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We specify the corresponding relationships between eigenmodes, natural modes, and characteristic modes of perfectly electric
conducting (PEC) bodies. The internal resonant frequencies, external resonant frequencies, current distributions, and radiation
patterns of the three kinds of modes are compared to identify the relationships. Firstly, we review the definitions of the three
kinds of modes and discuss their characteristics of the electromagnetic power. After that, we illustrate the relationships between
these modes with three typical structures, that is, the infinite circular cylinder, sphere, and rectangular plate.

1. Introduction

Thefields radiatedor scatteredbyperfectly electric conducting
(PEC) bodies can be analyzed using modal analysis methods.
When the surfaces of PEC bodies coincide with coordinate
surfaces, the modes have closed forms [1]. Otherwise, only
numerical results canbe obtained throughnumericalmethods
such as the method of moments (MoM) [2]. Eigenmode
expansion method (EEM) [3], singularity expansion method
(SEM) [4], and characteristic mode analysis (CMA) [5] are
three common modal analysis methods in electromagnetic
engineering. The three modal analysis methods result in
three different kinds of modes generally, that is, eigenmodes,
natural modes, and characteristic modes, respectively.

The EEM expands the currents and fields by the eigen-
functions of the integral equation kernels [3]. The currents
and fields which relate to the eigenfunctions are called
eigenmodes. The eigenmodes diagonalize the integral equa-
tion kernels and are independent of incident field [6].

The SEM arose from the observation that the transient
response of electromagnetic scatterers appeared to be domi-
nated by several damped sinusoids [4]. In complex frequency
plane, these damped sinusoids are corresponding to the poles
of the Laplace-transformed response. The SEM characterizes

the object response (time domain) regarding all the singular-
ities in the complex frequency plane [4]. These singularities
in the complex frequency plane are called natural resonant
frequencies, which are generally complex due to radiative
loss. The corresponding damped sinusoids are called natural
modes. Same with the eigenmodes, the natural resonant
frequencies and natural modes are independent of incident
field. More importantly, the natural modes are special cases
of the eigenmodes. At natural resonant frequencies, the
integral equation kernels become singular, and the corre-
sponding eigenmodes become natural modes [4]. The reso-
nances of natural modes can be classified into internal
resonances and external resonances [7]. The internal reso-
nances are known as cavity resonances caused by the internal
waves experiencing multiple internal reflections. The exter-
nal resonances are caused by creeping waves propagating
along the body surface with attenuation due to radiative loss
[8]. Therefore, the internal resonant frequencies are purely
real, while the external resonant frequencies are complex.

Unlike the SEM, a different approach called CMA is
being used to find other kinds of modes and resonances in
the real frequency domain. The CMA was initially defined
by Garbacz [9] and was reformulated by Harrington and
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Mautz through diagonalizing the electric field integral equa-
tion (EFIE) operator for PEC bodies [6]. As the same as the
eigenmodes and the natural modes, the characteristic modes
are independent of incident field. However, differently from
the eigenmodes and the natural modes, the characteristic
values and characteristic currents of characteristic modes
are both real, which facilitates their manipulation and inter-
pretation. More importantly, the characteristic values of
characteristic modes represent the ratio between the net
stored power and the radiated power. Hence, the resonant
behaviors can be predicted by the characteristic values. Same
with the natural modes’ resonances, the characteristic modes’
resonances can also be classified into internal resonances and
external resonances. When the characteristic value is zero,
the corresponding mode is the external resonant mode.
When the characteristic value tends to be infinite, the corre-
sponding mode becomes the internal resonant mode [6].

The external resonances of natural modes are related to
the resonant peaks of the scattering cross section [7], which
means it can imply the maximum wave scattering. However,
the characteristics of the electromagnetic power of natural
modes for arbitrary PEC bodies are not involved in previous
publications, only several canonical structures are investi-
gated, such as the sphere. In this paper, we use the Poynting’s
theorem in complex frequency domain [10] to specify the
characteristics of electromagnetic power of natural modes
for arbitrary PEC bodies for the first time. We found that
the natural modes of arbitrary PEC bodies are related to
electromagnetic power resonances. More specifically, the
net stored power of a natural mode is zero.

All of the three kinds of modes are independent of
incident field, as introduced above. More importantly, they
are all related to resonances. Therefore, it is essential to study
the relationships between the three kinds of modes. Some
efforts have been done in this aspect [4, 6, 8, 9, 11–16].

In [8, 9], the relationship between the eigenvalues of
eigenmodes and the characteristic values of characteristic
modes was established. The relationship shows that the
characteristic values of characteristic modes are the ratios
between the imaginary parts and the real parts of the
eigenvalues of eigenmodes. However, we found that the
relationship is only valid in certain particular situations.
More specifically, only when the surfaces of PEC bodies
coincide with coordinate surfaces, such as the infinite cylin-
der and the sphere, the relationship is exactly accurate; other-
wise, it is approximative. The eigenvalues and characteristic
values of three typical structures are presented in Section 3
to demonstrate the conclusion.

