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Abstract 

We described driver behaviour and brain dynamics acquired from a 90-minute 
sustained-attention task in an immersive driving simulator. The data include 62 sessions 
of 32-channel electroencephalography (EEG) data for 27 subjects that drove on a four-
lane highway and were asked to keep the car cruising in the centre of the lane. Lane-
departure events were randomly induced to make the car drift from the original cruising 
lane towards the left or right lane. A complete trial includes events with deviation onset, 
response onset, and response offset. The next trial, in which the subject has to drive 
back to the original cruising lane, occurs 5-10 seconds after finishing the current trial. 
We hope that this dataset will lead to the development of novel neural processing assays 
that can be used to index brain cortical dynamics and detect driving fatigue and 
drowsiness. This publicly available dataset is beneficial to the neuroscientific and brain-
computer interface communities. 

Background & Summary 

Driving safety has attracted public attention due to the increasing number of road traffic 
crashes. Risky driving behaviours, such as fatigue and drowsiness, increase drivers’ risk 
of crashing, as fatigue suppresses driver performance, including awareness, recognition 
and directional control of the car 1. In particular, high levels of fatigue and drowsiness 
diminish driver arousal and information processing abilities in unusual and emergency 
situations 2.  
 
During a sustained-attention driving task, fatigue and drowsiness are reflected in driver 
behaviours and brain dynamics 3. Furthermore, electroencephalogram (EEG) is the 
preferred method for human brain imaging when performing tasks involving natural 
movements in a real-world environment 4. In 2003, we began conducting laboratory-
based experiments collecting EEG data to investigate brain function associated with 
sustained attention on a safe driving task 5,6. Our experiments have two distinct two 
goals: 1) neurocognitive performance: designing key signatures of how the 
neurocognitive state of the driver (e.g., physical and physiological) varies when faced 
with the sensory, perceptual and cognitive demands of a sustained-attention situation 7-

10; and 2) advanced computational approaches: investigating novel computational, 
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statistical modelling and data visualisation techniques to extract signatures of 
neurocognitive performance, including novel analytic and algorithmic approaches for 
individually assessing drivers’ neurocognitive state and performance 11-13. 
 
In terms of the dataset, the experiment adopted an event-related lane-departure 
paradigm in a virtual-reality (VR) dynamic driving simulator to quantitatively measure 
brain EEG dynamics along with the fluctuation of behaviour performance. All of the 
participants were required to have a driver’s licence, and none of them had a history of 
psychological disorders. The 32-channel EEG signals and vehicle position were 
recorded simultaneously, and all of the participants were instructed to sustain their 
attention in this driving experiment. 
 
Several research studies on driving performance, including kinaesthetic effect, mind-
wandering trends and the development of drowsiness prediction systems, have been 
conducted by our team using this EEG dataset. Specifically, to study EEG dynamics in 
response to kinaesthetic stimuli during driving, we used a VR-based driving simulator 
with a motion platform to produce a somatic sensation similar to real-world situations 
14. For mind-wandering trends, we investigated brain dynamics and behavioural 
changes in individuals experiencing low perceptual demands during a sustained-
attention task 15. In terms of the drowsiness prediction system, we proposed a brain-
computer interface-based approach using spectral dynamics to classify driver alertness 
and predict response times 16-20. We determined the amount of cognitive state 
information that can be extracted from noninvasively recorded EEG data and the 
feasibility of online assessment and rectification of brain networks exhibiting 
characteristic dynamic patterns in response to cognitive challenges.  
 
This data descriptor described a large EEG dataset in a sustained-attention driving task. 
It aims to help researchers reuse this dataset to understand the behavioural decision 
making of drivers under stress and cognitive fatigue in complex operational 
environments, such as car driving with kinaesthetic stimuli, which requires directly 
studying the interactions between brain, behavioural, sensory and performance 
dynamics based on their simultaneous measurement and joint analysis. We expect that 
this dataset could be used to explore principles and methods that can be used to design 
individualised real-time neuroergonomic systems to enhance the situational awareness 
and decision making of drivers under several forms of stress and cognitive fatigue, 
thereby improving total human-system performance. We believe this research will 
benefit the neuroscientific and brain-computer interface communities. 
 
