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Abstract—The problem of reducing the number of elements in
a broadband linear array with multiple simultaneous cross-over
frequency-invariant (FI) patterns is considered. Different from
the single FI pattern array case, every element channel in the
multiple FI pattern array is divided and followed by multiple
finite-impulse-response (FIR) filters, and each of the multiple
FIR-filters has a set of coefficients. In this situation, a collective
filter coefficient vector and its energy bound are introduced for
each element, and then the problem of reducing the number of el-
ements is transformed as minimizing the number of active collec-
tive filter coefficient vectors. Additionally, the radiation charac-
teristics including beam-pointing direction, mainlobe FI property,
sidelobe level and space-frequency notching requirement for each
of the multiple patterns can be formulated as multiple convex
constraints. The whole synthesis method is implemented by
performing an iterative second-order cone programming (SOCP).
This method can be considered as a significant extension of the
original SOCP for synthesizing broadband sparse array with
single FI pattern. Numerical synthesis results show that the
proposed method by synthesizing multiple discretized cross-over
FI patterns can save more elements than the original iterative
SOCP by using a single continuously scannable FI pattern for
covering the same space range. Moreover, even for multiple FI-
patterns case with complicated space-frequency notching, the
proposed method is still effective in the reduction of the number
of elements.

Index Terms—Broadband sparse array, multiple frequency-
invariant (FI) beam patterns, space-frequency notching, iterative
second-order cone programming (SOCP)

I. INTRODUCTION

BROADBAND arrays with frequency invariant (FI) pat-
terns have received increased attention in recent years
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due to their capability of receiving broadband signals without
waveform distortion [1]. The broadband FI arrays usually
consist of multiple elements, each connected to an analog-to-
digital (A/D) converter followed by a finite-impulse-response
(FIR) filter. They can be roughly classified into two cate-
gories: a) one is the array with an adaptive FI pattern which
corresponds to data-dependent FIR filter coefficients [2]-[4];
b) the other is the array with a fixed FI pattern which
corresponds to data-independent filter coefficients [5]-[13].
Compared to the adaptive FI beamforming, the array with
a fixed FI pattern does not require to successively evaluate
data-dependent coefficients and is much more computationally
efficient [14]. However, the array with a single fixed FI pattern
is not suitable when multiple broadband signals come from
different directions or the direction of the desired signal varies
with time. Clearly, the array with multiple simultaneous FI
pencil patterns pointing at different directions can overcome
this problem. Such a technique allows for covering wide-angle
space without loss of pattern directivity, and consequently im-
proves the performance of target search and angle estimation
significantly in some applications [15], [16].

In general, broadband FI arrays need to locate their elements
with a spacing of half wavelength calculated at the highest
frequency of interest, so as to avoid the presence of grating
lobes. Hence, they may require a large number of elements
to achieve the desired broadband FI pattern characteristics.
Especially for the case of multiple simultaneous FI patterns,
each element channel in the array should be divided and
followed by multiple different FIR filters, and each filter
consists of a set of FIR coefficients used to provide this
channel with an appropriate frequency-dependent excitation
for one of the desired FI patterns. In this situation, reducing the
number of elements and the associated filters is very significant
for lowering down the whole system’s cost. In the literature,
there have been many sparse array synthesis methods, in both
narrow- and broad-band cases, such as in [17]-[23]. Among
them, most of sparse array synthesis methods focus on the
problem of suppressing the grating-lobe and sidelobe levels,
and they, however, do not pay much attention to the problem
of how to keep the broadband FI property. Nevertheless,
several papers can be found in [24]-[29] for synthesizing
broadband sparse arrays with FI response properties. Among
them, the asymptotic theory-based method in [24] providing
an analytical solution is the most efficient way of broadband
FI pattern, but it cannot accurately control the sidelobe level
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and null region. The compressive sensing-based method in
[27], [28] as well as the generalized matrix pencil method
(GMPM) in [29], [30], give the synthesis result by matching
it to a reference field pattern with preset amplitude and phase
distributions. Such a way may lead to reduction of possi-
ble solution space and inaccurate control on the broadband
sidelobe distribution. Especially when a complicated space-
frequency notching is required in the synthesized broadband
pattern, they would be not applicable. In addition, most of
these methods synthesize only single FI pattern pointing at a
certain direction. It’s unclear whether they can be extended to
deal with the currently concerned problem of synthesizing a
sparse array with multiple simultaneous FI patterns since the
best element positions usually change with different FI pattern
requirements.

