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Abstract 

This study aims to investigate the production of volatile fatty acids (VFAs) from low strength 

wastewater at various hydraulic retention time (HRT) and organic loading rate (OLR) in a 

continuous anaerobic membrane bioreactor (AnMBR) using glucose as carbon source. This 

experiment was performed without any selective inhibition of methanogens and the reactor 

pH was maintained at 7.0 ± 0.1. 48,24,18,12,8 and 6 hr - HRTs were applied and the highest 

VFA concentration was recorded at 8 hrs with an overall VFA yield of 48.20 ± 1.21 mg 

VFA/100 mg CODfeed. Three different ORLs were applied (350, 550 and 715 mg CODfeed) at 

the optimum 8 hr-HRT. The acetic and propanoic acid concentration maximums were 

(1.1845 ± 0.0165 and 0.5160 ± 0.0141 mili-mole/l respectively) at 550 mg CODfeed. The 

isobutyric acid concentration was highest (0.3580 ± 0.0407 mili-mole/l) at 715 mg CODfeed 

indicating butyric-type fermentation at higher organic loading rate.  

Keywords Volatile fatty acids, anaerobic membrane bioreactor, low strength wastewater, 

hydraulic retention time, organic loading rate 

1. Introduction 

In past decades, anaerobic bioreactors have been utilized to recover value-added chemicals 

and bioenergy from different waste materials (Khan et al., 2016a; Wang et al., 2018). The 

recent development in this technology includes coupling a membrane module with 

conventional an anaerobic digestion system for treating industrial and municipal wastewater 

(Liu et al., 2018). Although biogas has been considered as the primary resource to be 

recovered from wastewater, research studies have proven the technical and economic 

feasibility for recovering VFA and biohydrogen from anaerobic bioreactors (Liu et al., 2018; 

Xin et al., 2017).  
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So far, industrial application for anaerobic membrane bioreactors has been limited because 

the product revenue earned from this process is not constant. This is because of the variable 

production rate of VFA, biohydrogen, and methane due to the frequent change of carbon 

content in feed wastewater (Khan et al., 2016b; Pretel et al., 2016). In addition to this 

discussion, recovering VFA and biohydrogen, where biogas production can improve revenues 

earned from anaerobic processes and eventually improve the economic feasibility of large-

scale production. Although for treating municipal wastewater, the influent COD typically 

varies from 150 to 350 g/L, it can be concentrated further for resource recovery purposes (Ji 

et al., 2014; Zheng et al., 2018). 

A few studies have analyzed the economic feasibility of VFA production in contrast to 

biogas.  The results demonstrated that production difference between VFA and the methane-

containing biogas from the anaerobic process for VFA produced higher revenue compared to 

biogas (Khan et al., 2016b; Kleerebezem et al., 2015). VFAs have been identified as raw 

materials for biopolymers like Polyhydroxyalkanoate (PHA). It can also be used as a 

potential precursor for valuable organics, for example, alcohols, ketones, and aldehydes, 

biogas, biohydrogen and biodiesel (Khan et al., 2016a; Lee et al., 2014; Tao et al., 2016). 

VFAs are short-chain fatty acids that are produced through initial hydrolysis and the 

acidogenic phase in anaerobic digestion. During this process carbohydrates, proteins and fats 

are hydrolysed  into amino acids, sugar, and fatty acids. The hydrolysis process is followed by 

acidogenesis where VFAs, BioH2, and CO2 are produced. VFAs produced from initial two 

stages are consumed by the methanogens at the final anaerobic stage to produce biogas 

(Begum et al., 2018; Scoma et al., 2016).   

Production of VFA can be undertaken in two major ways: Firstly, VFA can be produced as 

the main product of anaerobic digestion (Aydin et al., 2018). This production type involves 



  

4 
 

the inhibition of the methanogenesis process so that the methanogens cannot consume the 

VFA during the final stage of the anaerobic process to convert them into biogas. The 

selective inhibition of methanogenesis is mainly carried out by heat shock and load shock 

treatment. Additionally, acidic and alkaline pH treatments are also applied for selective 

inhibition of methanogens (Khan et al., 2016a). These methanogens have been reported to 

have optimum microbial growth at a pH range of 6.5 to 8.2 (Mao et al., 2015), therefore 

reducing the pH below 6.5 or above 8.2 can be applied to inhibit the activity of methanogens.  