Methods 
Participants 
Twenty-seven voluntary participants (age: 22-28 years) who are students or staff of the 
National Chiao Tung University were recruited to participate in a 90-minute sustained-
attention driving task at multiple times on the same or different days. In total, 62 EEG 
data were collected from these participants. Of note, the participants have normal or 
corrected-to-normal vision. In addition, none of the participants reported sleep 
deprivation in the preceding weeks, and none had a history of drug abuse according to 
the self-report. Every participant was required to have a normal work and rest cycle, get 
enough sleep (approximately 8 hours of sleep each night) and not stay up late (no later 
than 11:00 PM) for a week before the experiment. Additionally, the participants did not 
imbibe alcohol or caffeinated drinks or participate in strenuous exercise a day before 
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the experiments. At the beginning of the experiment, a pre-test session was conducted 
to help participants understand the instructions and to confirm that none were afflicted 
with simulator-induced nausea. This study was performed in strict accordance with the 
recommendations in the Guide for Committee of Laboratory Care and Use of the 
National Chiao Tung University, Taiwan. The Institutional Review Board of the 
Veterans General Hospital, Taipei, Taiwan, approved the study. All of the participants 
were asked to read and sign an informed consent form before participating in the EEG 
experiments. The monetary compensation for one experimental session was 
approximately USD $20. 
 
Virtual‐reality driving environment 
A VR driving environment with a dynamic driving simulator mounted on a six-degree-
of-freedom Stewart motion platform was built to mirror reality behind the wheel. Six 
interactive highway driving scenes synchronised over local area networks were 
projected onto the screens at viewing angles of 0°, 42°, 84°, 180°, 276° and 318° to 
provide a nearly complete 360° visual field. The dimensions of the six directional scenes 
were 300 × 225 (width × height) cm, 290 × 225 cm, 260 × 195 cm, 520 × 195 cm, 260 
× 195 cm, and 290 × 225 cm, respectively.  
 
As shown in Figure 1-a and 1-b, the experimental scenario involved a visually 
monotonous and unexciting night-time drive on a straight four-lane divided highway 
without other traffic. The distance from the left side to the right side of the road and the 
vehicle trajectory were quantised into values from 0–255, and the width of each lane 
was 60 units. The refresh rate of the scenario frame was set to emulate cruising at a 
speed of 100 km/hr. A real vehicle frame (Make: Ford; Model: Probe) (Figure 1-c) that 
included no unnecessary weight (such as an engine, wheels, and other components) was 
mounted on a six-degree-of-freedom Stewart motion platform (Figure 1-d). In addition, 
the driver’s view of the VR driving environment driver was recorded and is shown in 
Figure 1-e. 
 
Experimental paradigm 
An event-related lane-departure paradigm 21 was implemented in the VR-based driving 
simulator using WorldToolKit (WTK) R9 Direct and Visual C++. The paradigm was 
designed to quantitatively measure the subject’s reaction time to perturbations during a 
continuous driving task. The experimental paradigm simulated night-time driving on a 
four-lane highway, and the subject was asked to keep the car cruising in the centre of 
the lane. The simulation was designed to mimic a non-ideal road surface that caused the 
car to drift with equal probability to the right or left of the third lane. The driving task 
continued for 90 minutes without breaks. Drivers’ activities were monitored from the 
scene control room via a surveillance video camera mounted on the dashboard. Lane-
departure trials were collected from experimental data collected from 2005 to 2012 in 
National Chiao Tung University, Taiwan. 
 