In [8, 11, 12, 15, 16], it was shown that the internal
resonant frequencies of natural modes coincide with
those of characteristic modes. Besides, Alroughani and
Rezaiesarlak and Manteghi [11, 12] demonstrated that the
external resonant frequencies of natural modes coincide with
those of characteristic modes; that is, the external resonant
frequencies of characteristic modes are the real part of the
external resonant frequencies of natural modes. However,
in [8], there is opposite viewpoint about this. According to
careful investigations in this paper, we support the viewpoint

in [8]. Moreover, besides resonant frequencies, after compar-
ing the current distributions, phase distributions of current,
and radiation patterns of the three kinds of modes, we find
that there are corresponding relationships between the three
kinds of modes. More specifically, there is a one-to-one cor-
responding relationship between the eigenmodes and the
characteristic modes, as well as a one-to-many correspond-
ing relationship between the eigenmodes and the natural
modes. The corresponding relationships are not involved in
previous publications.

2. Definitions and Electromagnetic Power of
Eigenmodes, Natural Modes, and
Characteristic Modes

To specify the corresponding relationships between eigen-
modes, natural modes, and characteristic modes of PEC bod-
ies, the definitions of the three kinds of modes are briefly
reviewed in this section.

Consider one or more PEC bodies, which are defined by

S, in an impressed electric field E
i
The impressed field

induces an electric current distribution J on S that radiates

a scattered field E
s
Applying the boundary conditions of

tangential field on S and considering that the scattered field

can be expressed as E
s
= −L J and E

s
tan = −L J tan

= −Z J , the problem can be solved by EFIE [2]

Z J r , ω = E
i
r , ω

tan
, 1

where the subscript tan denotes the tangential component.
The operator Z is the tangential component of operator L,
and it is defined in [2]. r denotes the field point, and ω the
angular frequency.

The induced electric current J on S can be directly

solved through the inverse of the operator Z, that is, J r ,
ω = Z−1 E

i
r , ω Besides, various modal analysis methods

can be used to obtain J For convenience, we define the

symmetric product of two vector functions A and B in Ω as

A , B
Ω
=

Ω
A ⋅ B dΩ 2

2.1. Eigenmodes. The eigenmodes are defined by the follow-
ing standard eigenvalue equation [3, 6]

Z J
eig
n r , ω = vn J

eig
n r , ω 3

In (3), νn are eigenvalues and J
eig
n are corresponding

eigenmodes. It is clear from (3) that the eigenvalues and the
eigenmodes obtained with (3) are independent of incident
field, since operator Z is independent of incident field. Notice

that both νn and J
eig
n are generally complex. J

eig
n is generally

complex which indicates that J
eig
n on S is not equiphase in
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general (except in some special cases, such as infinite circular
cylinder and sphere). Considering that the tangential compo-

nent of scattered field can be expressed as E
s
tan = −Z J ,

we have

E
s
n tan

= −Z J
eig
n = −vn J

eig
n 4

Equation (4) indicates that the current and the tangen-
tial component of electric field of eigenmode have the
same distribution on the surfaces of PEC bodies. Using
(3) and (4) and considering the Poynting’s theorem [1],
the characteristics of electromagnetic power of eigenmodes
can be obtained [17].

vn =
J
eig
n

∗
, Z J

eig
n

S

J
eig
n

∗
, J

eig
n

S

=
Prad J

eig
n + jω Wm J

eig
n −We J

eig
n

J
eig
n

∗
, J

eig
n

S

,

5

where Prad J
eig
n and Wm J

eig
n −We J

eig
n represent the

radiated power and the net stored energy of the eigenmode,

respectively. Notice that they are the functions of J
eig
n If

J
eig
n

∗, J
eig
n S is normalized to unit, then

vn = Prad J
eig
n + jω Wm J

eig
n −We J

eig
n 6

It can be observed from (6) that the real part and the
imaginary part of νn represent the radiated power and the
net stored power of the eigenmode, respectively. Equation
(6) can be rewritten as

vn = vn e
j tan−1λeign ,

λeign =
ω Wm J

eig
n −We J

eig
n

Prad J
eig
n

7

Equation (7) implies the relationship between the eigen-
values of eigenmodes and the characteristic values of charac-
teristic modes. The λeign in (7) is very similar to the
characteristic value λchan of characteristic mode (defined in
(24)). In Section 3, we will show that only when the surfaces
of PEC bodies coincide with coordinate surfaces, the current
distributions of eigenmodes and characteristic modes are
identical; thus, the λeign in (7) is identical to the characteristic
value λchan of characteristic mode. Otherwise, the λeign in (7) is
similar but not identical to the characteristic value λchan of
characteristic mode. Equation (7) is also presented in [8, 9];
however, it is impertinently concluded that the λeign in (7) is
identical to the characteristic value λchan of characteristic
mode in any case.

It is obvious that λeign represents the ratio between the net
stored power and the radiated power. A mode with small λeign
indicates that the mode has weak net stored power and

strong radiated power relatively. Therefore, it indicates that
those λeign of smallest magnitude are important for radiation
and scattering problems. In general, modal significance
(MS) is more convenient than λeign to investigate the resonant
behavior over a wide frequency band. It is defined as

MS =
1

1 + jλeign
8

The MS transforms the [−∞, +∞] range of λeign into a
much smaller range of [0, 1]. We call those modes with
λeign > 0 inductive modes, those modes with λeign < 0 capac-
itive modes, those modes with λeign = 0 MS = 1 external
resonant modes, and those modes with MS = 1→∞
(asymptotic behavior, MS→ 0) internal resonant modes.