Secondly, VFA can be simultaneously produced with biogas. This production technology 

involves the anaerobic process where the initial stage of acidogenesis and final stage of 

methanogenesis are separated through a multiple stage bioreactor design (Li & Yu, 2011; 

Schievano et al., 2014). In this experiment, the first type of production scheme was used to 

produce VFA without any selective inhibition of methanogenesis process. The reason for this 

approach is to improve the industrial application of the AnMBR as following the operating 

conditions any existing AnMBR model can be tuned to produce VFA without any design 

alterations. 

For a specific bioreactor design, production of VFA directly depends on temperature, pH, 

Hydraulic Retention Time (HRT), Organic Loading Rate (OLR), pre-treatment methods of 

the sludge and chemical additives (Garcia-Aguirre et al., 2017; Jankowska et al., 2018; Khan 

et al., 2016a; Peces et al., 2016). Among these conditions, hydraulic retention time and 

organic loading rate can both be changed directly based on the feed composition. Kuruti et 

al., (2017) states that a general decrease in HRT increases the VFA production through 

anaerobic acidification (Kuruti et al., 2017). However, the value at which the highest VFA 

yield and production rate of VFA would be achieved depends on bioreactor design, microbial 

community, and feed characteristics. In contrast, it has been identified that an initial increase 

in the loading rate increases the VFA production but at the same time can affect membrane 
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fouling and bioreactor performance in terms of COD and nutrients removal (Khan et al., 

2016b; Mao et al., 2015). An optimum value for OLR for any anaerobic process depends on 

the bioreactor design, and an OLR above the optimum value reduces the production of VFA 

significantly. Slezak et al., (2017) studied the effect of organic loading rate for VFA 

production in dark fermentation and identified the VFA concentration increases only up to 

the initial OLR of 48.2g VS/L (Slezak et al., 2017). Increasing the OLR also effects the VFA 

composition in the product stream. Wijekoon et al. (2011) identified that the predominant 

VFA component changed from acetic acid to n-butyric acid with an overall increase in VFA 

concentration when OLR was increased from 5 to 12 kg COD m−3 d−1 in a two-stage 

thermophilic anaerobic membrane bioreactor (Wijekoon et al., 2011). 

Although numerous studies were carried out to optimize the production of VFA, most of 

them utilized anaerobic digestion (AD) process.  A very limited number of researches 

performed to produce VFA from ANMBR where potential membrane fouling is an important 

area of concern. Additionally, the available studies aimed to optimize VFA production 

mainly used different inhibition process for methanogenesis.  

This is the first research which aims to find out the optimum hydraulic retention time and 

loading rate in the AnMBR treating low strength (synthetic) wastewater. The first stage of 

this experiment includes AnMBR operation in six different HRTs for 48, 24, 18,12,8 and 6 

hrs. In the second stage, the same bioreactor was used with three different organic loading 

rates using 350, 550 and 715 mg/l COD of synthetic wastewater.  

2. Materials and methods 

2.1 Characteristics of sludge and feed solution 

The AnMBR used for this reaction had mixed liquor seed sludge from two different water 

treatment plants in Sydney, Australia (Cronulla water treatment plant and Central Park water 
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treatment plant). At the beginning of each experiment, the sludge in the reactor had a mixed 

liquor suspended solid concentration of 10 g/l. The system was purged with nitrogen to get any 

unexpected air and oxygen out with diffused aeration tubes. The sludge mixture (30:70 ratios 

from Cronulla and Central Park respectively) was acclimatized in the reactor for 90 days until 

a constant COD and nutrient removal was obtained. Characteristics for mixed sludge and feed 

solution have been listed in Table 1. 

Table 1: Characteristics for seeding sludge and feed solution  

2.2 Experimental setup  

A 3.9 L column was used in this experiment with provisions for effluent recirculation, biogas 

spurging and nitrogen purging from the bottom (see Figure 1). The system had a working 

volume of 3.5 L. The pressure sensor at the top measured the pressure in the reactor. Hollow 

fibre membrane (PVDF, Pore size 0.07 – 0.1 μm) with the inner and outer diameter of 1.0 

and 2.2 mm respectively was used for this experiment. The membrane had a surface area of 

0.08 m2
. 