As shown in Figure 2-a, lane-departure events were randomly induced to make the car 
drift from the original cruising lane towards the left or right sides (deviation onset). 
Each participant was instructed to quickly compensate for this perturbation by steering 
the wheel (response onset) and to let the car drive back to the original cruising lane 
(response offset). To avoid the impacts of other factors during the task, participants only 
reacted to the lane-perturbation event by turning the steering wheel and did not have to 
control the accelerator or brakes pedals in this experiment. Each lane-departure event is 
defined as a “trial,” including baseline period, deviation onset, response onset and 
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response offset. EEG signals were recorded simultaneously (Figure 2-b). Additionally, 
the corresponding directions of turning the steering wheel are shown in Figure 2-c. Of 
note, the next trial occurs within a 5–10 second interval after finishing the current trial, 
in which the subject has to drive back to the centre line of the third car lane. If a 
participant fell asleep during the experiment, there was no feedback to alert him/her. 
 
Tutorial and code availability 
We hope readers like tutorial and code from figshare.com. To access these items, please 
go to our figshare webpage. Of them, a 59-page tutorial named “Tutorial Data Analysis 
for Multi-channel EEG Recordings during a Sustained-attention Driving Task.pdf” is 
provided for researchers to pre-process and analyse multi-channel EEG during a 
sustained-attention driving task. Furthermore, MATLAB codes named “Code-
availability.zip” for EEG pre-processing and data analysis can also be found here. 
 

Data Records 
 

Data recording and storage  
During the experiment, the stimulus computer that generated the VR scene recoded the 
trajectories of the car as well as the events with time points in a “log” file. The stimulus 
computer also sent synchronised triggers (also recorded in the “log” file) to the 
Neuroscan EEG acquisition system. Concurrently, the Neuroscan system recoded EEG 
data with the time stamps of triggers in an “ev2” file. Because the number of time points 
in both recorded files were different, the first step was to integrate the two files into a 
new file with aligned event timing and behavioural data. The new event file was then 
imported by EEGLAB in MATLAB. 
 
EEG signals were obtained using Scan SynAmps2 Express system (Compumedics Ltd., 
VIC, Australia). Recorded EEG signals were collected using a wired EEG cap with 32 
Ag/AgCl electrodes, including 30 EEG electrodes and 2 reference electrodes (opposite 
lateral mastoids). The EEG electrodes were placed according to a modified international 
10–20 system. The contact impedance between all electrodes and the skin was kept 
under 5 kΩ. The EEG recordings amplified by the Scan SynAmps2 Express system 
(Compumedics Ltd., VIC, Australia) were digitised at 500 Hz (resolution: 16 bits). 
Neuroscan's Scan 4.5 is the ultimate tool for data acquisition. The acquired raw data can 
be saved as .cnt files on the PC and server. 
 
EEG signals 
The raw files can be read using the EEGLAB toolbox in MATLAB. The uploaded files 
named with set suffixes contain all of the signals. After loading the files, the “EEG.data” 
variable includes 32 EEG signals and one vehicle position. The first 32 signals were 
from the Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, Cz, C4, T4, 
TP7, CP3, CPz, CP4, TP8, A1, T5, P3, PZ, P4, T6, A2, O1, Oz and O2 electrodes. Two 
electrodes (A1 and A2) were references placed on the mastoid bones. The 33rd signal 
is vehicle position, which is used to describe the position of the simulated vehicle. 
Additionally, as shown in Table 1, the types of events (see “EEG.event.type”) in the 
dataset were classified into deviation onset (mark: 251 or 252), response onset (mark 
253) and response offset (mark 254). Of note, the time period between deviation onset 
and response onset was defined as reaction time (RT). As shown in Figure 3, we gave 
an example of behaviour performance (Figure 3-a) and EEG signals (Figure 3-b) with 
associated events. Additionally, as shown in Table 2, we reported the minimum and the 
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maximum number of sessions per subject, and addressed the summary statistics on the 
number of events (including deviation onset, response onset, and response offset) per 
subject. 
 