It is noteworthy that when the eigenmode is resonant, the
eigenmode does not generally satisfy the source-free condi-
tion, that is,

E
s
n r ≠ 0,  r ∈ S 9

This is different from natural modes. Furthermore, the
eigenmodes hold the orthogonality [6].

J
eig
m , Z J

eig
n

S

= 0, m ≠ n 10

As previously mentioned, J
eig
m is generally complex,

which means J
eig
m ≠ J

eig
m

∗ Therefore, (10) indicates that
eigenmodes do not hold the electromagnetic power orthogo-
nality in general. This makes it different from characteristic
modes.

Applying the orthogonality, any induced electric current

J can be written as the linear combinations of the
eigenmodes.

J =〠
n

J
eig
n , E

i

S

vn J
eig
n , J

eig
n

S

J
eig
n 11

This method is known as EEM.More details can be found
in [3].

2.2. Natural Modes. A natural mode is a field that can exist in

the absence of impressed sources [7], that is, E
i
= 0 in

(1) and

Z J
nat
n r , ωc = 0 = 0 ⋅ J

nat
n r , ωc 12

Comparing (3) with (12), it is found that a natural mode
is a special eigenmode whose eigenvalue is zero. Equation
(12) indicates that Z is a singular operator. This generally
occurs at some discrete complex frequencies, known as natu-
ral frequencies ωc = ω′ + jω″ Here, ω′ is the natural resonant
frequency of a given natural mode, and ω″ is the damping
factor due to radiative loss [4]. It is called internal resonance
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when ω″ = 0 and external resonance when ω″ ≠ 0. The
natural modes obtained with (12) are independent of
incident field.

One of the critical characters of natural modes is that the
natural modes can exist in the absence of incident fields. It is
clear from the definition of natural modes; that is, the natural

modes are calculated by making E
i
= 0, which is not only a

mathematics method but also brings significant physical

meanings. More specifically, thanks to making E
i
= 0, the

natural modes can satisfy the boundary conditions by itself.
For example, the cavity modes of PEC-enclosed cavity are
internal resonant modes of natural modes. Once those modes
are excited in one way, they can hold the self-oscillations
without loss forever. Concerning the open problem, external
resonant modes of natural modes can still hold the self-oscil-
lations, which unfortunately are damped by radiative loss [7].

The characteristics of the electromagnetic power of
natural modes for arbitrary PEC bodies are not involved in
previous publications, only several canonical structures are
investigated, such as the sphere. Here, we use the Poynting’s
theorem in complex frequency domain [10] to specify the
characteristics of the electromagnetic power of natural
modes of arbitrary PEC bodies, to our best knowledge, for
the first time.

The Maxwell’s equations in the complex frequency
domain are

∇ × E = −jωcμH ,

∇ × H = J + jωcε E
13

It follows from (13) that

∇ × E ⋅ H
∗
= − jωcμH ⋅ H

∗
,

∇ × H
∗ ⋅ E = J

∗
⋅ E − jωc

∗ε E
∗
⋅ E

14

Considering the following vector identity,

∇ ⋅ E × H
∗

= ∇ × E ⋅ H
∗
− ∇ × H

∗
⋅ E 15

results in

− J
∗
⋅ E = ∇ ⋅ E × H

∗
+ j ωcμH ⋅ H

∗
− ωc

∗ε E
∗
⋅ E

16

Substituting ωc = ω′ + jω″ into (16), we have

− J
∗
⋅ E = ∇ ⋅ E × H

∗
− ω″ μH ⋅ H

∗
+ ε E

∗
⋅ E

+ jω′ μH ⋅ H
∗
− ε E

∗
⋅ E

17

Taking the integration of (17) over the region V∞
bounded by ∂V∞ gives

Psup = −2ω″ Wm +We + Prad + j2ω′ Wm −We , 18

where

Psup = −
1
2

J
∗
, E

S
,

Wm =
1
4
μ H , H

∗

V∞
,

We =
1
4
ε E , E

∗

V∞
,

Prad = −
1
2
∬∂V∞ E

× H
∗
⋅ d S 19

In the above equations, ∂V∞ represents the sphere at
infinity, and V∞ represents the volume surrounded by ∂
V∞ Equation (18) is called the Poynting’s theorem in com-
plex frequency domain. Notice that if ω″ = 0, (18) reduces to
time-harmonic Poynting’s theorem as follows [1]:

Psup = Prad + j2ω′ Wm −We 20

A natural mode means that E r tan = 0 where r rep-

resents the source region. Thus, Psup = −1/2 J
∗
, E S = 0,

meanwhile We = 1/4ε E , E
∗

V∞ ≠ 0 Therefore, concern-
ing natural modes, we have

−2ω″ Wm +We + Prad = 0,

Wm −We = 0
21

Therefore, the difference between the electric and mag-
netic energy of a natural mode is zero, and this is why we
called the natural mode as the natural resonant mode.
However, it must be emphasized that there is a significant
difference between the resonances of natural modes and
the resonances of eigenmodes and characteristic modes.
The resonant natural modes can hold its resonant state
by itself, whereas the eigenmodes and characteristic modes
require impressed field to maintain its resonant state. It is
because the natural modes can exist in the absence of
impressed sources, whereas the eigenmodes and characteris-
tic modes cannot. Because of the absence of impressed
sources, the fields and currents of natural modes must decay
with time due to radiative loss, which can be demonstrated
mathematically using

