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 40 

ABSTRACT 41 

 42 

The cytokine Tumour Necrosis Factor Superfamily member 14, TNFSF14 (or LIGHT), is a 43 

controversial player in numerous diseases. We investigated the role of mouse TNFSF14 in 44 

diet-induced obesity in vivo. Specifically, we studied the effects of a global deletion of the 45 

TNFSF14 gene on the development of obesity, glucose intolerance, insulin resistance, 46 

steatosis, tissue inflammation and mitochondrial respiration in the liver. Secondly, we 47 

examined the role of TNFSF14 expression in hematopoietic cells on obesity and insulin 48 

sensitivity.  49 

Male TNFSF14 knockout and wildtype mice were fed chow or high fat diet (HFD) for 12 50 

weeks. In other experiments, wildtype mice were reconstituted with bone marrow cells 51 

from TNFSF14 KO mice and were fed chow or HFD for 12 weeks. All mice were metabolically 52 

phenotyped.  53 

We show that HFD fed wildtype mice had elevated circulating levels of TNFSF14 in their 54 

serum. Liver and white adipose tissue are potential sources of this elevated TNFSF14. 55 

Excitingly, TNFSF14 deficient mice displayed markedly increased obesity, glucose 56 

intolerance, insulin resistance, hepatosteatosis and mitochondrial defects compared to 57 

wildtype mice on a HFD. Hepatic cytokine profiling pointed to a potential novel role of 58 

decreased IL-6 in the metabolic disturbances in obesogenic TNFSF14 KO mice. Finally, bone 59 

marrow cells from TNFSF14 deficient mice were able to contribute to promoting diet-60 

induced obesity and insulin resistance.  61 
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Our novel data suggest that TNFSF14 ablation exacerbates parameters of the metabolic 62 

syndrome under high fat feeding conditions and provides further evidence to support the 63 

development of TNFSF14 agonists as potential therapeutics in diet-induced obesity. 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 
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INTRODUCTION 81 

Global prevalence of obesity in adults has been significantly rising since the 1980s (Ng, et al. 82 

2014) resulting in adverse metabolic conditions such as glucose intolerance, insulin 83 

resistance, inflammation, dyslipidemia and ultimately type 2 diabetes (T2D). Alarmingly, the 84 

cluster of pathologies characteristic of obesity-dependent type 2 diabetes, collectively 85 

referred to as ‘diabesity’, has started to emerge in children (Chen, et al. 2012; Farag and 86 

Gaballa 2011; Ng et al. 2014). This phenomenon warrants the urgent need to develop 87 

strategies to treat diabesity. Current diabesity treatment options initially focus on lifestyle 88 

modifications such as healthy diet, controlled caloric intake and increased physical exercise. 89 

Bariatric surgery is sometimes recommended (Colquitt, et al. 2014), although drug therapy 90 

is a viable intervention for those in whom lifestyle modification has failed (Li, et al. 2005; 91 

Sweeting, et al. 2015). Disappointingly, commonly used anti-obesity drugs have not resulted 92 

in consistent and effective weight loss (Li et al. 2005; Padwal and Majumdar 2007; Sweeting 93 

et al. 2015) and consequently there is great interest in developing new therapies to reduce 94 

obesity. 95 

 96 

A number of secreted factors have been implicated in the etiology of obesity and insulin 97 

resistance in rodents and humans (Hotamisligil, et al. 1995; Hotamisligil, et al. 1993; Krogh-98 

Madsen, et al. 2006; Steinberg, et al. 2006). One soluble factor of interest in alleviating the 99 

characteristics of diabesity is the Tumour Necrosis Factor Superfamily member TNFSF14 100 

(also known as LIGHT; Lymphotoxin-like, exhibits Inducible expression, competes with 101 

Herpes Simplex Virus Glycoprotein D for Herpesvirus Entry Mediator [HVEM] receptor 102 

expressed by T lymphocytes). A number of studies have elegantly described a beneficial role 103 
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for TNFSF14 in numerous diseases. TNFSF14 has been shown to assist in wound healing 104 

(Dhall, et al. 2016), stem cell therapy (Heo, et al. 2016) and in skeletal muscle regeneration 105 

(Waldemer-Streyer and Chen 2015). It is also reported that TNFSF14 serves a protective role 106 

in multiple sclerosis (Malmestrom, et al. 2013), experimental autoimmune 107 

encephalomyelitis (Mana, et al. 2013) and intestinal inflammation (Krause, et al. 2014).  108 

Finally, a recent study presented that TNFSF14 is a potential immunotherapeutic agent to 109 

treat colon cancer (Qiao, et al. 2017).   110 

 111 

Currently controversy surrounds the role of TNFSF14 in the development of the metabolic 112 

syndrome. Serum TNFSF14 levels are reportedly increased in morbidly obese humans 113 

(Bassols, et al. 2010a) and the expression of TNFSF14 is reduced in patients who do not have 114 

