.1
14 x 14 Case 4 39.7
27 x 27 Case 1 & 2 44.1
27 x 27 Case 3 67.7
27 x 27 Case 4 84.3

MSCOCO dataset. Our best model significantly outperforms
all chosen state-of-the-art models over nearly all metrics.
Compared with the base-line model Soft-Attention [9], our
best model boosts CIDEr score by 0.109, B@4 score by 0.022,
B@3 score by 0.024, and B@2 by 0.022. The METEOR
and B@1 scores are slightly boosted by 0.008 and 0.005
respectively. Compared with B@1, larger improvements on
B@4, B@3, and B@2 scores indicate that our model can better
capture both grammatical properties and richer semantics
because of higher resolution and introduced semantic guidance

[34]. Moreover, these advantages are further strengthened by
the large improvement on CIDEr scores, as it is a metric in-
tegrating all four B@N scores based on the human-consensus
[34]. Our model has second-best B@1 and B@4 scores. The
best B@1 score is obtained by the Hard-Attention [9], which
has significantly lower scores on other metrics. The best
B@4 score is obtained by the second-best model SCA-VGG-
1layer [7], which has significantly lower CIDEr and METEOR
scores than the proposed method. However, as CIDEr and
METEOR metrics are more authoritative than B@N metric
[48], our model still is the best. Although the improvements
in some metrics are modest, the most authoritative CIDEr has
significant boosts.

E. Experiment 3 - Evaluation of Caption Diversity

Semantic guidance can also enhance the caption diversity.
In Table V, top-3 captions are generated for models with
and without semantic guidance. Besides higher accuracy, the
captions have high diversity thanks to more meaningful words.
For image 1, the “parked” location of the “truck” has three
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different correct descriptions: “in front of a house”, “in a
residential area”, “in front of a building”. For image 2, the
surroundings of “train” are described with “a sky background”,
“the country side”, “a rural area”. The third caption for image
3 has a totally different structure, compared with the first one.
In contrast, those top-3 captions generated without semantic
guidance have low diversity and even mistakes. Therefore,
powered by semantic segmentation, our attention mechanism
can generate more diversified captions than the traditional one,
which is powered by saliency.

F. Computational Costs

We use Nvidia GTX1080Ti to train and test all our models.
Finetuning the DeepLab model takes 48 hours. For our best
model with 27× 27 resolution and full semantic guidance, it
takes around 240 hours for training 30 epochs. At the testing
phase, the per-image processing time on all our models is
displayed in Table VI. Case 1 and Case 2 have almost the same
computation costs, as they are only different in feature pooling
and have the same captioning model. All processing times are
below 100ms. Increasing the attention resolution from 14 ×
14 to 27 × 27 doubles the processing time in all cases. The
comparison between Case 1&2 and Case 4 shows that adding
full attention guidance nearly doubles the processing time.

V. CONCLUSION

In this paper, we proposed a fine-grained and semantic-
guided attention mechanism over a novel end-to-end FCN-
LSTM framework for image captioning for the first time. Our
model achieves state-of-the-art performance on the MSCOCO
dataset compared with models using the VGG-based encoder.
Moreover, the framework of our model can be easily adapted
to all approaches that are based on soft-attention. The results
show that our model has huge potential for a comprehensive
attention method on the abstract visual relationship. Moreover,
our framework could have a broad application in other tasks,
like Image QA.
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