Figure 1: Schematic of experimental setup for VFA production 

2.3 The operation of anaerobic membrane bioreactor 

For this experiment, the operation of anaerobic membrane bioreactor can be divided into two 

different stages. The first stage involves the operation of AnMBR at different hydraulic 

retention times (HRTs). VFA samples were analyzed at 48, 24, 12, 8 and 6 hrs of HRT. The 

influent COD was kept constant at 550 mg/l with an OLR of 68.75 mg COD/l.hr. The second 

stage involved producing VFA at different organic loading rates. The loading rates were 

changed by varying the influent COD in the feed wastewater. Influent COD was varied to 

350, 550 and 715 mg/l with corresponding OLR of 43.75, 68.75 and 89.38 mg COD /l.hr, 

respectively, by keeping the HRT fixed at 8 hrs. Glucose, NaNO3, and KH2PO4 were used as 



  

7 
 

the main sources of carbon, nitrogen, and phosphorus respectively. The C: N: P ratio was 

kept constant at 100:5:1. Each trial for HRT and OLR involved 21 days of AnMBR operation 

in continuous mode. All relevant reactor operation conditions have been listed in Table 2. 

Table 2: AnMBR Operating conditions 

Throughout the period of stage 1 and 2 of bioreactor operation, the was maintained at 7.0 ± 

0.1 and the ambient temperature in the laboratory was kept constant at 22 ± 1 °C pH fixed at 

7.0. Referring the information provided in the introduction section (optimum microbial 

growth of methanogens at pH 6.5 – 8), no inhibition process was applied to suppress 

methanogenic activity. 

2.4 Analytical methods 

2.4.1 Solvent extraction 

For preparing the sample, reactor effluent was collected and acidified to pH 2.0 to avoid any 

further biodegradation by the microorganisms. In order to get rid of the possible suspended 

matter, the acidified sample was centrifuged to 3500 rpm for 30 minutes. The next step 

involved taking a 4 ml sample and the addition of 1 g NaCl followed by the extraction with 

MTBE (2 ml). Once emulsion was formed, the sample was again centrifuged at 4000 rpm for 

5 minutes.  

 

The additional step of centrifuging was performed to break the emulsion. Once the separate 

organic phase was observed, it was collected with a syringe. The whole extraction process 

with MTBE was repeated for another time to make sure no organic content was left after 

extraction. Finally, the extracts were added together and taken to a separate test tube. The 

removed anhydrous Na2SO4 was added to make sure no water was resent before the sample 

was subjected to GC-MS. After dehydration, the sample was filtered using a 0.22 μm syringe 
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filter to ensure the removal of suspended particles from GC-MS. The composition of fatty acid 

components was measured based on the retention times and mass spectra of peaks on the 

chromatograms derived from the extracted sample and the standard VFA solution (Banel & 

Zygmunt, 2011). 

 

2.4.2 Quantification of VFA from GC-MS 

Individual VFA concentrations were measured by gas chromatogram mass spectrometry 

method (GC-MS TQ8040, Shimadzu, Japan). For each measurement, the open tubular 

analytical column was used (VF-WAXms, Agilent, U.S). Helium was used as career gas with 

a flow rate of 2.05 mL/min. The temperature program started at 50˚C and was held for 5 min 

before ramping to 250˚C at 10˚C/min and was then held for 10 min. Electron impact ion 

source was set at 230˚C while the injection port and transfer line temperatures were held at 

230˚C. Mass spectrometer (MS) operated in a selected ion monitoring (SIM) mode and in a 

full scan mode (m/z 15-550). Ions for detection of individual VFA in SIM mode were 

selected using the mass spectra of standards generated in SCAN mode. 

3. Results and discussion 

3.1 AnMBR performance in COD and nutrients removal  

For each stage of the AnMBR operation, bioreactor performance was analyzed in terms of 

COD and nutrient removal efficiency. Reactor effluents were added every 4 days during each 

trial for HRT and OLR.  Figure 2 displays the efficiencies for COD, nitrate, and phosphorus 

removal at different HRTs and loading rates.  

Figure 2: Nutrient and COD removal performance of continuous AnMBR 
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From Figure 2, it is evident that the COD removal performance was steady at approximately 

70 % throughout the trials for both stages of operation. NO3
- removal performance was 

maximum at the longest HRT (48 hrs) referring to the condition where the microorganisms 

were allowed enough time to undertake the denitrification process.  As HRTs became shorter, 

a slight decrease in the NO3
- removal was observed. The reason may be associated with the 

fact that the contact time between the feed wastewater and the denitrifying bacteria was 

lowered and shorter HRTs. Additionally, as the influent COD was kept constant at 550 ± 10 

mg/l, the organic loading rate was also increased at shorter HRTs. As the denitrification 

process involved processing the high organic loading, the minor decrease in the nitrate 

removal was expected (Wang et al., 2018). However, a minimum removal efficiency of 

93.2% indicates efficient denitrification process in the bioreactor. As expected, the anaerobic 

process had a steady PO4 
3-, the removal efficiency from 0.9 to 4.6% throughout the 

experiment. 