T2D compared with type 2 diabetic patients (Dandona, et al. 2014). However it remains to 115 

be elucidated whether TNFSF14 is functionally upregulated in the progression of the 116 

metabolic syndrome in a pro- or anti-obesogenic manner. Furthermore, the exact source of 117 

elevated TNFSF14 during the metabolic syndrome is unknown, although TNFSF14 is strongly 118 

expressed in multiple immune cells including resting and activated T cells, B cells, 119 

monocytes and macrophages (Kwon, et al. 1997). Adding complexity to this signalling 120 

cascade, TNFSF14, which may be expressed on the cell surface, secreted or cleaved by 121 

metalloproteinases, is considered a promiscuous ligand as it signals via the lymphotoxin- 122 

receptor (LTR) and herpesvirus entry mediator (HVEM). The HVEM receptor is highly 123 

expressed in visceral adipose tissue (Bassols, et al. 2010b) and both LTR and HVEM are 124 

expressed in pancreatic  cells (Han and Wu 2009). Interestingly, treatment of human 125 

primary adipocytes with TNFSF14 resulted in a potent inhibition of adipocyte differentiation, 126 
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which suggests that TNFSF14 may be metabolically beneficial (Tiller, et al. 2011) although 127 

this remains to be comprehensively investigated.  128 

 129 

We are the first research team to utilise a TNFSF14 knockout mouse to investigate the 130 

functional role of TNFSF14 in obesity, insulin signalling, inflammation, hepatosteatosis, 131 

cytokine signalling pathways and mitochondrial respiration. Secondly, our study determines 132 

the cellular sources of TNFSF14 that may attenuate diet-induced obesity. The outcomes of 133 

this study provide compelling evidence that TNFSF14 is necessary to limit the pathogenesis 134 

of the metabolic syndrome and our data supports the development of agonists of TNFSF14 135 

signalling as attractive therapeutics for treating obesity and type 2 diabetes. 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 
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MATERIALS AND METHODS 147 

Diet-induced obesity mouse model 148 

Eight week old C57BL6/J mice were administered either a normal chow (chow) or high fat 149 

diet (HFD) (Speciality Feeds, Glen Forrest, WA Australia) for 12 weeks.  Mice had free access 150 

to food and water. Body weights were measured weekly for all mice. Intraperitoneal glucose 151 

tolerance tests (GTT; 1 g/kg) and insulin tolerance tests (ITT; 0.5 U/kg) were performed in 152 

mice fasted for 6 hours on week 11 and 12 of the diet regiment respectively. After 12 weeks 153 

on their respective diets, mice were anaesthetised with methoxyflurane, underwent cardiac 154 

puncture to obtain blood and were euthanised by cervical dislocation. Tissues were 155 

collected and either fixed in paraformaldehyde and subsequently embedded in paraffin for 156 

immunohistochemistry experiments, frozen in OCT embedding medium for oil red staining, 157 

or snap-frozen and stored at -80C for mRNA and protein expression studies. All animal 158 

experimentation was approved by the Royal Perth Hospital Animal Ethics Committee and 159 

were conducted in accordance with the National Health and Medical Research Council of 160 

Australia Guidelines on Animal Experimentation. 161 

 162 

Tumour Necrosis Factor Superfamily Member 14 knockout mouse model 163 

Tumour Necrosis Factor Superfamily Member 14 knockout (TNFSF14 KO) mice display no 164 

major developmental defects (Scheu, et al. 2002). The TNFSF14 mice were backcrossed 8 165 

generations to C57BL6/J mice to reduce genetic heterogeneity. Eight week old male 166 

wildtype (WT) and TNFSF14 KO mice on a C57BL6/J background were administered either a 167 

normal chow or HFD (Speciality Feeds, Glen Forrest, WA, Australia) for 12 weeks. Mice were 168 
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weighed weekly and GTTs or ITTs were conducted and serum/tissue collection occurred as 169 

described previously.  170 

 171 

Bone marrow mouse model 172 

Using methodology previously described (Bollrath, et al. 2009; Ernst, et al. 2008) six week-173 

old male C57BL6/J mice were lethally irradiated with two 5.5-Gy doses of gamma-irradiation 174 

from a 137Cs source (Gammacell 3000 Elan; MDS Nordion, Kanata, ON, Canada) separated by 175 

a 4-h interval. As the TNFSF14 KO mice are on a C57BL/6J background and express the 176 

alloantigen CD45.2 on their hematopoietic cells, we used congenic Pep3b B6 SJL/.Ly5.1 mice 177 

(Animal Resources Centre, WA, Australia) as the WT counterparts because they express 178 

CD45.1 on their hematopoietic cells. This critically allowed distinction to be made between 179 

donor and recipient lymphocytes by flow cytometry. After the second dose of irradiation, 180 

WT mice were reconstituted with 2 million whole bone marrow cells from TNFSF14 KO mice 181 

and given drinking water containing antibiotics (1.1g/L neomycin sulfate and 1000U/L 182 

polymyxin B sulfate) for the first 2 weeks post-irradiation. Six weeks post-transplant, mice 183 

were administered either normal chow or HFD for 12 weeks. Mice were subjected to all of 184 

the aforementioned metabolic studies.  185 

 186 

Cell culture experiments 187 

L6 myoblast cells were purchased from the American Type Culture Collection (Manassas, 188 