F r , t = F r ejωct = F r e−ω″tejω′t , 22

in which F r , t represents field or current, which is the

function of position and time. F r is the corresponding
phasor which is only the function of position. ωc = ω′ + jω″
is the complex natural resonant frequency. It can be clearly
observed from (22) that the fields and currents of natural
modes decay with time (except ω″ = 0 which is correspond-
ing to internal resonance).
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However, eigenmodes and characteristic modes cannot
exist in the absence of impressed sources since the frequency
is real. And eigenmodes and characteristic modes both are
time-harmonic fields. In fact, each eigenmode or characteris-
tic mode corresponds to a distribution of incident field,
which is the key point to excite specific modes [18]. For
example, if we consider the modes of PEC bodies, we

denote the current of the nth modes as J n, and the modal

fields of the nth modes as E n, Hn Following the boundary
conditions, the incident field that corresponds to the nth
modes satisfies

n̂ × E
inc
n r + E n r = 0,  r ∈ ∂V ,

n̂ × H
inc
n r + Hn r = J

n

r ,  r ∈ ∂V ,

23

where ∂V represents the surfaces of PEC bodies and n̂ repre-

sents the normal vectors of ∂V ⋅ E
inc
n , H

inc
n which can

completely excite the nth modes.
In a word, the natural modes can satisfy the boundary

conditions by itself, while the eigenmodes and the character-
istic modes cannot. Thus, the natural modes can exist in the
absence of impressed sources, whereas the eigenmodes and
the characteristic modes cannot. Therefore, the resonance
of natural modes is different from the resonances of eigen-
modes and characteristic modes.

2.3. Characteristic Modes. The characteristic modes are
defined by the following generalized eigenvalue equation [6]:

X J
cha
n r , ω = λchan R J

cha
n r , ω , 24

where X and R are the imaginary and real parts of Z. In (24),

λchan are characteristic values and J
cha
n are corresponding

characteristic modes. The characteristic values and charac-
teristic modes obtained with (24) are independent of incident

field. It is important to note that both λchan and J
cha
n are real.

J
cha
n is real which indicates that J

cha
n on S is equiphase. This

is different from eigenmodes and natural modes, which are
generally complex.

Considering Poynting’s theorem [1], we have

J
cha
n , R J

cha
n

S

= Prad J
cha
n ,

J
cha
n ,X J

cha
n

S

= ω Wm J
cha
n −We J

cha
n ,

25

where Prad J
cha
n and Wm J

cha
n −We J

cha
n represent the

radiated power and the net stored energy of corresponding

mode, respectively. Notice that they are the functions of

J
cha
n Using (24) and (25), we have

λchan =
J
cha
n ,X J

cha
n

S

J
cha
n , R J

cha
n

S

=
ω Wm J

cha
n −We J

cha
n

Prad J
cha
n

26

It is noteworthy that λchan in (26) is not identical

to λeign in (7), because J
cha
n is not identical to J

eig
n

generally. We will demonstrate it using numerical results
in Section 3.

The MS of characteristic modes also can be defined as
(4). From (26), it is obvious that λchan represents the ratio
between the net stored power and the radiated power.
We call those modes with λchan > 0 inductive modes, those
modes with λchan < 0 capacitive modes, those modes with
λchan = 0 MS = 1 external resonant modes, and those
modes with λchan →∞ (asymptotic behavior, MS→ 0)
internal resonant modes [6]. Notice that when the charac-
teristic mode is external resonant, it does not generally
satisfy the source-free condition. This is quite different
with natural modes.

If the radiated power is normalized to unit, the character-
istic modes hold the following orthogonality [6].

J
cha
m , R J

cha
n

S

= δmn,

J
cha
m ,X J

cha
n

S

= λmδmn,

J
cha
m , Z J

cha
n

S

= 1 + jλm δmn,

27

where δmn is the Kronecker delta (0 if m ≠ n and 1 if m = n).
In view of currents is real, (27) represents the electromagnetic
power orthogonality. This makes it different from eigen-
modes. Applying the orthogonality, any induced electric

current J can be written as the linear combinations of the
characteristic modes [6].

J =〠
n

J
cha
n , E

i

S

1 + jλchan

J
cha
n 28

To make the relationship and distinction between the
three kinds of modes clear, we summarize the modal defini-
tions and properties in Table 1.

3. Modes of Three Typical Structures

In this section, the eigenmodes, natural modes, and char-
acteristic modes of three typical PEC structures are inves-
tigated. These structures include the PEC infinite circular
cylinder, the PEC sphere, and the PEC rectangular plate:
(1) The PEC infinite circular cylinder is an example of
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two-dimensional canonical structures; (2) The PEC sphere
is an example of three-dimensional canonical structures;
(3) The PEC rectangular plate is an example of noncanon-
ical structures. The corresponding relationships between
the three kinds of modes are illustrated through these
three structures.

3.1. PEC Infinite Circular Cylinder. In this section, the
closed forms of the eigenmodes, natural modes, and char-
acteristic modes of a PEC infinite circular cylinder are
investigated. We also present the comparisons about reso-
nant frequencies and current distributions of the three
kinds of modes.