Recently, we presented a sparse broadband FI pattern array
synthesis method based on the iterative second-order cone
programming (SOCP) [31]. In this method, the problem of
synthesizing a sparse array with a single FI pattern is trans-
formed as solving a sequence of reweighted ℓ1 optimizations
under multiple convex constraints, and the broadband pattern
characteristics including FI property, sidelobe level and null
region can be accurately controlled without the requirement
of a reference field pattern. The synthesized broadband sparse
array can have continuous beam-scanning capability that has
been shown in [31], but this is achieved at the cost of
reducing the averaged inter-element spacing and increasing
the number of elements. In this work, we will show that
this method can be further extended to reduce the number
of elements for synthesizing multiple cross-over FI patterns
with accurate sidelobe control. The best common element po-
sitions can be chosen for simultaneously meeting multiple FI
patterns by appropriately incorporating collective filter energy
constraints in the synthesis procedure, and consequently the
number of required elements can be less than the one obtained
by synthesizing a continuously scannable FI pattern for the
same angle-space coverage. In addition, complicated space-
frequency notching can be added to each of the synthesized
multiple FI patterns, which is very useful for applications
where powerful interference sources arise in a certain space
range and frequency band.

II. FORMULATION AND ALGORITHM IMPLEMENTATION

A. Multiple FI pattern linear array model

Consider a linear antenna array composed of N isotropic
elements which locate at x = [x1, x2, · · · , xN ]. To simultane-
ously produce M broadband FI focused patterns, each antenna
channel of this array is divided and then connected to M
digital finite-impulse-response (FIR) filters that are used to
provide multiple frequency-dependent excitations for different
patterns. Fig. 1 shows its beamforming network. For the mth
(m = 1, 2, . . . ,M) pattern, the array pattern is given by

p(m)(ω, θ) =
N∑

n=1

L−1∑
l=0

h
(m)
l,n an(ω, θ)e

−jωlTse−jωτn(θ) (1)

where ω = 2πf is the angle frequency, Ts is the temporal
sampling interval, h

(m)
l,n denotes the lth coefficient of the
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Fig. 1. Beamforming network for a unequally spaced linear array with
multiple simultaneous FI patterns

mth filter (corresponding to the mth pattern) for the nth
element, and L is the number of coefficients for each FIR filter.
τn(θ) = xn sin θ/c is the time delay between the nth element
and the zero-phase reference point, where θ is the wave
propagation direction measured from the array broadside and
c is the propagation velocity in the medium. an(ω, θ) denotes
the broadband element pattern for the nth element. Generally
speaking, an(ω, θ) is frequency-dependent and also varies
among different antenna elements due to mutual coupling
and platform effect. However, for simplicity in discussion
on sparse antenna synthesis problems, here we assume that
all the elements have the same element patterns without
frequency-independence. That is, we assume an(ω, θ) = a(θ)
for n = 1, 2, · · · , N . Then, we rewrite (1) in the form of
matrix product:

p(m)(ω, θ) = sTt (ω)H
(m)sτ (ω, θ) (2)

where

st(ω) = [1, e−jωTs , . . . , e−jω(L−1)Ts ]T (3)

sτ (ω, θ) = a(θ)[e−jωτ1(θ), e−jωτ2(θ), . . . , e−jωτN (θ)]T (4)

H(m) = [h
(m)
1 ,h

(m)
2 , . . . ,h

(m)
N ] (5)

h(m)
n = [h

(m)
0,n , h

(m)
1,n , . . . , h

(m)
L−1,n]

T (6)
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Through vectorising (2), we obtain that

p(m)(ω, θ) = sT (ω, θ)h̄(m) (7)

where s(ω, θ) = sτ (ω, θ) ⊗ st(ω), and h̄(m) = vec{H(m)}.
Here, ⊗ denotes the Kronecker matrix product, and vec{·}
denotes the vectorization operator which stacks the columns
of a matrix on top of each other.