During the second stage, at loading rates of 350 and 550 mg COD/l, the lowest COD removal 

efficiency was steady at about 70.9 ± 1.1%. NO3
- removal was observed above 98.2 ± 1.7% 

with a maximum removal efficiency of 99.4 ± 0.1%. PO4 
3- removal was steady within the 

range of 0.9 ± 0.2% to 1.8 ± 0.1%. Instead, at a loading rate of 715 ± 10 mg COD/l, the COD 

removal efficiency dropped to 65.1 ± 2.2% and consequent NO3
-  removal efficiency dropped 

at 91.9 ± 0.5%. The deterioration in the general AnMBR may be associated to multiple facts 

like momentary pH drops due to VFA accumulation and less contact time between the 

biomass and feed solution (Khan et al., 2016a; Mao et al., 2015) 
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3.2 Membrane fouling of AnMBR 

Properties of the membrane, sludge characteristics, wastewater properties, and operating 

conditions are the key factors that control the membrane fouling in a bioreactor (Guo et al., 

2012).  For this experiment, the same type of membrane, sludge, and synthetic feedwater 

were used throughout the experiment except for changes in the HRT (stage 1) and OLR 

(stage 2). Instead of discussing the mechanism of membrane fouling, this section includes 

discussions on how different hydraulic retention times and organic loading rates change the 

fouling pattern in the AnMBRs. MLVSS was fixed at 10 g/L at different HRTs and 

membrane fouling was measured in terms of Trans Membrane Pressure (TMP).  All data 

have been plotted in Figure 3(a) and (b). 

Figure 3 Variations of TMP at different operating conditions  

 

In biological wastewater treatment, polysaccharides, EPS and organic colloids are the major 

contributors to membrane fouling in Membrane Bioreactors (MBRs). Additionally, the 

Natural Organic Matter portion in DOC, carboxylic acids, proteins, and amino acids have 

also been identified to have a significant effect on membrane fouling. At higher organic 

loading rates and shorter HRT, the trace nutrients in the synthetic wastewater (Ca+2, Mg+2, 

Fe+3) are perhaps responsible for creating inorganic fouling in the membrane (Guo et al., 

2012). 

In the beginning, the little or no significant TMP development was observed (0-7.6 Kpa) for 

48 and 24 hr HRT. The results indicated that the soluble organics, trace nutrients and 

carboxylic acid concentration was not high enough to develop the TMP above 7.6 Kpa. 

However, TMP developed at a faster rate (22.5 and 33.2 and Kpa after 21 days) for 18 and 12 

hrs. This is because at this loading rate the soluble organics and the nutrients present in the 
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feed water started to foul the membrane surface. The manufacturers’ recommendation was to 

change/clean the membrane module once the TMP exceeds 30 Kpa, therefore during these 21 

hrs of operation membrane cleaning was not performed. 

At shorter HRTs (8 and 6 hrs) a steady increase in TMP development was observed until day 

11 (up to 13.6 Kpa). The steady increase was followed by a rapid TMP development for both 

8 and 6 hr HRT (35.2 Kpa at the end of day 20 and 35.1 Kpa at the end of day 16 

respectively. The first stage of fouling (up to day 11) behaviour suggests the deposition of the 

foulants on the membrane surface. Later, the rapid rise in the TMP indicates blockage of the 

membrane pores by the formation of biofilms. Note that the results after membrane cleaning 

are not included in Figure 3 (a). 

At low HRT, bacterial cell releases extracellular polymeric substances that eventually 

increases the SMP content and deflocculates the sludge.  Additionally, at very low HRT, 

oversized and irregular flocs may have been formed in addition with the production of 

filamentous bacteria. The combination of these factors might have been responsible for the 

membrane fouling observed in 8 and 6 hr of HRT.  

Membrane material also plays an important role in anaerobic wastewater treatment. Clark & 

Heneghan, (1991) mentioned that hydrophobic membrane materials are to suffer more 

membrane fouling than hydrophilic membranes (Clark & Heneghan, 1991). For this 

experiment, polyvinylidene fluoride (PVDF) was used as the material for membrane 

fabrication. As PVDF is chemically hydrophobic, a higher extent of membrane fouling was 

expected in this experiment. 

The results for membrane fouling at different organic loading rates correlated closely with the 

results observed at different HRTs. These different organic loading rates (43.75, 68.75 and 

89.38 mg COD/l.hr) were applied using synthetic wastewater having COD of 350, 550 and 
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715 mg/l. As maximum VFA concentration was found at 8 hrs of HRT at the first stage of 

this experiment, for all the organic loading rates, HRT was kept constant at 8 hrs.   