 
Technical Validation 
 
Behavioural validation 
The EEG dataset was collected from 27 subjects with normal or corrected-to-normal 
vision. No subjects reported a history of psychiatric disorders, neurological disease or 
drug use disorders. All of the subjects were recruited university students and staff at the 
National Chiao Tung University, Taiwan. At the beginning of the experiment, each 
subject wore a suitable cap for recording the physiological data and were given 5 to 10 
minutes to read the experimental instructions and complete the participant information 
sheet (questionnaire).  
 
The subjects' facial videos and responses to the lane departure events were closely 
monitored. The experimenters visually observe subjects' facial features such as eye 
movements (blink rate, blink duration, long closure rate, etc.), head pose and gaze 
direction via the surveillance video to determine whether subjects take eyes off the road. 
Most importantly, the behavioural data (vehicle trajectory) objectively confirms the 
estimated response times (RTs) during the experiment.  
 
The RTs reflecting participant’s promptness to respond to regular traffic events, is 
presumably an instantaneous measure of fatigue and drowsiness level. The response 
time (RT) to each lane-departure event (i.e., the time between the onset of the deviation 
and the onset of the response) was used as an objective behavioural measurement to 
characterize all EEG epochs. Three groups of epochs were defined: the optimal-
performance, the suboptimal-performance, and the poor-performance groups. The 
optimal-, suboptimal-, and poor-performance state might indicate that the participant 
performed the task with a low, intermediate, and high level of fatigue and drowsiness, 
respectively. For each subject, the RTs collected from the first 10 minutes of the 
experiment were used to construct a null distribution of the optimal RTs.  
 
The EEG signals were recorded using Ag/AgCl electrodes attached to a 32-channel 
Quik-Cap (Compumedical NeuroScan). Thirty electrodes were arranged according to a 
modified international 10–20 system, and two reference electrodes were placed on both 
mastoid bones, as shown in Figure 4-a. The skin under the reference electrodes was 
abraded using Nuprep (Weaver and Co., USA) and disinfected with a 70% isopropyl 
alcohol swab before calibration. Of note, as shown in Figure 4-b, the impedance of the 
electrodes was calibrated to be under 5 kΩ using NaCl-based conductive gel (Quik-Gel, 
Neuromedical Supplies®). EEG signals from the electro-cap were amplified using the 
Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) and recorded at a 
sampling rate of 500 Hz with 16-bit quantisation.  
 
EEG validation 
Consistent with previous data descriptor on practice reuse of EEG processing22,23, 
please note that all EEG data were saved after the pre-processing steps, including band-
pass filters and artefact rejection. To be specific, raw EEG signals were subjected to 1-
Hz high-pass and 50-Hz low-pass finite impulse response (FIR) filters. For the artifact 
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rejection, firstly, apparent eye contaminations in EEG signals were manually removed 
by visual inspection. Secondly, Independent Component Analysis (ICA) was applied to 
the EEG signals and the components responsible for the eye. In terms of removing a 
mean baseline value from each epoch, it is useful when baseline differences between 
data epochs, which can be further processed when plotting event-related potential (ERP) 
or event-related spectral dynamics (ERSP) in EEGLAB. 
 
Additionally, we shared this EEG dataset with our partner groups, including the 
University of California at San Diego (UCSD) and the DCS Corporation. Our findings 
are consistent with their results 24,25, which supports the technical validation of 
accurately estimating shifts in driver arousal, fatigue, and vigilance levels by evaluating 
changes in behavioural and neurocognitive performance.  

Usage Notes 

The experimental data can be downloaded from figshare with publicly accessible 
repository (Data Citation 1). Any researcher interested in this dataset can sign up to 
figshare and download the project named “Multi-channel EEG recordings during a 
sustained-attention driving task” in user’s personal computer.  
 