Virginia, USA). Cells were cultured at 37°C, 5% CO2 in a humidified chamber. L6 myoblasts 189 

were seeded in 6 well culture plates and grown in low glucose Dulbecco's Modified Eagle 190 
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Medium (DMEM) supplemented with 10% FBS and 1% penicillin/streptomycin (Thermo 191 

Fisher, Melbourne, Victoria, Australia). Differentiation of the myoblasts was induced by 192 

transferring cells to medium containing 2% fetal calf serum when the myoblasts were ~90% 193 

confluent. Experimental treatments commenced after 7 days of differentiation when nearly 194 

all myoblasts had fused to form myotubes. Upon the day of experimentation, cells were 195 

serum starved for 4hrs. Media was changed to low glucose DMEM containing 4% fatty acid 196 

free BSA with palmitate (0.75 mM) to induce insulin resistance, or without palmitate, and 197 

cells were incubated for 24 hours. Cells were also treated with or without mouse TNFSF14 198 

(100 ng/mL; Peprotech, Rocky Hill, USA) for the same 24hr incubation. Cells were then 199 

treated with or without insulin (250 ng/mL) for 30min before cells were lysed. 200 

 201 

Confluent mouse pancreatic  cells, MIN6, were grown in high glucose (4.5 g/L) DMEM. Cells 202 

were treated with mouse TNFSF14 (200 ng/mL; Peprotech) for 48hrs. Media was then 203 

changed to low glucose (1 g/L) DMEM. After 45min, the low glucose DMEM was changed to 204 

high glucose (4.5 g/L) DMEM for 45min. Cell-free culture supernatant was collected and 205 

subjected to a mouse insulin ELISA (EZRMI-13K; Millipore, Australia).   206 

 207 

Gene expression assays 208 

RNA from murine tissue was extracted using Trizol reagent (Invitrogen, Thermo Fisher, 209 

Melbourne, Victoria, Australia) and cDNA synthesis was performed using the High Capacity 210 

RNA-to-cDNA kit (Applied Biosystems, Thermo Fisher, Melbourne, Victoria, Australia). Real-211 

time PCR was performed to determine the mRNA abundance utilising a Rotor-gene real-212 
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time PCR machine (Qiagen, Hilden, Germany) using pre-developed TaqMan probe (FAM 213 

labelled) and primer sets for HPRT (Mm01545399_m1); CXCL-10 (Mm00445234_m1); TNF- 214 

(Mm00443260_g1) and TNFSF14 (Mm00619239_m1) (Applied Biosystems). Quantitation 215 

was conducted as previously described (Chan, et al. 2004). 216 

 217 

Enzyme Linked Immunosorbant Assays 218 

Serum was collected and analysed for circulating TNFSF14 levels as per manufacturer’s 219 

instructions (CSB-EL023991MO; Cusabio Biotech Co. Ltd, China). Serum was also analysed 220 

for circulating insulin using an insulin ELISA (EZRMI-13K; Millipore, Australia).   221 

Liver tissue was collected and homogenised in cytosolic extraction buffer (10mM HEPES, 222 

3mM MgCl2, 14mM KCl, 5% glycerol, 0.2% IPEGAL) containing phosphatase  and protease 223 

inhibitors (Roche Diagnostics, Indianapolis, Indiana, USA). Protein concentration was 224 

quantified using protein assay solution (Bio-Rad, Hercules, California, USA). Protein lysates 225 

were analysed for IL-6, IL-10, IL-1 and IL-18 according to manufacturer’s instructions 226 

(ELISAKit.com, Scoresby, Victoria, Australia).  227 

 228 

Western blotting 229 

Rat L6 myotubes were lysed or murine liver tissue was homogenised using cytosolic 230 

extraction buffer containing phosphatase and protease inhibitors and protein concentration 231 

was quantified using protein assay solution (Bio-Rad, Hercules, California, USA). Protein 232 

lysates were solubilized in Laemmeli sample buffer and boiled for 10 min, resolved by SDS-233 

PAGE on 10% polyacrylamide gels, transferred by semi-dry transfer to PVDF membrane and 234 
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then blocked with 5% milk powder. Membranes were incubated overnight in primary 235 

antibody [phospho-AKT Ser473 (9271; Cell Signalling Technology Inc, Danvers, 236 

Massachusetts, USA); hepatic Lipase H-70 (sc-21007; Santa Cruz Biotechnology Inc, Dallas, 237 

Texas, USA) or mouse anti- actin antibody (ab6276; Abcam, Cambridge, UK)] using 238 

recommended dilutions. Membranes were washed 3 times and the appropriate secondary 239 

antibody was added to the membranes (GE Healthcare Australia, Parramatta, New South 240 

Wales, Australia). Detection of the relevant protein was performed via enhanced 241 

chemiluminescence (GE Healthcare) and visualised using a Multilmage II FC Light Cabinet 242 

(Alpha Innotech Corporation, San Leandro, California, USA). Densitometry was performed 243 

using the AlphaImager software (Alpha Innotech Corp.). 244 

 245 

Haematoxylin and eosin staining  246 

Mouse gonadal adipose tissue was dissected and fixed in 4% paraformaldehyde overnight 247 

before being incubated in 50% ethanol (by volume) and then promptly embedded with 248 

paraffin. Adipose tissue was cut into 5µM sections and stained with haematoxylin (Sigma-249 