The eigenmodes of the PEC infinite circular cylinder can
be classified into TMz and TEz modes. The eigenvalues of T
Mz and TEz modes are [17]

vTMn =
ηπka
2

Jn ka H 2
n ka , 29

vTEn =
ηπka
2

Jn′ ka Hn′
2

ka , 30

where a is the cylinder’s radius, Jn x is the Bessel functions

of first kind, H 2
n x is the Hankel functions of second kind,

Jn′ x is the derivative of Jn x , Hn′
2

x is the derivative of

Hn
2 x [19], n is the azimuthal mode order, k is the wave-

number, and η is the intrinsic impedance.
As we demonstrated in Section 2, a natural mode is a spe-

cial eigenmode whose eigenvalue is zero. From (29) and (30),
it is found that the internal resonant frequencies of natural

modes can be obtained with Jn ka = 0 and Jn′ ka = 0, and
the external resonant frequencies of natural modes can be

obtained with Hn
2 ka = 0 and Hn′

2
ka = 0 Therefore,

an eigenmode can be linked to several natural modes because
there are several roots of Bn x = 0 [1], where Bn x repre-
sents arbitrary Bessel functions.

The currents of eigenmodes are [17]

J
eig,TM
n

= ẑ
cos nφ

sin nφ
, 31

J
eig,TE
n

= φ̂
cos nφ

sin nφ
, 32

where cos nφ represents even mode and sin nφ represents
odd mode. Considering (31) and (32), we can find that the
current distributions of eigenmodes are independent of fre-
quency; therefore, the current distributions of eigenmodes
and natural modes are identical. In addition, the currents
are equiphase on S.

The closed forms of characteristic values of characteristic
modes are [9]

λcha,TMn = −
Yn ka
Jn ka

, 33

λcha,TEn = −
Yn′ ka
Jn′ ka

, 34

where Yn x is the Bessel functions of second kind and Yn′ x
is the derivative of Yn x .

From (33) and (34), it is found that the internal resonant
frequencies of characteristic modes can be obtained with Jn
ka = 0 and Jn′ ka = 0, and the external resonant frequen-
cies of characteristic modes can be obtained with Yn ka =
0 and Yn′ ka = 0 Considering the properties of Jn x and
Yn x [19], both the internal and external resonant frequen-
cies of characteristic modes are real. This is different from
natural modes, whose external resonant frequencies are com-
plex. Considering (29), (30), (33), and (34), it is obvious that
both the natural modes and characteristic modes indicate the
same internal resonant frequencies, that is, Jn ka = 0 or
Jn′ ka However, careful investigations in this section
show that the external resonant frequencies of characteris-
tic modes do not coincide with the real part of the

Table 1: Summarization of modal definitions and properties.

Mode Eigenmode Natural mode Characteristic mode

Current J
eig
n J

nat
n J

cha
n

Definition Z J
eig
n r , ω = vn J

eig
n r , ω Z J

nat
n r , ωc = 0 = 0 ⋅ J

nat
n r , ωc X J

cha
n r , ω = λchan R J

cha
n r , ω

Eigenvalue vn = Prad + jω Wm −We 0 λchan = ω Wm −We /Prad

Main properties

(1) vn is generally a complex number, while λn is a real number.

(2) J
eig
n and J

nat
n are generally complex, while J

cha
n is real.

(3) Linked to (2), Jeign and J
nat
n are not equiphase on the surface of PEC bodies generally, while J

cha
n is always

equiphase.
(4) λchan is similar but not identical to the ratios between the real parts and the imaginary parts of vn in general.
(5) The natural modes can exist in the absence of impressed fields, while the eigenmodes and characteristic

modes cannot.
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external resonant frequencies of natural modes. We calcu-
late those external resonant frequencies whose Re ka < 10
as shown in Figure 1. From Figure 1, it is obvious that the
external resonant frequencies of characteristic modes do not
coincidewith the real part of the external resonant frequencies
of natural modes. The conclusion agrees with [8] and dis-
agrees with [11].

In addition, the closed forms of characteristic mode
currents are [9]

J
cha,TM
n

= ẑ
εn

2πaJn ka

cos nφ

sin nφ
, 35

J
cha,TE
n

= φ̂
εn

2πaJn′ ka
cos nφ

sin nφ
, 36

where

εn =
1, n = 0,

2, n ≠ 0
37

The coefficients εn/2πaJn ka and εn/2πaJn′ ka are
used to normalize the radiated power to unit, and they do
not affect the current distributions. If we ignore the coeffi-
cients, comparing (31), (32), (35), and (36), we can find that
the current distributions of eigenmodes, natural modes, and
the characteristic modes are identical.

3.2. PEC Sphere. In this section, we investigate the closed
forms of the eigenmodes, natural modes, and characteristic
modes of a PEC sphere. The comparisons about resonant fre-
quencies and current distributions of the three kinds of
modes are also presented.

The eigenmodes of the PEC sphere can be classified as
TMr and TEr modes. The closed forms of eigenmodes of
the PEC sphere (defined in (3)) do not exist in previous

publications. Therefore, we firstly derive the closed forms of
eigenmodes. Here, we only give the results of the closed
forms of eigenmodes, and the specific derivations are pre-
sented in the Appendix for brevity.