B. Synthesis of a sparse array with multiple FI patterns under
sidelobe control and space-frequency notching

We will show that the problem of synthesizing a sparse
array with multiple simultaneous FI beam pattern can be
formulated as performing a sequence of reweighted ℓ1-norm
optimizations under multiple convex constraints. For each of
the required FI patterns, multiple constraints should be used
to separately control the broadband pattern characteristics in
different regions including the mainlobe Θ

(m)
ML , sidelobe region

Θ
(m)
SL , and the look-direction θ

(m)
look , where m = 1, 2, . . . ,M .

In addition, the common space-frequency notching for the
multiple FI beam patterns can be also produced if required
in applications. However, since the best element positions are
usually changed with the desired FI pattern characteristics, the
main difficulty in the multiple FI pattern array synthesis prob-
lem is that one has to find the best common element positions
for simultaneously satisfying different pattern requirements. In
the following, we will at first present the multiple FI pattern
constraints, and then introduce how to find the best common
element positions with optimized filter coefficients.

The multiple FI pattern constraints are given as follows:
i) Spatial response variation (SRV) constraint for each

pattern:∫
Ω
g(ω)|sT (ω, θ)h̄(m) − sT (ωref, θ)h̄

(m)|2dω∫
Ω
g(ω)dω

≤ εML

(8)
where g(ω) is a positive frequency-domain weighting
function, Ω is the frequency range of interest, and ϵML is
a specified weighted mean squared error of the broadband
response variation respect to its value at a reference
angle frequency ωref ∈ Ω. Usually, ωref =

√
ωminωmax

is chosen as suggested in [31], where ωmin and ωmax
are the minimum and maximum angle frequency of
interest, respectively. Note that the above constraint is
usually applied to the mainlobe region θ ∈ Θ

(m)
ML for the

synthesized mth pattern.
ii) Multiple beam direction constraints at the reference fre-

quency:

|sT (ωref, θ)h̄
(m)| = 1, for θ = θ

(m)
look . (9)

To avoid the mth beam direction deviating from
the desired one, an additional constraint of
∂|sT (ωref, θ)h̄

(m)|/∂θ = 0 at θ = θ
(m)
look can be

used. This constraint can be further simplified as the
following [31],

∂{Re[sT (ωref, θ)]}
∂θ

h̄(m) = 0, for θ = θ
(m)
look . (10)

iii) Sidelobe constraint for each pattern:

|sT (ω, θ)h̄(m)|2 ≤ Γ
(m)
SL , for ω ∈ Ω and θ ∈ Θ

(m)
SL

(11)
where Γ

(m)
SL is the sidelobe level which is usually the

same for different FI patterns. That is, Γ(m)
SL = ΓSL for

m = 1, 2, · · · ,M .
iv) Space-frequency notching constraint:

|sT (ω, θ)h̄(m)|2 ≤ ΓNotch, for (ω, θ) ∈ {ΩNotch,ΘNotch}
(12)

where (ΩNotch,ΘNotch) is the space-frequency notching
range that is usually the same for different FI patterns
in practice.

All the above constraints can be formulated in the form
of linear constraints or second-order cone (SOC) constraints,
which will be shown later. Thus, if element positions of an
array are determined, the multiple pattern synthesis problem
can be easily solved by using convex optimization. However,
as mentioned previously, since each antenna channel should
be divided and followed by multiple FIR filters for generating
simultaneous multiple patterns, the cost of the whole system
is much higher than the single-pattern case. To lower the cost,
the number of antenna channels should be reduced as much as
possible. For the case of multiple-pattern arrays, one antenna
channel can be discarded only if all the coefficients of the
associated multiple FIR filters are simultaneously minimized
to be zeros. Here we define a collective filter coefficient vector
for each antenna channel. For the nth antenna channel, the
collective filter coefficient vector is given by

h̆n =
{
[h(1)

n ]T , [h(2)
n ]T , . . . , [h(M)

n ]T
}T

. (13)

Then we introduce an auxiliary variable ηn to constrain the
energy bound of each h̆n for n = 1, 2, · · · , N . That is,

ηn ≥
∥∥∥[h(1)

n ]T , [h(2)
n ]T , . . . , [h(M)

n ]T
∥∥∥
2
. (14)

With the help of the above constraints, we can transform the
problem of synthesizing a sparse linear array with multiple
FI beam patterns under various space-frequency constraints as
solving a weighted ℓ1-norm optimization problem:

min{
h(m)

n ,ηn;|m=1,··· ,M
n=1,··· ,N

}∑N
n=1 αnηn

Const.