Aldrich, Sydney, New South Wales, Australia) and eosin (Sigma-Aldrich). 250 

 251 

Oil red lipid staining 252 

Freshly sectioned snap-frozen livers were fixed using 10% Formalin. Slides were then 253 

washed in 60% isopropanol and stained with Oil Red (O0625; Sigma-Aldrich) for 15 minutes. 254 

Slides were washed in 60% isopropanol and lightly stained with Harris Modified Hematoxylin 255 
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Solution (HHS32-1L; Sigma-Aldrich). Slides were washed in water and mounted using 256 

gelatin/glycerol.  257 

 258 

Immunohistochemistry for hepatic lipase expression 259 

Paraffin embedded liver tissue was sectioned at 5µM onto slides and de-waxed in xylene 260 

and rehydrated in ethanol. Antigen retrieval was performed on the slides by heating in EDTA 261 

buffer (pH 8.5; Sigma-Aldrich). Endogenous peroxidases were blocked with 3% hydrogen 262 

peroxide solution and tissue was then blocked in 5% FCS. Sections were then incubated in 263 

hepatic lipase (H-70) antibody (sc-21007; Santa Cruz), followed by anti-rabbit antibody 264 

conjugated to horse-radish peroxidase (GE Healthcare), followed by treatment with 265 

diaminobenzidine (DAB; DAKO). Tissues were dehydrated in ethanol and xylene and 266 

mounted with DPX (Sigma-Aldrich). 267 

 268 

Hepatic mitochondrial respiration study 269 

Mouse liver mitochondria were isolated using a standard procedure involving 270 

homogenisation and differential centrifugation (Chappell and Hansford 1972). 271 

Mitochondrial respiration was measured using glutamate/malate, succinate/rotenone and 272 

ascorbate/TMPD (N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride) according to 273 

Kuznetsov et al. (Kuznetsov, et al. 2008). Briefly, 80 µg of isolated mitochondria were 274 

resuspended in mitomedium B (0.5 mM EGTA, 3 mM MgCl2, 20mM taurine, 10 mM KH2PO4, 275 

20 mM HEPES, 1 g.l-1 fatty acid-free BSA, 60 mM lactobionate, 110 mM mannitol, 0.3 mM 276 



14 
 

DTT, pH 7.1 with KOH) and added to a 2 mL OROBOROS Oxygraph-2K Oxygen Electrode 277 

thermostatically maintained at 37˚C.  278 

 279 

Statistical analysis 280 

All quantitative data are presented as mean + or - SEM. A significance level of p<0.05 was 281 

considered significant. Significance was determined using 2-way ANOVA or Student t-tests. 282 

Graphs were generated using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, CA).  283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 
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RESULTS 297 

Serum TNFSF14 levels are elevated with diet-induced obesity. 298 

 We demonstrate that WT mice fed a high fat diet (HFD) possess elevated levels of 299 

circulating TNFSF14 protein (Figure 1A) as well as increased TNFSF14 mRNA expression in 300 

metabolically relevant tissues including white adipose tissue (Figure 1B) and liver (Figure 1C) 301 

compared with mice fed standard chow.  302 

 303 

TNFSF14 protects against diet-induced obesity, glucose intolerance and insulin resistance. 304 

To further elucidate the functional role of TNFSF14 in obesity and T2D, we compared 305 

TNFSF14 knockout (KO) to wildtype (WT) mice fed either standard chow or HFD. This mouse 306 

model allowed for the effects of endogenous TNFSF14 to be ascertained. There were no 307 

discernible differences in body weight for chow fed mice (Figure 2A). Interestingly, TNFSF14 308 

KO mice were markedly more obese compared with their WT counterparts when placed on 309 

a HFD (Figure 2A). These results were observed in three independent experiments. This 310 

novel data suggests that the presence of TNFSF14 may attenuate diet-induced obesity. In 311 

addition, HFD-fed TNFSF14 KO mice were more glucose intolerant (Figure 2B) and insulin 312 

resistant (Figure 2C) compared with WT controls. Also, HFD-fed TNFSF14 KO mice developed 313 

hyperinsulinemia (Figure 2D). Taken together, these data support the notion that TNFSF14 314 

expression is increased during the metabolic syndrome to work in a compensatory manner 315 

to limit diet-induced obesity and type 2 diabetes.  316 

 317 

TNFSF14 reduces fatty acid induced insulin resistance in L6 myotubes. 318 
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Our in vivo findings provided an insight to explore the direct effect of TNFSF14 on insulin 319 

sensitivity in cells of one of the major metabolic tissue types, skeletal muscle. Impressively, 320 

