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A characteristic of post-surgery patients, particularly the more elderly, can be a persistent
self-propagating cerebral inflammatory syndrome referred to as post-operative cognitive
dysfunction (POCD). Changes can be analogous to those seen in Alzheimer’s disease (Newman
et al., 2007; Steinmetz et al., 2009). Indeed, in some studies the conversion rates to dementia
are up to 70% in patients who are 65 years or older (Vanderweyde et al., 2010). An associated
transient acute delirium accompanied by increased levels of proinflammatory cytokines, including
tumor necrosis factor (TNF), can occur. This sometimes alarming phenomenon can be common
in the aged (Inouye et al., 2014), and is often regarded as an extreme manifestation of the sickness
behavior caused by cytokines induced during systemic inflammation generated by influences such
as trauma or severe infection impinging on a brain vulnerable through already being stressed by
these cytokines (Cunningham et al., 2009; Cunningham and Maclullich, 2013; Hennessy et al.,
2017).

Recently a report has argued the case that post-surgical delirium can be minimized by prior
treatment with dexmedetomidine (Su et al., 2016). Plausible reservations about the form of the trial
have been published (Kronzer and Avidan, 2016), and a subsequent trial in which this agent was
administered intra-operatively failed to show a response (Deiner et al., 2017). Nevertheless, since
a mechanism of action has not yet been suggested, we propose that, should pre-surgical use of
dexmedetomidine be confirmed to act against onset of delirium, the capacity of this agent to inhibit
excess production of TNF, as demonstrated in various contexts, may well shed light on the field.

Dexmedetomidine (Precedex, Orion Pharma), a synthetic sedative with analgesic and anxiolytic
properties, is widely used in surgery. It is a selective α2-adrenoceptor agonist that, compared
to opiates, causes little respiratory depression. The reported ability of this agent, administered
preemptively, to reduce the incidence of post-operative delirium in a large controlled study on
elderly patients in intensive care after non-cardiac surgery (Su et al., 2016) may, if confirmed,
contain the potential to fill a major need in intensive care units. Questions have since been
raised (Avramescu et al., 2017) about whether it confers direct neuroprotective effects or acts
indirectly, and its possible mechanism of action, which remains undetermined. However, the
rapidly accumulating knowledge on the roles of TNF in brain function draws our attention to
a copious literature on interactions between dexmedetomidine and this cytokine. Indeed many
have reported on the anti-inflammatory effects of this agent through its effects on this cytokine, as
discussed below. In this opinion piece we draw on this literature to explain the proposed inhibitory
actions of preemptively administered dexmedetomidine on delirium. The analgesic, anxiolytic and
morphine-sparing effects of this agent can also be rationalized in this way. In the first instance, it
is useful to note the common pathogenic features of delirium and POCD from a TNF perspective.
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In 2008 we made the case that the characteristics of the acute
illness seen in acute protozoa, bacterial and viral diseases—all
of which can all include the extremes of delirium—were formed
by the excessive generation of the cytokines released during
the phenomenon termed sickness behavior (Clark et al., 2008).
Cunninghammade essentially the same TNF argument about the
pathogenesis of delirium (Cunningham and Maclullich, 2013).
We have subsequently extended these arguments in regard to
the pathogenesis of POCD (Clark and Vissel, 2015). Moreover, a
recent study of post-surgical cognitive impairment has examined
the interplay between the human brain and the inflammatory
response of the peripheral innate immune system, including the
TNF thus generated (Forsberg et al., 2017).

Physical trauma, including that caused by surgery, induces
an innate immune response that includes release of pro-
inflammatory cytokines such as TNF and interleukins (Arvin
et al., 1996). This response follows, in part, from the release of
high mobility group box 1 protein (HMGB1) at sites of severe
trauma (Cohen et al., 2009). As we have recently discussed in
an Alzheimer’s disease context (Clark and Vissel, 2015), HMGB1
provides an example of the mechanistic links that can be made
between POCD, cytokines, and delirium. A non-histone nuclear
protein, HMGB1 is a normal nuclear component of cells. When
leaked extracellularly, it can act as a damage-associatedmolecular
pattern (DAMP) molecule that acts as an agonist for toll-like
receptor 4 (TLR4), TLR9 and receptor for advanced glycation
endproducts (RAGE) on many types of cells, including microglia
and astrocytes. This causes the release of pro-inflammatory
cytokines, the archetype of which is TNF, which is important in
cerebral physiology in low concentrations, and a complex range
of pathophysiology when production is excessive (see Clark et al.,
2010, for a review).