The results found in this step of this experiment were interesting. When the influent COD 

was dropped to 350 mg/l (corresponding loading rate of 43.75 mg/l.h) TMP only went up to 

24.9 Kpa at the end of day 21 compared to than that of 35.2 Kpa at the end of 20 days of 

operation using 550 mg/l COD in the feed. The lower organic loading at 350 mg COD/l 

involved less amount of organic acid, EPS and organic colloids deposit in the membrane 

surfaces. Therefore, membrane fouling was not severe at this organic loading.   

In contrast, for 715 mg COD in the feed wastewater (loading rate of 89.38 mg/l.h), a rapid 

35.4 KPa TMP was developed at the end of 15 days of operation. At this operating condition, 

high amounts of SMP and bound EPS were generated that resulted in a decrease in sludge 

filterability and filtration index. As the concentration of different foulants were high due to 

the high loading rate, a combination of these factors may be responsible for membrane 

fouling during this condition (Chen et al., 2018; Guo et al., 2012).  

3.3 VFA concentration at different HRT 

The major components of VFA include acetic acid, propanoic acid, butyric acid, and valeric 

acid. The components are mainly produced in the acidogenic phase of anaerobic digestion. 

Among these VFA components, acetic, propanoic and butyric acids are predominant during 

VFA production from the anaerobic process. According to literature, 65 to 95% of methane 

present in biogas is directly produced from butyric and acetic acid (Khan et al., 2016a; 

Mamimin et al., 2017; Morgan-Sagastume et al., 2011).  

 

Table 3: Concentration of VFA components at different HRT 
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From the experiment, it has been observed that the acetic acid concentration was nearly 

doubled (from 0.4922 ± 0.0134 to 0.8321 ± 0.0160 mili-mole/L) when the HRT was reduced 

from 48 hrs to 24 hrs. Production of acetic acid was increasing gradually when HRT was 

shortened and the maximum concentration was achieved at 8 hrs (1.1845 ± 0.0165 mili-mole 

/l). The change from 48hrs to 24 hrs indicates a shift in microbial activity from 

methanogenesis to acidogenesis. A gradual increase in acetic acid concentration was 

observed when the HRT was reduced further to 18,12 and 8 hrs. These trials with shorter 

HRT involved higher organic loading rates as the COD of influent wastewater was kept 

constant at COD of 550 ± 10 mg/l. Although the increase in acetic acid concentration had the 

highest degree of increase during the first change from 48hrs to 24 hrs, the following increase 

in the trend for acetic acid was associated with the high amount of organics and nutrients 

loading the bioreactor at a fixed MLVSS of 10.1 ± 0.1.    

 

A further decrease in the HRT (from 8 to 6 hrs) reveals a drop in acetic acid concentration to 

1.0095 ± 0.008 mili-mole/l. Although the initial decrease in HRT supported acetic acid 

production, an HRT below 8 hrs indicates an imbalance in the initial hydrolysis and 

acidogenesis process. More explicitly, the high amount of organics fed into the reactor at this 

HRT had a faster rate of initial hydrolysis whereas the acidogenic bacteria could not perform 

their action by consuming amino acids, sugar and other fatty acids that are produced through 

the initial hydrolysis process in anaerobic digestion. 

For isobutyric acid, the concentration initially increased from 0.1128 ± 0.008 to 0.2836 ± 

0.0005 mili-mole/l when the HRT was shortened from 48 to 24 hr period. Similarly, for 

acetic acid, the results suggest that the methanogens could not convert the produced VFA into 

methane and CO2 during this change (Braguglia et al., 2018).  However, no significant rise in 

the butyric concentration was observed when in shorter HRTs (18,12,8 and 6 hrs). The 
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reasons may be associated with operating pH factors in the reactor.  According to the 

literature, pH values of 6.0-7.0, 4.0-5.0 and 11.0 have been referred as optimum for acetic 

acid, propanoic acid, and butyric acid production respectively (Begum et al., 2018; Lin & Li, 

2018; Yu & Fang, 2003). As the experiment involved maintaining the reactor pH level to 7.0 

± 0.1, the butyrate type fermentation was not predominant during this experiment. 