TNFSF14 treatment promoted insulin sensitivity and overcame palmitate induced insulin 321 

resistance in L6 skeletal muscle cells (Figure 3A).  322 

 323 

TNFSF14 treatment promotes glucose stimulated insulin secretion from pancreatic beta 324 

cells.  325 

Using the pancreatic  cell line MIN6, we demonstrate that glucose stimulated insulin 326 

secretion is significantly elevated in response to TNFSF14 treatment compared with 327 

untreated cells (Figure 3B). Therefore, we show for the first time that insulin secretion may 328 

be directly stimulated in the presence of TNFSF14.   329 

 330 

Endogenous TNFSF14 expression reduces adipocyte hypertrophy and inflammation in 331 

white adipose tissue in HFD-fed obese mice.  332 

We then shifted our focus to investigating the role of TNFSF14 in metabolically relevant 333 

tissues. Firstly, we show that TNFSF14 deficiency promotes adipocyte hypertrophy under 334 

high-fat feeding conditions (Figure 4A, B). Furthermore obesogenic TNFSF14 KO mice had 335 

significantly elevated mRNA levels of the pro-inflammatory cytokine TNF- in their white 336 

adipose tissue compared with WT counterparts (Figure 4C) which indicates that TNFSF14 337 

deficiency is associated with heightened inflammation.  338 

 339 

Hepatic lipid accumulation is promoted in HFD-fed TNFSF14 KO mice.  340 



17 
 

We also assessed liver tissue from HFD-fed mice as pathological lipid accumulation is a 341 

hallmark of metabolic disease (Mehlem, et al. 2013). Oil red staining of liver sections 342 

indicated substantial increased lipid accumulation in the livers of TNFSF14 KO mice fed a 343 

HFD compared with WT mice (Figure 5A, B). Histological examination by haematoxylin and 344 

eosin staining further substantiated this. There was also elevated inflammatory cell 345 

infiltration and dilated vasculature in livers of TNFSF14 KO mice (Supplementary Figure 1). 346 

Combined, these data suggest an important role for TNFSF14 in lipid homeostasis. 347 

 348 

Diet-induced obese TNFSF14 KO mice have elevated levels of hepatic lipase. 349 

We hypothesised that there may be an association of TNFSF14 and lipases involved in lipid 350 

homeostasis. When we compared hepatic lipase protein expression in the livers of WT and 351 

TNFSF14 KO mice fed a HFD (Supplementary Figure 2), we unexpectedly observed elevated 352 

hepatic lipase protein expression in livers of TNFSF14 KO mice. We believe that this increase 353 

in hepatic lipase protein is a compensatory response to the high fat diet-induced steatosis.   354 

 355 

Cytokine dysregulation in livers of TNFSF14 KO mice on a HFD. 356 

We aimed to ascertain if TNFSF14 ablation triggers perturbations in cytokine expression in 357 

our diet-induced obese mice by assessing liver expression of cytokines which are known to 358 

be implicated in the pathogenesis of obesity and T2D. Interestingly, there was a trend for 359 

the chemokine CXCL-10 to be increased in livers from HFD-fed TNFSF14 deficient mice 360 

(Supplementary Figure 3A).  361 
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When we explored the effect of TNFSF14 on cytokine protein expression in the livers of 362 

HFD-fed mice, we saw a striking decrease in IL-6 expression in livers from TNFSF14 KO mice 363 

compared with WT counterparts (Figure 6A). In addition, the cytokine IL-10 was drastically 364 

upregulated in the livers of HFD-fed TNFSF14 KO mice compared with WT controls (Figure 365 

6B). Although not significant, there was a trend for IL-1 (Supplementary Figure 3B) and IL-366 

18 (Supplementary Figure 3D) protein expression to be reduced in livers from TNFSF14 KO 367 

livers compared to WT counterparts.  368 

 369 

TNFSF14 deficient mice display dysregulated hepatic mitochondrial respiration when fed a 370 

HFD.  371 

Defects in mitochondrial pathways can trigger metabolic changes such as obesity and insulin 372 

resistance (Baker, et al. 2014). Consequently we measured levels of mitochondrial 373 

respiration in the livers of HFD-fed mice. Levels of respiration using substrates for Complex I 374 

(Figure 7A), Complex II (Figure 7B) and Complex III (Figure 7C) were significantly upregulated 375 

in the livers of obesogenic TNFSF14 KO mice compared with WT mice. Our finding is 376 

consistent with a human study which reported that persons with steatosis have greater 377 

hepatic mitochondrial oxidative metabolism compared with controls (Sunny, et al. 2011). 378 

Hence it is plausible that TNFSF14 deficiency may contribute to hepatic mitochondrial 379 

defects under high fat feeding conditions.  380 

 381 

Ablation of TNFSF14 in hematopoietically derived cells promotes diet-induced obesity and 382 

insulin resistance. 383 
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Given that hematopoietic cells are involved in diet-induced insulin resistance (Solinas, et al. 384 

2007) and are a major source of TNFSF14, we sought to determine whether TNFSF14 385 

deficiency in hematopoietic cells promoted diet-induced obesity and insulin resistance. We 386 

successfully demonstrate that hematopoietic cells are a major source of TNFSF14 that 387 

protects against diet-induced obesity as WT mice reconstituted with TNFSF14 KO bone 388 

marrow displayed significantly elevated diet-induced obesity (Figure 8A) and insulin 389 

resistance (Figure 8B) compared to WT mice reconstituted with WT bone marrow. Therefore 390 

we have now identified a major cellular source of the metabolically beneficial cytokine 391 

TNFSF14. 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 
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DISCUSSION 405 