The eigenvalues and currents of eigenmodes are

J
eig,TM
mn

= CTM
EM θ̂

∂Pm
n cos θ
∂θ

cos mϕ

sin mϕ

+ ϕ̂
mPm

n cos θ
sin θ

−sin mϕ

cos mϕ
,

38

Jeig,TEmn = CTE
EM −θ̂

mPm
n cos θ
sin θ

−sin mϕ

cos mϕ

+ ϕ̂
∂Pm

n cos θ
∂θ

cos mϕ

sin mϕ
,

39

vTMmn = −
1/jωε ∂ Ĵn kr /∂r ∂Ĥ 2

n kr /∂r
r=a

∂ Ĵn kr /∂r r=a Ĥ
2
n ka − Ĵn ka ∂Ĥ 2

n kr /∂r
r=a

,

40

vTEmn = jωμ
Ĵn ka Ĥ

2
n ka

Ĵn ka ∂Ĥ 2
n kr /∂r − Ĥ

2
n ka ∂ Ĵn kr /∂r

r=a

,

41

where

CTM
EM = bnĤ

2
n ka − an Ĵn ka

μa
,

CTE
EM =

bn ∂Ĥ 2
n kr /∂r − an ∂ Ĵn kr /∂r

r=a
jωμεa

,

42

in which a is the sphere’s radius, Ĵn x is the Riccati-Bessel

functions of first kind, and Ĥ
2
n x is the Riccati-Hankel

functions of second kind. cos mφ represents even mode,
and sin mφ represents odd mode. As we demonstrated in
Section 2, a natural mode is a special eigenmode whose
eigenvalue is zero. From and, it is found that the internal
resonant frequencies of natural modes can be obtained

with Ĵn ka = 0 and Ĥ
2
n ka = 0, and the external reso-

nant frequencies of natural modes can be obtained with

Ĥ
2
n ka = 0 and Ĥn′ 2 ka = 0
From (38) and (39), it can be observed that the cur-

rent distributions of eigenmodes are independent of fre-
quency. Hence, the current distributions of eigenmodes
and natural modes are identical. In addition, the cur-
rents are equiphase on S.
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Figure 1: The external resonant frequencies of natural modes and
characteristic modes of cylinder.
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The closed forms of characteristic values of characteristic
modes are [9]

λTMn =
Ŷn′ ka
Ĵn′ ka

, 43

λTEn = −
Ŷn ka

Ĵn ka
, 44

where Ŷn x is the Riccati-Bessel functions of second kind
and Yn′ x = 0 is the derivative of Yn x [19].

From (43) and (44), it is found that the internal resonant
frequencies of characteristic modes can be obtained with Ĵn
ka = 0 and Jn′ ka = 0, and the external resonant frequen-
cies of characteristic modes can be obtained with Ŷn x = 0
and Yn′ x = 0 Considering the properties of Ĵn x and
Ŷn x [19], both the internal and external resonant fre-
quencies of characteristic modes are real. This is different
from natural modes, whose external resonant frequencies
are complex. Considering (40), (41), (43), and (44), it is
obvious that both the natural modes and characteristic
modes indicate the same internal resonant frequencies,
that is, Ĵn ka = 0 and Ĵn′ ka = 0 However, careful investi-
gations in this section show that the external resonant fre-
quencies of characteristic modes do not coincide with the
real part of the external resonant frequencies of natural
modes. We calculate those external resonant frequencies
whose Re ka < 10 as shown in Figure 2. From Figure 2,
it is obvious that the external resonant frequencies of char-
acteristic modes do not coincide with the real part of the
external resonant frequencies of natural modes.

In addition, the closed forms of characteristic mode
currents are [9]

J
cha,TM
mn

= CTM
CM θ̂

∂Pm
n cos θ
∂θ

cos mϕ

sin mϕ

+ ϕ̂
mPm

n cos θ
sin θ

−sin mϕ

cos mϕ
,

45

J
cha,TE
mn = CTE

CM −θ̂
mPm

n cos θ
sin θ

−sin mϕ

cos mϕ

+ ϕ̂
∂Pm

n cos θ
∂θ

cos mϕ

sin mϕ
,

46

where

CTM
CM =

1
k Z0

1
a2 kr ⋅ jn kr ′∣r=a

εm
4π

2n + 1
n n + 1

n −m
n +m

,

CTE
CM = 1

k Z0

1
a2 jn ka

εm
4π

2n + 1
n n + 1

n −m
n +m

47

The coefficients CTM
CM and CTE

CM are used to normalize the
radiated power to unit, and they do not affect the current

distributions. If we ignore the coefficients, comparing, (38),
(39), (45), and (46), it is found that the current distributions
of eigenmodes, natural modes, and characteristic modes are
identical.

Concerning the PEC infinite circular cylinder and sphere,
it can be observed that

(1) there is a one-to-one corresponding relationship
between the eigenmodes and the characteristic
modes and a one-to-many corresponding relation-
ship between the eigenmodes and the natural modes
(The one-to-many corresponding relationship
between the eigenmodes and the natural modes could
be interpreted mathematically using the properties of
zero of Bessel functions; besides, it could be explained
physically in terms the wave mechanism that results
in natural modes as explained in [20, 21]. The current
distributions of the three kinds of modes are identi-
cal; all of them are equiphase on the surfaces of
PEC bodies);

(2) the resonant frequencies of eigenmodes coincide with
those of characteristic modes, as a result of identical
current distributions;

(3) the internal resonant frequencies of natural modes
coincide with those of eigenmodes and characteristic
modes, whereas the external resonant frequencies of
natural modes do not coincide with those of eigen-
modes and characteristic modes.