 A gradual increase in the concentration of propanoic acid has been observed when the HRT 

was shortened from 48 hrs to 6 hrs. The highest concentration was observed at 6 hrs (0.5293 

± 0.03 mili-mole/l). Propanoic acid, unlike acetic and butyric acid, remains unconverted 

during the final stage of anaerobic digestion as the conversion is thermodynamically less 

favourable compared to the other two major VFA components (Yu et al., 2016). As a result, it 

accumulates in the bioreactor at high organic loading rates or shorter HRT. The literature 

explains that this single VFA component is responsible for rapid acidification in anaerobic 

bioreactors that eventually leads to the conditions of microbial stress, sharp pH drop and 

reactor instability (Wang et al., 1999). For this study, the reactor pH was maintained to 7.0 ± 

0.1 by adjusting the pH of the feed solution. Therefore, the possibility of propanoic acid 

accumulation was very small during this experiment. 

The remaining components present in our analysis included isovaleric, n-valeric, iso-caproic, 

n- caproic and heptatonic acid. Although no particular trend was observed in their 

concentration, an overall decrease in their concentration was observed when the HRT was 

shortened. The results may be associated with the fact that shorter HRT encouraged the 

production of major VFA components like acetic, butyric and propanoic acid. Consequently, 

VFA production shifted towards acetic, butyric and propanoic acid at shorter HRTs.  
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Table 3 also shows the overall percentage of VFA yield in mg VFA/mg COD in the feed 

solution. A change from 48hrs to 24 hrs records a rapid increase in VFA yield from 13.39 ± 

1.21% to 32.88 ± 2.56%.  In unit time, the carbon content in the feed solution increased in 

shorter HRTs, the VFA yield increased up 48.20 ± 1.21% at 8 hrs HRT. A further decrease in 

the HRT (6 hrs) caused a drop in the overall VFA yield 42.32 ± 2.32% (mg VFA/mg 

CODfeed) indicating insufficient contact time between the microbes and the feed solution. As 

discussed previously, the predominant VFA components (acetic, propanoic and butyric acid) 

only had a rise in concentration up to the HRT of 8 hrs. The drop in their individual 

concentration triggered an overall decrease of the VFA yield at 6 hrs operation.    

Experiments have shown that, for VFA production, at pH 5.5 acetic acid is the major VFA 

component whereas at pH -11 butyric acid is the predominant VFA component (Begum et al., 

2018; Jankowska et al., 2017). In this case, an alteration of reactor pH to acidic (pH 5.5) or 

alkaline (pH 11.0) can be beneficial for acetic and butyric acid production. Therefore, 

maximizing the concentration of individual VFA component can improve the overall VFA 

yield from this process.  

3.4 VFA concentration at different OLR  

Three different organic loading rates were applied (43.75, 68.75 and 89.38 mg COD /l.h) 

using an influent COD of 350, 550 and 715 mg/l at 8 hr HRT period.  For 350 mg/l COD in 

feed solution, acetic, propanoic and isobutyric acid concentrations 0.7602 ± 0.014, 0.2707± 

0.011 and 0.2393± 0.007 mili-mole/l respectively with an overall VFA yield of 35.39% (± 

3.52%) mg VFA/ 100 mg COD feed. At this loading rate, the soluble organics and nutrients 

were not enough for the acidogenic bacteria present in the reactor. Therefore, both individual 

VFA concentrations and overall VFA yield were relatively low during this condition. 

Figure 4: VFA concentration at different OLR 
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At a loading rate of 550 mg/l COD in feed, highest acetic acid concentration was observed 

(1.1845 ± 0.0165 mili-mole/l) along with an increase for propanoic acid (from 0.27070 ± 0.03 

to 0.5160 ± 0.0104 mili-mole/l). This initial increase in the influent COD increased the 

supply of organics and nutrients to the microbes that were performing acidogenesis. 

However, at this loading rate the butyric acid concertation dropped 0.2393 ± 0.0406 to 0.2284 

± 0.0023 mili-mole/l.  The subsequent drop in butyric acid concentration may be associated 

with the fact that it was degraded to acetic acid by acetic acid producing bacteria (Shen et al., 

2018). Another reason for this drop in the butyric acid concentration is linked to the fact that, 

the system was not supported with the optimum pH (5.5 to 6.5) for butyrate type fermentation 

(Kuruti et al., 2017). An increase in the propanoic acid concentration was observed at this 

loading rate due to the reason that it was not consumed by any other acidogenic bacteria or 

methanogenic archaea (Khan et al., 2016a). 