There is mounting evidence indicating the beneficial effects of the cytokine TNFSF14 in 406 

disease (Dhall et al. 2016; Heo et al. 2016; Krause et al. 2014; Malmestrom et al. 2013; Mana 407 

et al. 2013; Qiao et al. 2017). However the role of TNFSF14 in the development of obesity 408 

and type 2 diabetes remains poorly understood (Bassols et al. 2010a; Dandona et al. 2014). 409 

Our innovative study provides clear evidence that TNFSF14 is elevated in mice as an 410 

adaptive response to attenuate characteristics of the metabolic syndrome. To our 411 

knowledge, we are the first group to examine the functional role of naturally-expressed 412 

endogenous TNFSF14 in a murine model of diet-induced obesity. Mice globally deficient in 413 

TNFSF14 develop obesity, glucose intolerance and impaired insulin sensitivity under high fat 414 

feeding conditions. Excitingly, we also show that lack of TNFSF14 leads to adipocyte 415 

hypertrophy and inflammation, hepatosteatosis and significant defects in hepatic 416 

mitochondrial respiration, indicating that TNFSF14 is required to hinder the development of 417 

complications arising from diet-induced obesity. Moreover, we show through in vitro 418 

experiments that TNFSF14 can overcome palmitate-induced insulin resistance in skeletal 419 

muscle cells and TNFSF14 treatment can directly promote insulin secretion from pancreatic 420 

 cells, signifying that TNFSF14 is metabolically beneficial in promoting insulin signaling and 421 

secretion. The work from our cellular studies is consistent with our finding that HFD-fed WT 422 

mice had improved insulin sensitivity compared with their TNFSF14 KO counterparts. Taken 423 

together, our novel data substantiates our hypothesis that physiological endogenous levels 424 

of the cytokine TNFSF14 are required for protection against features of the metabolic 425 

syndrome. 426 

 427 
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Cells of the hematopoietic lineage have been shown to play pivotal roles in diabesity 428 

(Solinas et al. 2007). As hematopoietic cells are a major source of TNFSF14, we sought to 429 

determine whether ablation of TNFSF14 in just the hematopoietic cells also promoted diet-430 

induced obesity and insulin resistance. We hypothesized that if hematopoietic TNFSF14 is 431 

the major source of TNFSF14 that protects against diet-induced obesity and insulin 432 

resistance, then WT mice reconstituted with TNFSF14 KO bone marrow will display 433 

pronounced diet-induced obesity and insulin resistance when fed a HFD. If both 434 

hematopoietic and non-hematopoietic sources are involved, then the mice will display an 435 

intermediate phenotype. We conclusively show for the first time that hematopoietic cells 436 

are a source of protective TNFSF14 in our murine model of diet-induced obesity and T2D.  It 437 

would be of interest to further determine the exact type of hematopoietic cell that is 438 

responsible for producing the metabolically beneficial cytokine TNFSF14, which include 439 

specific subsets of T cells, B cells or macrophages. It should be noted that the difference 440 

observed in weight gain and insulin resistance in our bone-marrow reconstitution 441 

experiments were smaller than those observed in our whole-body TNFSF14 knockout 442 

model. This suggests that hematopoietic cells are not the only source of protective TNFSF14 443 

in diet-induced obesity and T2D. This is conceivable as we also demonstrated in our study 444 

that adipose tissue and liver are major sources of TNFSF14. Therefore adipocytes or 445 

hepatocytes may be candidate cells.  446 

 447 

Hepatic lipase, an enzyme involved in lipid metabolism, hydrolyses triglycerides and 448 

phospholipids in lipoproteins and facilitates their metabolism and clearance (Santamarina-449 

Fojo, et al. 2004; Teslovich, et al. 2010). Given the extent of chronic liver damage in 450 



22 
 

obesogenic TNFSF14 KO mice, we postulated that TNFSF14 deficiency may be associated 451 

with defects in hepatic lipase activity.  We observed that HFD-fed mice lacking TNFSF14 had 452 

elevated hepatic lipase protein expression compared with their wildtype counterparts. This 453 

surprising result suggests that hepatic lipase may be potentially increased in the absence of 454 

TNFSF14 as an adaptive response to hydrolyse accumulated lipid in the liver (Chen, et al. 455 

2015).   456 

 457 

We next sought to determine whether mitochondrial respiration is influenced by the 458 

TNFSF14 KO phenotype in HFD fed mice. Liver mitochondria control hepatocellular energy 459 

metabolism via ATP synthesis and fatty acid oxidation (Pessayre, et al. 2002). It has 460 

previously been shown that insulin resistance is associated with impaired mitochondrial 461 

function in the liver (Kim, et al. 2008) though the role of mitochondrial function in disease is 462 

complex. In our study, we excitingly show for the first time that obesogenic TNFSF14 463 

deficient mice exhibit a significantly elevated respiration rate when assessing respiration via 464 

Complex I, Complex II and Complex III, which we suggest is a compensatory attempt to 465 

prevent a decrease in ATP synthesis (Gonzalvez, et al. 2013) in the steatotic liver. Therefore, 466 

when mice are metabolically challenged with a HFD, TNFSF14 deficiency may be associated 467 

with dysregulated mitochondrial respiration in the liver. 468 

 469 

The metabolically beneficial role of TNFSF14 in diet-induced obesity may also be associated 470 

with other factors which are potentially a direct result of the upregulation of TNFSF14. 471 