3.3. PEC Rectangular Plate.As the last example, we consider a
PEC rectangular plate of width W = 1 meter and length L =
1 1meter as an example of noncanonical structures. The nat-
ural modes of the rectangular plate are presented in [22]. The
eigenmodes and the characteristic modes are calculated using
MoM in this section. The basis functions and test functions
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Figure 2: The external resonant frequencies of natural modes and
characteristic modes of sphere.
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both are RWG functions [23]. The impedance matrix calcu-
lation is based on the method presented in [24]. The accuracy
of the impedance matrix calculation depends on the singular-
ity treatment in the calculation of diagonal and near-diagonal
elements. In this paper, the singularity treatment is based on
the method described in [25], which is proved to be very
effective. To ensure that our numerical results are not influ-
enced by the mesh density, we considered three different
meshes as shown in Figure 3. The average length of the edges
of the three meshes are λmin/10, λmin/20, and λmin/30, respec-
tively. The λmin represents the wavelength corresponding to
the highest frequency.

Using the three different meshes, we calculated the MS of
the eigenmodes and the characteristic modes as shown in
Figure 4. Furthermore, we calculated the relative differences
in percentage between the MS of the eigenmodes and the
characteristic modes as shown in Figure 5. The relative differ-
ences in percentage are calculated using

λchan − λeign
λchan

⋅ 100% 48

In Figure 4, solid lines represent the MS of eigenmodes
(EM) and scatters represent the MS of characteristic modes
(CM). We select the first three eigenmodes and characteristic
modes which have bigger MS. It can be observed from
Figures 4 and 5 that the mesh densities hardly influence the
numerical results. In other words, our numerical results are
enough to ensure reasonable accuracy. More importantly,
as shown in Figures 4 and 5, the MS of eigenmodes is similar
to the MS of characteristic modes with slight differences. The
slight differences are caused by the different currents of
eigenmodes and characteristic modes. The current distribu-
tions of eigenmodes and characteristic modes at 141MHz
(the first resonant frequency) are displayed in Figures 6 and
7. Figures 6 and 7 display the relative intensity of currents
by the shade of the color as the colorbar shows, and all cur-
rents have been normalized to its maximum value to facilitate
comparison. The black arrows in Figures 6 and 7 are used to
indicate the direction of currents.

Comparing Figure 6 with Figure 7, it is observed that the
eigenmodes and the characteristic modes share a one-to-one
corresponding relationship just as the case of infinite circular
cylinder and sphere, even the structures are noncanonical.
However, unlike the case of infinite circular cylinder and
sphere, the current distributions of eigenmodes and charac-
teristic modes of PEC rectangular plate are not identical as
observed from Figures 6 and 7. The following reasons cause
the difference.

(1) The orthogonality of the eigenmodes and the charac-
teristic modes is different as shown in (10) and (27).

(2) The current distributions of eigenmodes are generally
complex, whereas the current distributions of charac-
teristic modes are real, which are demonstrated in
Section 2. That is to say that the current distributions
of characteristic modes are equiphase on the surfaces
of PEC bodies and the current distributions of eigen-
modes are not equiphase. In order to further explain
it, the phase distributions of currents of the first two
eigenmodes at 141MHz are presented in Figure 8.

In Figure 8, phase J
eig
nx represents the phase of the

horizontal component of J
eig
n , and phase J

eig
ny rep-

resents the phase of the vertical component of J
eig
n If

J
eig
n is equiphase, phase J

eig
nx and phase J

eig
ny must

be identical. As observed from Figure 8, the currents
of eigenmodes are not equiphase.

Considering theMS, current distributions, and phase dis-
tributions of the current of eigenmodes and characteristic
modes, it makes clear that (7) implies the approximative
(not exact) relationship between the eigenvalues of eigen-
modes and the characteristic values of characteristic modes.
The currents of eigenmodes and characteristic modes are
similar but not identical.

Besides, the radiation patterns of the eigenmodes and
the characteristic modes are presented in Figures 9 and
10. The radiation patterns of the eigenmodes and the
characteristic modes are similar, and this supports that

M

L

(a)

M

L

(b)

M

L

(c)

Figure 3: Three different meshes of the rectangular plate. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3.
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the eigenmodes and the characteristic modes share a one-to-
one corresponding relationship.

The first three natural modes of the rectangular plate
are presented in [22]. It is pointed out that the external
resonant frequencies of the first three natural modes are
ωc1 = 93 5 + j32 5 MHz, ωc2 = 99 7 + j39 4 MHz, and ωc3
= 156 8 + j26 9 MHz. As shown in Figure 4, the first three
external resonant frequencies of characteristic modes are

141MHz, 179MHz, and 184MHz. Therefore, the external
resonant frequencies of natural modes are different from
those of characteristic modes. The reason why the external
resonant frequencies of characteristic modes do not coincide
with those of natural modes refers to [8, 15]. The external
resonances of natural modes generate the maximum radiated
fields, while the external resonances of characteristic modes
are not responsible for the maximally generated radiated
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Figure 4: MS of the first three eigenmodes and characteristic modes. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3.
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Figure 5: Relative difference of MS of the first three eigenmodes and characteristic modes. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3.
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fields along certain directions [15]. A center-fed dipole
antenna is discussed in [15] to prove that a resonant current
does not imply that it is going to radiate more field intensity
along a particular direction.