ηn ≥
∥∥∥[h(1)

n ]T , [h(2)
n ]T , . . . , [h(M)

n ]T
∥∥∥
2
,

(n = 1, 2, · · · , N);∫
Ω
g(ω)|sT (ω,θ)h̄(m)−sT (ωref,θ)h̄

(m)|2dω∫
Ω
g(ω)dω

≤ εML(θ)

for ω ∈ Ω, θ ∈ Θ
(m)
ML (m = 1, 2, · · · ,M);

|sT (ωref, θ)h̄
(m)| = 1 and ∂{Re[sT (ωref,θ)]}

∂θ h̄(m) = 0,

for θ = θ
(m)
look (m = 1, 2, · · · ,M);

|sT (ω, θ)h̄(m)|2 ≤ Γ
(m)
SL , for ω ∈ Ω, θ ∈ Θ

(m)
SL

(m = 1, 2, · · · ,M);

|sT (ω, θ)h̄(m)|2 ≤ ΓNotch, (ω, θ) ∈ {ΩNotch,ΘNotch}
(m = 1, 2, · · · ,M)

(15)
In the above, αn (n = 1, 2, · · · , N ) are weight coefficients

for the weighted ℓ1-norm optimization. As is well known, the
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weighted ℓ1-norm optimization can be iteratively implemented
by appropriately updating the weight coefficients αns. Usually,
at the initial iteration, the coefficients αns are chosen to be
ones, and in this situation the weighted ℓ1-optimization be-
comes a regular ℓ1 optimization. Then, at the kth iteration, we
can choose α

(k)
n = 1/(η

(k−1)
n + δ) where δ is a small positive

number and η
(k−1)
n s are results obtained from the (k − 1)th

weighted ℓ1-norm optimization. The whole iteration procedure
will proceed until the specified maximum iteration number is
reached or the solution maintains unchanged multiple times.
It has been shown that such an iterative weighted ℓ1-norm
can produce a closer approximation to ℓ0-norm optimization
and usually leads to a more sparse solution than the regular
ℓ1-norm optimization [31], [32].

C. SOCP-based algorithm implementation

In the proposed iterative synthesis procedure, each iteration
needs to perform the weighted ℓ1-norm optimization which
can be solved by the second-order cone programming (SOCP).
The general form of SOCP is given by [33]

max
y

bTy

subject to ci −Aiy ∈ SOCCi , i = 1, 2, · · · , I.
(16)

Here, all vectors and matrices are real-valued, y is a vector
containing the design variables, I is the number of SOC
constraints. The ith SOC constraint is defined by

SOCCi .
=

{
(z1, z2) ∈ ℜ × ℜ(Ci−1)|z1 ≥ ∥z2∥

}
. (17)

where z1 is the first component of the vector ci −Aiy, and
z2 is the remains of that vector.

To formulate problem (15) as the form of (16), we at first
define the optimization variable y as

y = {ηT , [h̄(1)]T , [h̄(2)]T , · · · , [h̄(M)]T }T (18)

where η = [η1, η2, · · · , ηN ]T . As mentioned previously, ηn
denotes the auxiliary variable for constraining the energy of
all the filter coefficients for the nth antenna channel, and
h̄(m) represents the vectorized vector of all the coefficients at
different antennas for the mth pattern. Then the filter energy
constraint of (14) can be transformed as

cAux −AAuxy ∈ SOCML+1, (19)

for n = 1, 2, · · · , N , where

cAux = 0(ML+1)×1 (20)

and

AAux =

[
−vT

n 01×MNL

0ML×N −IM×M

⊗
{vT

n

⊗
IL×L}

]
(21)

In the above, IM×M and IL×L are diagonal matrices,
and vT

n is the nth column of a diagonal matrix IN×N .
IM×M

⊗
{vT

n

⊗
IL×L} is used to pick out the collective

filter coefficient vector h̆n for the nth antenna channel from
the optimization vector y.