Finally, for 715 mg/l COD at the influent, there was a decrease in acetic acid and propionic 

acid concentration (from 1.1881 ± 0.0081 mili-mole/l to 1.1385 ± 0.0081 and 0.5160 ± 0.03 

to 0.4167 ± 0.03 mili-mole/l respectively). In addition to this decrease, an overall drop in 

AnMBR performance was also observed (COD removal rate dropped to 65.1 ± 2.2% and the 

NO3
- removal rate dropped to 91.9 ± 0.5%). In contrast, an increase in the trend of isobutyric 

acid concentration was observed (0.2284 ± 0.0117 to 0.3580 ± 0.0407 mili-mole/l) in this 

condition. A possible reason may be at this loading rate VFA accumulation in the reactor 

triggered a momentary drop of the reactor pH below 6.5 that encouraged butyrate type 

fermentation. In summary, the high organic loading rate can be referred to as a trade-off 

between AnMBR performance and maximizing butyric acid production.  

A possible future improvement opportunity can be operating the bioreactor by altering the pH 

condition into the acidic zone (5.5 to 6.5).  Where the acetic acid and propanoic acid 

production can be maximized at this pH range (Begum et al., 2018), it would be interesting to 
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see the possibility of overall VFA concentration exceeding the values that are obtained in the 

loading rate of 550 mg COD /l. 

3.5 Advantages of VFA production from continuous AnMBR  

 

The current study utilizes a continuous AnMBR to produce VFA from low-strength synthetic 

wastewater. Over the past few years, there have been a lot of experiments to extract VFA 

using anaerobic digestion, but most of these researches involve anaerobic digestion process in 

batch operation. For example, Begum et al. (2018) used anaerobic batch reactors to produce 

VFA using landfill leachate. The reactor was operated at different pH conditions (pH: 5.5 / 

11.0) and at a temperature of 37 ± 2 °C. The highest VFA yield from this research was 48% 

VFA/ COD feed. Garcia-Aguirre et al. (2017) investigated the production of VFA using 

different carbon sources (Slaughterhouse wastewater, Papermill wastewater, and glycerol) 

using batch fermentation process. The range of overall VFA yield from paper mill wastewater 

and glycerol were 32 - 47 %. Both studies used adequate inhibition of the methanogenic 

activity of microorganisms through pH and temperature control in the batch mode of 

operation. The research by Li & Li (2017) carried out an experiment to produce VFA using 

iron-flocculation batch reactor using wastewater and food waste and achieved a conversion of 

66% of food waste into VFA. Yarimtepe, Oz & Ince (2017) achieved a 68% overall VFA 

yield in an anaerobic sequencing batch reactor using olive mill wastewater. Therefore, the 

currently available research studies for VFA production have achieved a high percentage of 

VFA yield through utilizing inhibition of methanogenic activity in the batch mode of 

operation. There has been a limited no of research that involves VFA production from low 

strength municipal wastewater in a continuous AnMBR.   
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Hence, a continuous AnMBR can offer many advantages over the currently available VFA 

production processes. Firstly, VFA production in the continuous mode of operation makes it 

more applicable for wastewater treatment whereas the batch mode of operation is more 

practical for anaerobic digestion of organic waste. Secondly, this study has achieved a 

maximum VFA yield of 48.20 ± 1.21% (mg VFA/mg COD in feed solution) without the 

inhibition of methanogenic activity. Therefore, the result can be used in the simultaneous 

production of VFA and methane can increase the amount of revenue earned from the 

AnMBR. Thirdly, acidification is a major operational problem in AnMBR that are primarily 

caused by VFA accumulation (Khan et al., 2016b). Throughout this experiment, the reactor 

pH was maintained at 7.0 ± 0.1. Recovering VFA from this process offered an operational 

benefit by reducing the chance of rapid acidification. Finally, the membrane fouling profile 

during VFA production under different operating conditions has not yet completely 

discovered. Therefore, the findings from this research study could be beneficial to 

reduce/eliminate membrane fouling in the future. 

4. Conclusion 

The experimental results concluded that the highest individual VFA concentration was 

observed at HRT 8hrs with a corresponding yield of 48.20 ± 1.21% without any selective 

inhibition of methanogenesis. From different organic loading rates, highest acetic and 

propanoic acid concentration were 1.1845 ± 0.0424 and 0.5160± 0.0322 mili-mole/l 

respectively at 550 mg/l CODfeed.  An increase in high organic loading at 715 mg COD/feed 

suggested a future research option by operating the AnMBR at different pH levels. Additional 

operating conditions like reactor pH and temperature can be altered to maximize the 

production rate and yield of VFA.   
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Figure captions 

Figure 1: Schematic of experimental setup for VFA production 

Figure 2: Nutrient and COD removal performance of Continuous AnMBR 

Figure 3: Variations of TMP at different operating conditions  

3(a): TMP at different HRTs (hrs)  