Hence, we conducted cytokine profiling in livers of HFD-fed mice to study the association of 472 

TNFSF14 with other cytokines known to be implicated in the metabolic syndrome. Of 473 



23 
 

particular interest are two interleukins, IL-6 and IL-10. Our group previously reported that IL-474 

6 KO mice develop systemic insulin resistance and hepatic inflammation when fed a HFD 475 

(Matthews, et al. 2010). In agreement, HFD-fed IL-6 transgenic mice have lower body and 476 

fat mass, and are more glucose tolerant and insulin sensitive (Sadagurski, et al. 2010), 477 

suggesting that endogenous physiological levels of IL-6 may be beneficial in diet-induced 478 

obesity. Excitingly, we show for the first time that livers from obesogenic TNFSF14 KO mice 479 

have markedly lower hepatic IL-6 expression compared to livers from WT counterparts. The 480 

combined reduction of TNFSF14 and IL-6 expression may be one crucial accelerating factor 481 

implicated in the pathogenesis of obesity-induced liver disease. Indeed, the heightened level 482 

of IL-6 in WT liver supports the notion that IL-6 is metabolically beneficial in limiting HFD-483 

induced steatosis. As some cellular studies have demonstrated that TNFSF14 directly 484 

induces IL-6 (Hosokawa, et al. 2010; Mikami, et al. 2014), it is intriguing to speculate that 485 

TNFSF14 directly regulates IL-6 production in our study. 486 

  487 

We were also interested in the potential association of IL-10 and TNFSF14 as studies have 488 

previously reported that IL-10 is involved in the protection against diet-induced metabolic 489 

dysfunction including hyperinsulinemia (Grant, et al. 2014; Kesherwani, et al. 2015). 490 

Interestingly, mice fed a HFD and lacking TNFSF14 exhibited both hyperinsulinemia and 491 

significantly elevated expression of hepatic IL-10 compared with HFD fed WT mice. We 492 

believe that the increased hepatic IL-10 expression in the TNFSF14 KO mice on a HFD may 493 

be a compensatory mechanism to attempt to reduce hepatic inflammation as evidenced by 494 

the vast infiltration of inflammatory cells in the H&E stained liver sections of the TNFSF14 495 

KO mice on a HFD.  496 
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 497 

Our study categorically indicates that endogenous physiological levels of the cytokine 498 

TNFSF14 has a protective role in the pathogenesis of obesity and type 2 diabetes and this 499 

may be facilitated by elevated hepatic IL-6 levels. Other studies have demonstrated that IL-6 500 

behaves as a myokine during exercise to maintain glucose homeostasis (Febbraio, et al. 501 

2004; Pedersen and Fischer 2007; Pedersen, et al. 2004). Indeed, muscle contraction during 502 

exercise appears to increase IL-6 production systemically which stimulates fatty acid 503 

oxidation and inhibits TNF- induced insulin resistance (Pedersen and Fischer 2007). 504 

Therefore, it would be an intriguing future study to examine whether muscle derived IL-6 505 

levels are also reduced in TNFSF14 KO mice fed a high fat diet.  506 

 507 

A major novel aspect of our work is that we are one of the first groups to demonstrate 508 

circulating TNFSF14 levels using an in vivo mouse model. Until now, many studies have only 509 

assessed TNFSF14 levels by flow cytometry or mRNA levels of TNFSF14. Hence measuring 510 

TNFSF14 protein levels, as in our study, is highly relevant. We also feel that our knockout 511 

mouse model possesses a major benefit over studies which utilise transgenic mice. Our 512 

study examines the effects of endogenous TNFSF14 protein which exists at physiological 513 

levels. Unfortunately, studies utilising transgenic mice which overexpress cytokines produce 514 

supra-physiological levels of the protein of interest. For example, in the IL-6 setting, 515 

transgenic IL-6 mice express circulating IL-6 in the 3,000-15,000 pg/mL range (Benedetti, et 516 

al. 1997). Alternatively, endogenous levels of circulating IL-6 in many pathological conditions 517 

in mice only occur between 4-300 pg/mL (Das, et al. 2014; Han, et al. 2017; Wei, et al. 2015; 518 

Yeh, et al. 2011).  519 
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 520 

Our highly innovative study provides persuasive evidence that TNFSF14 expression is 521 

increased during the metabolic syndrome in a compensatory manner to reduce diet-induced 522 

obesity and T2D. Our exciting in vivo findings demonstrate an essential role for TNFSF14 in 523 

limiting high fat diet induced weight gain, glucose intolerance and insulin resistance. 524 

Furthermore, our data suggest a lack of TNFSF14 exacerbates chronic liver injury, 525 

inflammation and results in dysregulation of hepatic mitochondrial respiration. We also 526 

postulate that TNFSF14 may exert its protective effects in the liver via elevated IL-6 levels. 527 

Finally, we have shown for the first time that absence of TNFSF14 in bone marrow cells 528 

promotes obesity and insulin resistance.  In conclusion, our novel data suggest that a 529 