To implement all the pattern constraints, we need to sample
the angle frequency ω and spatial variable θ. Assume that the

sampled frequencies are {ωp ∈ Ω; |p = 0, 1, · · · , P − 1}, and
the sampled angles are {θq ∈ Θ; |q = 0, 1, · · · , Q−1}. For the
mth pattern, θq may belong to either Θ(m)

ML or Θ(m)
SL , otherwise

(ωp, θq) ∈ {ΩNotch,ΘNotch} for the notching region case. For
the SRV constraint of (8), at each θq ∈ Θ

(m)
ML , we obtain that

cML −AMLy ∈ SOC2J+1, for each of (22)

where
cML = [

√
εML,01×2J ]

T (23)

and

AML =



01×N 01×MNL

01×N vT
m

⊗
Re{sT (ωref, θq)− sT (ω0, θq)}

01×N vT
m

⊗
Im{sT (ωref, θq)− sT (ω0, θq)}

...
...

01×N vT
m

⊗
Re{sT (ωref, θq)− sT (ωP−1, θq)}

01×N vT
m

⊗
Im{sT (ωref, θq)− sT (ωP−1, θq)}


(24)

where vm is the mth column of the diagonal matrix IM×M

and it is used to pick out the single h̄(m) for the mth pattern
from the whole vector y. In addition, the sidelobe constraint of
(11) can be transformed into the SOCP form as the following:

cSL −ASLy ∈ SOC3 (25)

for each θq ∈ Θ
(m)
SL at every ωp ∈ Ω, where

cSL = [

√
Γ
(m)
SL (θq),01×2J ]

T (26)

and

ASL =

 01×N 01×MNL

01×N vT
m

⊗
Re{sT (ωp, θq)}

01×N vT
m

⊗
Im{sT (ωp, θq)}

 (27)

Similarly, the space-frequency notching constraint of (12) can
be transformed as

cNotch −ANotchy ∈ SOC3 (28)

for each (ωp, θq) ∈ {ΩNotch,ΘNotch}, where

cNotch = [
√

ΓNotch,01×2J ]
T (29)

and ANotch has the same form of ASL but with different
(ωp, θq). The multiple-beam direction constraint of (9) can
be rewritten as

clook −Alooky ∈ SOC3 (30)

for each beam direction θ = θ
(m)
look at ω = ωref, where

clook = [0, 1, 0]T (31)

and

Alook =

 01×N 01×MNL

01×N vT
m

⊗
Re{sT (ωref, θlook)}

01×N vT
m

⊗
Im{sT (ωref, θlook)}

 (32)

The derivative constraint of (10) can be similarly reformulated.
Finally, the objective function of problem (15) can be easily

written as the form of (16) by defining

b = −[αk
0 , α

k
1 , · · · , αk

N−1,01×MNL]
T (33)
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Note that the whole optimization process in (15) needs to
sequentially perform the SOCP solver, but all the matrices
and vectors defined above are fixed at each iteration except
that the vector b needs to be updated at each iteration. Several
optimization toolboxes for solving the SOCP problem are
available, and in this work we used the SeDuMi (Self-Dual-
Minimization) tool [33].

III. NUMERICAL RESULTS

In this section, we will carry out several numerical synthesis
experiments to validate the effectiveness of the proposed
method for reducing the number of elements in the synthesis
of multiple simultaneous FI beam patterns. In all the following
experiments, we choose g(ω) = 1 and ωref =

√
ωminωmax

, and set εML = 4 × 10−4 at the angle of each pattern
mainlobe where the FI property should be kept. Besides,
we adopt δ = max{η0n}/105 in the iterations, where η0ns
(n = 0, 1, · · · , N − 1) are obtained from the initial iteration.
It should be noted that although all the parameters are chosen
similarly as used in [31], the proposed method deals with the
multiple FI pattern synthesis problem which cannot be solved
by the original SOCP synthesis method in [31].