Since systemic TNF has long been known to cross the blood-
brain barrier (Gutierrez et al., 1993), we could expect excess
circulating TNF to contribute to cognitive dysfunction (Holmes
et al., 2009). It is therefore noteworthy that increased free
HMGB1 has been documented to be associated with increased
BBB permeability, increased production and presence of TNF in
the hippocampus in the cognitive dysfunction of experimental
POCD (He et al., 2012). Two groups have recently demonstrated
that HMGB1 thus plays an essential part in this model of POCD
through ameliorating it with either the HMBG1 antagonist,
Box-A (Fonken et al., 2016), or an anti-HMGB1 monoclonal
antibody (Terrando et al., 2016). This is consistent with the
proposal, based on mouse studies (Terrando et al., 2010),
of preventing POCD by preemptively treating at-risk surgical
patients with anti-TNF antibody. This body of work on TNF,
plus the literature discussed below on interactions between
dexmedetomidine and this cytokine, predicts an understanding
of how dexmedetomidine, given preemptively, plausibly acts to
minimize delirium.

Dexmedetomidine has an extensive history of improving
neurological function, for example when given preemptively in
animal models tibial fracture (Zhu et al., 2016), sepsis (Qiao
et al., 2009), and immediately after the establishment of a brain
trauma model in rats (Jiang et al., 2017). In all of these studies, as
well as in post-operative treatment of glioma resection patients

(Luo et al., 2016), the effect was associated with a reduction
in the increased circulating levels of TNF. This agent also has
been reported to significantly attenuate microglial activation and
TNF production by more than twofold in a mouse model of
delayed paraplegia (Bell et al., 2014). An extensive meta-study
on its perioperative use (Li et al., 2015) was also associated with
a reduction in TNF levels. It is well-documented that TNF is
implicated in brain homeostasis, with low levels being essential
for normal physiological functioning of cells and synapses.
For example, TNF is released during physiological neuronal
activity, and plays a crucial role in regulating the strength of
normal synaptic transmission (Marin and Kipnis, 2013). It is also
involved in normal neurotransmission via modulating excitatory
inputs (Pickering et al., 2005), trafficking of AMPA receptors
(Ferguson et al., 2008), homeostatic synaptic scaling (Stellwagen
and Malenka, 2006; Becker et al., 2013), long-term potentiation
(Cumiskey et al., 2007), and control of formation and clearance of
synaptic levels of glutamate, a potent toxin when in excess (Clark
and Vissel, 2016). Moreover, TNF balance maintains normal
background levels of neurogenesis (Bernardino et al., 2008; Russo
et al., 2011; Chen and Palmer, 2013). TNF also regulates neuronal
type-1 inositol trisphosphate receptors (IP3R), which are central
to neuronal Ca++ homeostasis, and thus the ionic signaling
cascades on which normal function of these cells depends (Park
et al., 2008). Clearly, all these functions are vulnerable to TNF
being outside its physiological range, with overshoots plausibly
being corrected by preemptive use of anti-TNF agents, including
dexmedetomidine. Thus neurological function can be expected
to diminish when cerebral concentrations of TNF are excessive,
with clinical characteristics determined by the local areas where
most is present. Importantly, the above reminds us that TNF is
biologically much more subtle that merely being a marker for an
inflammatory reaction, as often portrayed.

Various pathways of TNF inhibition by dexmedetomidine
have been explored. Its action as a α2-adrenoceptor agonist
appears implicated, in that yohimbine, an α2-adrenoceptor
antagonist, enhanced TNF levels when the two were compared
in a lipopolysaccharide-induced liver damage model (Chen
et al., 2015). Dexmedetomidine has also been shown to
inactivate the TLR-4/NF-κB pathway through which TNF is
commonly induced (Kim et al., 2017). Not surprisingly, therefore,
dexmedetomidine reduces TNF generation in carrageenan-
induced inflammation (Sukegawa et al., 2014) and also in
a myocardial ischemia-reperfusion model (Yang et al., 2017).
Evidence also exists that dexmedetomidine potentiates the
inhibitory control on TNF release from the vagal anti-
inflammatory pathway through the cholinergic pathway (Xiang
et al., 2014). In addition, dexmedetomidine inhibits TNF
induction by unmethylated CpG DNA, a model for other
unmethylated DNA such as that of bacterial or mitochondrial
origin (Chen and Qian, 2016). These are strong TNF inducers
in bacterial infections and trauma respectively, well-recognized
potential inducers of delirium.