The data can be analysed in EEGLAB, which is an interactive MATLAB toolbox with 
an interactive graphical user interface (GUI). It includes multiple functions for 
processing continuous and event-related EEG using ICA, time/frequency analysis and 
other methods including artefact rejection under multiple operation systems. EEGLAB 
has also provided extensive tutorials 
(https://sccn.ucsd.edu/wiki/EEGLAB_TUTORIAL_OUTLINE) to help researchers 
conduct data analysis. We recommend researchers use EEGLAB with version 5.03 on 
Windows 7 or Linux. 
 
Of note, a data analysis tutorial (named “Tutorial Data Analysis for Multi-channel EEG 
Recordings during a Sustained-attention Driving Task.pdf) and MATLAB codes 
(named “Code-availability.zip”) are regarded as references for EEG pre-processing and 
data analysis during a sustained-attention driving task. To access these items, please go 
to our figshare webpage. It can ensure that researchers can easily reuse the dataset. 
 
Additionally, we provided some key notes for data analysis. 
1. Load the existing dataset. Select menu item ‘File’ and select the ‘Load existing 
dataset’ sub-menu item. Then, a sub-window will pop up to select the existing dataset 
(e.g., s01_051017m.set). 
 
2. Check the workspace in MATLAB. For the ‘EEG’ variable, some key information is 
explained below: 
srate: sampling rate 
EEG.chanlocs: the number of channels 
EEG.event: event type and latency 
data: EEG signals with channels multiply times 
 
3. Extract data epochs and conduct further data analysis. To study the event-related EEG 
dynamics of continuously recorded data, we must extract the data epoch time of the 
events of interest (for example, the data epoch time of the onsets of one class of 
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experimental stimuli) by selecting Tools>Extract Epochs. Additionally, removing a 
mean baseline value from each epoch is useful when there are baseline differences 
between data epochs (e.g., arising from low frequency drifts or artefacts). Additionally, 
EEGLAB contains several functions for plotting averages of dataset trials/epochs, 
selecting data epochs, comparing ERP images, working with ICA components, 
decomposing time/frequency information and combining multiple datasets. 
 
4. With the measurement of sample size calculation, if we considering the population 
size with 62 copies, 95%, confidence level, and 5% margin of error, the minimum 
sample size should reach to 54 copies. 
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Figure Legends 
 

Figure 1. An event-related lane-departure paradigm in a virtual-reality (VR) dynamic 
driving simulator. 
 
Figure 2. Experimental design. (a) Event-related lane-deviation paradigm. (b–c) EEG 
and behaviour were recorded simultaneously.  
 
Figure 3. An example of behaviour and EEG performance. (a) Behaviour performance. 
(b) EEG signals with associated events. 
 
Figure 4. The layout of electrodes and impedance of the EEG caps used in the 
experiments. (a) The blue electrodes use the international 10–20 system, and the green 
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ones are additional electrodes on the cap. (b) The contact impedance between all of the 
electrodes and the skin was kept below 5 kΩ.   

Tables 
EEG.event.type 251 252 253 254 

Definition 
Deviation onset 

(left) 
Deviation onset 

(right) 
Response onset Response offset 

Table 1 

 
Table 2 

Subject No. Minimum Number of 
Sessions 

Maximum Number of 
Sessions 

Numbers  
of Events 

S01 1 5 4827 
S02 1 2 2028 
S04 1 1 1083 
S05 1 4 6378 
S06 1 1 1077 
S09 1 3 2112 
S11 1 1 1290 
S12 1 2 1869 
S13 1 2 2244 
S14 1 2 2181 
S22 1 4 5022 
S23 1 1 1317 
S31 1 2 3618 
S35 1 2 3285 
S40 1 2 3921 
S41 1 5 6747 
S42 1 2 2430 
S43 1 3 5709 
S44 1 4 7269 
S45 1 2 4023 
S48 1 1 1050 
S49 1 3 3102 
S50 1 2 2085 
S52 1 1 717 
S53 1 3 3654 
S54 1 1 615 
S55 1 1 1923 

Total 27 62 81576 
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