TNFSF14 deficiency exacerbates parameters of the metabolic syndrome under high fat 530 

feeding conditions and provides further evidence to support the development of TNFSF14 531 

agonists as potential therapeutics in diet-induced obesity. 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 
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FIGURE LEGENDS 713 

 714 

Figure 1. TNFSF14 levels are increased in high fat fed mice. A high fat diet increases 715 

circulating TNFSF14 protein levels (A) and TNFSF14 mRNA expression in white adipose tissue 716 

(B) and liver (C); n=5-9 mice/group, *p<0.05, mean + SEM. 717 

 718 

Figure 2. TNFSF14 deficiency confers obesity, glucose intolerance, insulin resistance and 719 

hyperinsulinemia on a high fat diet. In a high fat feeding context, endogenous TNFSF14 720 

ablation promotes obesity (A), glucose intolerance (B), insulin resistance (C) and elevated 721 

levels of circulating insulin (D). Glucose and insulin tolerance tests were conducted 12 weeks 722 

after high fat diet commencement; WT: wildtype, KO: TNFSF14 KO; n=14-26 mice/group, 723 

*p<0.05, **p=0.013, mean  SEM. 724 

 725 

Figure 3. TNFSF14 treatment reduces palmitate-induced insulin resistance and promotes 726 

insulin secretion in vitro. Representative immunoblot showing TNFSF14 treatment 727 

promotes insulin sensitivity in L6 skeletal muscle myotubes as indicated by increased 728 

expression of phospho-AKT. -actin served as a housekeeping protein (A). Glucose 729 

stimulated insulin secretion from the MIN6 pancreatic  cell line is elevated after 48hrs of 730 

TNFSF14 treatment (B); n=3 wells/group, p<0.007, mean + SEM. 731 

 732 

Figure 4. TNFSF14 deficiency promotes adipocyte hypertrophy and inflammation in mice 733 

fed a high fat diet. Representative photomicroscopy depicting the reduced degree of 734 
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adipocyte hypertrophy in the white adipose tissue of WT mice (A) compared to TNFSF14 KO 735 

mice (B) on a high fat diet. Tnf- mRNA expression is significantly increased in white adipose 736 

tissue of high fat fed TNFSF14 KO mice compared with WT counterparts (C); n=6-7 737 

mice/group, *p<0.005, mean + SEM. 738 

 739 

Figure 5. TNFSF14 deficiency promotes liver steatosis in mice fed a high fat diet.  740 

Representative photomicrography showing oil red staining in livers of wildtype (A) and 741 

TNFSF14 KO (B) mice following 12 weeks of high fat feeding. Arrows indicate steatotic 742 

vesicles; n=8 mice/group.  743 

 744 

Figure 6. Effect of TNFSF14 deficiency on cytokine expression in livers from high fat diet 745 

fed mice. TNFSF14 deficiency significantly reduces IL-6 expression (A) and increases IL-10 746 

expression in livers from high fat diet fed mice; n=3-4 mice/group, *p=0.0091, **p=0.03139, 747 

mean + SEM. 748 

 749 

Figure 7. TNFSF14 deficiency promotes mitochondrial compensation in livers of high fat 750 

diet fed mice. Respiration rates in liver mitochondrial homogenates when supplemented 751 

with substrates for either Complex I (A), Complex II (B) or Complex III (C); n=8 mice/group, 752 

*p<0.02, mean + SEM. 753 

 754 

Figure 8. Hematopoietic cells from TNFSF14 KO mice promote high fat diet induced 755 

obesity and insulin resistance. Transfer of bone marrow from TNFSF14 KO mice into WT 756 
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mice promotes weight gain (A) and insulin resistance (B) in high fat fed mice. Weight 757 

analysis and insulin tolerance testing was conducted 12 weeks after commencement of high 758 

fat feeding; n=10 mice/group, *p<0.05, mean  SEM. 759 

 760 

Supplementary Figure 1. TNFSF14 deficiency promotes hepatic steatosis in high fat diet 761 

fed mice. Representative photomicrographs of hematoxylin and eosin staining of liver 762 

highlighting elevated lipid accumulation in the livers from WT (A) and TNFSF14 KO (B) mice.  763 

 764 

Supplementary Figure 2. TNFSF14 deficiency results in a compensatory increase of hepatic 765 

lipase protein expression in high fat diet fed mice. Western blotting for hepatic lipase in 766 

WT and TNFSF14 KO mice fed a high fat diet (A). -actin served as a housekeeping protein. 767 

Representative photomicrographs of hepatic lipase immunohistochemistry in the livers of 768 

WT (B) and TNFSF14 KO (C) mice fed a high fat diet-fed; 200x magnification; n=4 769 

mice/group. 770 

 771 

Supplementary Figure 3. Effect of TNFSF14 ablation on hepatic cytokine expression from 772 

mice on a high fat diet. CXCL-10 mRNA levels in the livers of WT and TNFSF14 KO mice fed a 773 

high fat diet for 12 weeks (A). There is a trend for lowered IL-1 (B) and IL-18 (C) in livers of 774 

TNFSF14 KO mice; n=3-8 mice/group, mean + SEM. 775 
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