Using the same mouse tibial fracture model as did others with
dexmedetomidine six years later (Zhu et al., 2016), Terrando
and co-workers (Terrando et al., 2010) demonstrated TNF to
be the key to post-operative cognitive decline. TNF generation
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peaked at 30min post-surgery, and preoperative administration
of a specific anti-TNF biological agent greatly ameliorated a
standard measure of murine cerebral functional loss (Terrando
et al., 2010). By that year this class of therapeutic was already well-
established in approved clinical use to treat rheumatoid arthritis,
Crohn’s disease and ankylosing spondylitis. It has since acquired
extensive off-label experience in human cognitive decline states
(Tobinick et al., 2012), as well as being successfully employed in
an experimental model of stroke (Wu et al., 2016).

Given the pleiotropic nature of TNF, reducing its excess
production with dexmedetomidine may also cast light on
the mechanisms of other useful outcomes of therapy with
this agent that are presently little understood. For instance
dexmedetomidine is an acknowledged analgesic, particularly
in surgical settings (Vaughns et al., 2017) and in pediatric
palliative care (Burns et al., 2017). Excess TNF generates pain
(Utreras et al., 2009; Calvo et al., 2012), and reducing TNF in
patients (Tobinick and Davoodifar, 2004; Tobinick et al., 2012)
or experimentally (Gerard et al., 2015) is reported to reduce
pain. Thus the known analgesic properties of dexmedetomidine
may reflect its anti-TNF capacity outlined above. We also note
that the reported usefulness of dexmedetomidine in cerebral
palsy (Liu et al., 2015), a condition characterized by unexplained
pain (Fehlings, 2017), may reflect the earlier successful use of
etanercept, one of the anti-TNF biological agent in clinical use,
in an experimental model of this condition (Aden et al., 2010).
Likewise, administering TNF intracerebrovascularly causes overt
anxiety in normal mice, whereas etanercept given by the same
route is anxiolytic in a mouse model of multiple sclerosis
(Haji et al., 2012). Similarly, anxiety states in patients exhibit
high proinflammatory cytokine activity (Hou et al., 2017), and
dexmedetomidine has anxiolytic properties in rats (Ji et al., 2014).
Likewise, both dexmedetomidine (Gursoy et al., 2011) and anti-
TNF agents (Shen et al., 2011; Sun et al., 2012) attenuate the
expression of the tolerance to morphine that develops with its
continued use in chronic pain.

The background information required to rationalize the
contrasting outcomes reported in the two trials (Su et al.,
2016; Deiner et al., 2017) that are the basis of this opinion
piece is as follows. In summary, the trauma associated with
surgery rapidly releases HMBG1 and mitochondrial DNA from
damaged cells. These are strong DAMPs that activate TLRs to
generate inflammatory cytokines in harmful excess. TNF, the first

cytokine in the inflammatory cascade, is released, and cleared,
most rapidly. Thus it has already initiated many pathways of
pathophysiology, including in the brain (since these cytokines
cross the blood-brain barrier, Banks et al., 1995). The literature
on the inhalation anesthetics also inducing TNF also warrants
briefly acknowledging here (Wu et al., 2012). The observation
of anti-TNF antibody being administered to baboons 2 h before
an LD100 of Escherichia coli protecting them completely from
harm (Tracey et al., 1987) is in sharp contrast to the uselessness
of neutralizing TNF once clinical sepsis is underway (Fisher et al.,
1996).

Thus it seems logical that, in the context of post-surgical
delirium (Su et al., 2016; Deiner et al., 2017), dexmedetomidine
is likely to be acting by inhibiting TNF production, its efficacy in
these two studies determined by the timing of its administration
in relation the onset of the surgical event. When given
beforehand, whether the event is delirium (Su et al., 2016) or
sepsis (Tracey et al., 1987), TNF’s effects can be nipped in the
bud. In contrast, once the acutely harmful clinical event, be it
delirium (Deiner et al., 2017) or sepsis (Fisher et al., 1996) is
in train, the TNF already released has initiated harmful events,
so it is too late to expect to reverse them by neutralizing this
cytokine.

A useful step in understanding its mechanism further
would be to experimentally compare preemptive use
of dexmedetomidine and one of the specific anti-TNF
biologicals reported to minimize POCD delirium, pain and
anxiety, and to induce morphine tolerance. Because of their
molecular size, these biologicals would require administering
intracerebroventricularly or perispinally (Tobinick, 2007),
whereas the routine use intravenous of the small molecule
dexmedetomidine as a sedative infers its brain entry after
systemic administration. This comparison could lead to
preemptive anti-TNF biologicals being a very much more
rational and effective therapeutic than dexmedetomidine in this
context.
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