In fact, the similar analysis can be applied to penetrable
bodies. On this occasion, the operator Z in (1) should be
replaced with the operator of the integral equations for pen-
etrable bodies. However, there are significant differences
between the results of PEC bodies and penetrable bodies.

For example, concerning PEC bodies, it is found that the
external resonant frequencies of natural modes are quite
different from the external resonant frequencies of charac-
teristic modes. But concerning penetrable bodies, the
external resonant frequencies of natural modes coincide
with the external resonant frequencies of characteristic
modes [18, 26]. Because of the limit of paper’s length,
we tend to discuss the relation between modes of penetra-
ble bodies in future work.
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4. Conclusion

This paper specifies the corresponding relationships between
eigenmodes, natural modes, and characteristic modes of PEC
bodies. The characteristics of the electromagnetic power of
natural modes for arbitrary PEC bodies are presented for
the first time. It is found that the difference between the elec-
tric and magnetic energy of the natural mode is zero. By com-
paring the three kinds of modes of three typical structures, we
found that there is a one-to-one corresponding relationship
between the eigenmodes and the characteristic modes, as well
as a one-to-many corresponding relationship between the
eigenmodes and the natural modes. For several canonical
structures (infinite circular cylinder and sphere), the current
distributions of eigenmodes, natural modes, and characteris-
tic modes are identical. For noncanonical structures, the cur-
rent distributions of eigenmodes and characteristic modes
are similar but not identical. Whether the structures are
canonical or not, the internal resonant frequencies of natural
modes coincide with those of characteristic modes, whereas
the external resonant frequencies do not coincide.

Appendix

Derivations of Eigenmodes of PEC Sphere

Let us consider for instance the TMr modes. The fields can be
derived with Ar given by [19].

Ar =
an Ĵn kr

bnĤ
2
n kr

Pm
n cos θ

cos mφ

sin mφ
, r < a, r > a

A 1

The nonzero transverse electric and magnetic field com-
ponents are

Eθ =
1

jωμε
⋅
1
r
⋅
∂2Ar

∂r∂θ

=
1

jωμεr

an ∂ Ĵn kr /∂r

bn ∂Ĥ 2
n kr /∂r

∂Pm
n cos θ
∂θ

cos mφ

sin mφ
, r < a, r > a,

A 2

Eφ =
1

jωμε
⋅

1
sin θ

⋅
∂2Ar

∂r∂φ

=
1

jωμεr

an ∂ Ĵn kr /∂r

bn ∂Ĥ 2
n kr /∂r

mPm
n cos θ
sin θ

−sin mφ

cos mφ
, 

r < a, r > a,
A 3

Hθ =
1
μr

⋅
1

sin θ
⋅
∂Ar

∂φ

=
1
μr

an Ĵn kr

bnĤ
2
n kr

mPm
n cos θ
sin θ

−sin mφ

cos mφ
, r < a, r > a,

A 4

Hφ = −
1
μr

⋅
∂Ar

∂θ

=
1
μr

an Ĵn kr

bnĤ
2
n kr

∂Pm
n cos θ
∂θ

cos mφ

sin mφ
, r < a, r > a

A 5

Applying the boundary conditions on the surface of
sphere,

r̂ × θ̂Hθ + φ̂Hφ S+ − θ̂Hθ + φ̂Hφ
S−

= J
eig,TM

mn
,

A 6

r̂ × θ̂Eθ + φ̂Eφ S+ − θ̂Eθ + φ̂Eφ
S−

= 0, A 7

where S+ and S− represent the external and internal surface of
sphere, respectively.

Substituting (A.2), (A.3), (A.4), and (A.5) into (A.6) and
(A.7) gives

J
eig,TM
mn

= CTM
EM θ̂

∂Pm
n cos θ
∂θ

cos mϕ

sin mϕ

+ ϕ̂
mPm

n cos θ
sin θ

−sin mϕ

cos mϕ
,

A 8

bn
∂Ĥ 2

n kr
∂r

− an
∂ Ĵn kr

∂r
r=a

= 0, A 9

where

CTM
EM =

bnĤ
2
n ka − an Ĵn ka

μa
A 10

Finally, substituting (A.2), (A.3), and into (4), it is found
that

vTMmn = −
∂Ĵn kr /∂r ∂Ĥ 2

n kr /∂r
r=a

jωε ∂ Ĵn kr /∂r r=aĤ
2
n ka − Ĵn ka ∂Ĥ 2

n kr /∂r
r=a

A 11

Following the similar procedure, it can be obtained that
the eigenvalues and currents of TEr modes are

J
eig,TE
mn = CTE

EM −θ̂
mPm

n cos θ
sin θ

−sin mϕ

cos mϕ

+ ϕ̂
∂Pm

n cos θ
∂θ

cos mϕ

sin mϕ
,

vTEmn = jωμ
Ĵn ka Ĥ

2
n ka

Ĵn ka ∂Ĥ 2
n kr /∂r = Ĥ

2
n ka ∂ Ĵn kr /∂r

r=a

,

A 12
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where

CTE
EM =

bn ∂Ĥ 2
n kr /∂r − an ∂ Ĵn kr /∂r

r=a
jωμεa

A 13
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