3(b): TMP at different OLRs (mg/l)  

Figure 4: VFA concentration at different OLRs  
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Figure1 Schematic of experimental setup for VFA production 
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Figure 2: Nutrient and COD removal performance of continuous AnMBR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3(a) TMP at different HRTs (hrs)  
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3(b) TMP at different OLRs (mg/l) 

 

Figure 3 Variations of TMP at different operating conditions  
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Figure 4: VFA concentration at different OLRs  
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Table 1: Characteristics for seeding sludge and feed solution  

Parameters Units Cronulla WW 

treatment plant 

Central Park WW 

Treatment plant 

pH – 7.1 ± 0.2 7.3 ± 0.2 

TSS % w/w 14.5 ± 0.5 11.3 ± 0.5 

VSS/TSS % w/w 74.12  ± 1.9 68.30 ± 0.5 

COD mg/L 1102 ± 10 890 ± 2 

TN mg/l 117.2 ± 2.5 142.91 ± 3.1 

TP mg/l 27.24 ± 1.2 21.36 ± 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: AnMBR Operating conditions 
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Table 3: Concentration of VFA components at different HRT  

 

Operating Parameter Stage 1  

(At different HRT) 

Stage 2  

(At Different OLR) 

MLVSS (g/L) 10.1 ± .1  

 

10.1 ± .1  

 

COD in feed (mg/l) 550 ± 10 350 ± 10, 550 ± 10, 715 ± 

10 

HRT (h) 48, 24,18,12,8,6  8  

Loading rate (mg COD /l. h) 68.75 43.75, 68.75, 89.38  

SRT (d) ∞ ∞ 

DO (ppm) 0.01 0.01 

Temperature (°C) 22 ± 1 22 ± 1 

pH 7.0 ± 0.1 7.0 ± 0.1 

VFA 
Component 

Concentration (mili-mole/L) 
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HRT (hrs) 48 24 18 12 8 6 

Acetic 

Acid 

0.4922 ± 

0.0134 

0.8321 ± 

0.0160 

0.8753 ± 

0.0062 

1.1451 ± 

0.0175 

1.1844 ± 

0.0165 

1.0090 ± 

0.0081 

Propanoic 

acid 

0.2172 ± 

0.0126 

0.4376 ± 

0.0198 

0.4632 ± 

0.0035 

0.3185 ± 

0.0431 

0.5160 ± 

0.0141 

0.5293 ± 

0.0300 

Isobutyric 

acid 

0.1128 ± 

0.0008 

0.2836 ± 

0.0005 

0.2880 ± 

0.0212 

0.2801 ± 

0.0141 

0.2283 ± 

0.0117 

0.2398 ± 

0.0406 

Butyric 

Acid 

0.0084 ± 

0.0011 

0.0001 ± 

0.0000 

0.0035 ± 

0.0013 

0.0051 ± 

0.0007 

0.0148 ± 

0.0009 

0.0155 ± 

0.0034 

Isovaleric 

acid 

0.0003 ± 

0.0001 

0.0044 ± 

0.0008 

0.0164 ± 

0.0002 

0.0103 ± 

0.0002 

0.0108 ± 

0.0008 

0.0093 ± 

0.0008 

n-Valeric 

acid 

0.0193 ± 

0.0025 

0.0019 ± 

0.0004 

0.0113 ± 

0.0005 

0.0119 ± 

0.0004 

0.0108 ± 

0.0013 

0.0143 ± 

0.0023 

Isocaproic 

acid 

0.0110 ± 

0.0008 

0.0030 ± 

0.0001 

0.0033 ± 

0.0002 

0.0023 ± 

0.0003 

0.0041 ± 

0.0008 

0.0049 ± 

0.0002 

n-caproic 

acid 

0.0971 ± 

0.0075 

0.0253 ± 

0.0011 

0.0040 ± 

0.0008 

0.0005 ± 

0.0004 

0.0037 ± 

0.0006 

0.0085 ± 

0.0023 

Heptanoic 

acid 

0.0286 ± 

0.0015 

0.0129 ± 

0.0009 

0.0029 ± 

0.0012 

0.0017 ± 

0.0001 

0.0023 ± 

0.0001 

0.0038 ± 

0.0018 

Overall 

VFA Yield 

 

13.39 ± 

1.21% 

 

32.88 ±  

2.56 % 

 

35.35 ±  

1.89 % 

 

38.83 ±  

3.25 % 

 

48.20 ± 

1.21% 

 

42.32 ±  

2.32 % 