A. Comparative study on synthesizing multiple cross-over FI
patterns and a continuously scannable FI pattern

In the first example, we apply the proposed method to syn-
thesize a sparse linear array with multiple cross-over FI beam
patterns covering a specified spatial angle range. Assume that
the array has isotropic elements. That is, a(θ) = 1. To evaluate
the performance of the proposed method for different space
coverage ranges, we consider four different cases: ±16.25◦,
±32.5◦, ±48.75◦ and ±61.75◦ space coverage ranges. For the
proposed method, we assume that they are covered by 5, 10,
15 and 19 FI beam patterns, respectively, and all the FI beams
are separated with an interval of 6.5◦. The FI property for
each beam pattern is maintained within about 10◦ mainlobe
region over the frequency band of interest from 0.3 to 0.6
GHz. Choose an initial linear array with 117 potential antenna
elements with a uniform spacing of λU/8 where λU is the
wavelength at 0.6 GHz, and the total aperture is 14.5λU . The
channel for each element is divided into multiple sub-channels
and then followed by multiple FIR filters (the number of filters
for each channel is equal to the number of FI patterns), each
with L = 20 and Ts = 1/1.2GHz. The desired sidelobe level
(SLL) is set to be −14 dB over the frequency band of interest
for each FI pattern. For comparison, the original iterative
SOCP method in [31] which can obtain a sparse linear array
with a continuously scannable FI pattern, is applied to this
example with the same potential element positions and SLL
configuration. In addition, the asymptotic theory-based design
(ATD) method in [24] is also used to generate a continuously
scannable FI pattern under the same beamwidth condition.
Note that in the ATD method, since the element positions
and excitations are analytically obtained using an asymptotic
theory in the assumption of full-space scanning range, and
they are exactly the same for different scanning range cases.

Table I shows the synthesis results of the three methods
for different space coverage ranges (the element saving is
calculated by comparing the obtained nonuniformly spaced
array with a 0.5λU -spaced array occupying the same aperture).
Clearly, compared with the ATD method, both the original
iterative SOCP and the proposed method not only have more
accurate sidelobe control but also save more elements for all
test cases except the case with the largest space coverage
±61.75◦. In addition, for covering the same angle range, the
proposed method by using mutiple discretized cross-over FI
beam patterns can in general save more elements than the
original iterative SOCP by generating a single continuously
scannable FI beam pattern except when the required coverage
angle gets very wide. As an illustration, Fig. 2 shows the
synthesized 15 cross-over FI beam patterns within 0.3 ∼ 0.6
GHz band for the case of ±48.75◦ space coverage using the
proposed method (the obtained lowest cross-over level is about
−2.8 dB within the whole frequency band of interest). In
this case, 19 nonuniformly spaced elements are required. It
is mentioned that both the original iterative SOCP and the
ATD method requires 21 nonuniformly spaced elements for
generating a continuously scannable FI pattern covering the
±48.75◦ space range, as shown in Table I. Fig. 3 shows the
selected 19 elements from the potential 117 positions by the
proposed method. The element saving in this case is 36.67%.

On the other hand, it should be noted that compared with
the original SOCP method for the single FI beam pattern
synthesis, the proposed method dealing with the simultaneous
multiple FI beam pattern synthesis problem has extremely
increased the computational burden because the number of
optimization variables and the number of pattern constraints
are increased by a factor of the beam number. For example,
for the ±48.75◦ space coverage case, the total number of filter
coefficients to be optimized is equal to 20×117×15 = 35100.
The time costs by the proposed method and the other two
methods for all test cases are listed in the last column of
Table I (all the tests are performed on a work station with
Intel Xeon CPU E5-2697@2.30GHz). As can be seen, the
proposed method is the most time consuming among the
three methods. This can be considered as a necessary cost
to obtain multiple simultaneous FI beam patterns. Besides, it
should be mentioned that conventional stochastic optimization
methods such as genetic algorithm and simulated annealing are
basically not applicable due to the huge number of unknowns
for the problems concerned.

B. Synthesizing multiple cross-over FI patterns with uniform
SLL and one space-frequency notching

In this example, we will check the effectiveness of the pro-
posed method for synthesizing multiple cross-over FI pattern
with one common space-frequency notching. Such situation
happens when some interference signals in a certain band
come from outside of the required space coverage. Assume
that we have the same potential element positions and FIR
filter parameters as those used in the first example. That is,
N = 117 and d = λU/8 for the potential elements, L = 20
and Ts = 1/1.2GHz for the FIR filters. We further assume
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TABLE I
SYNTHESIS RESULTS OF THE PROPOSED METHOD, THE ORIGINAL ITERATIVE SOCP IN [31] AND THE ATD METHOD IN [24] (L = 20, Ts = 1/1.2GHz,

SYN. APERTURE=14.5λU , Ns IS THE NUMBER OF SELECTED ELEMENTS)

Synthesis Coverage
Ns

Element Spacing(/λU ) SLLmax Timemethods range saving Max Min Mean (dB)
[−16.25◦, 16.25◦] 15 50% 2.250 0.6250 1.036 -13.92 0.4 days

The proposed [−32.50◦, 32.50◦] 17 43.33% 2.250 0.5000 0.9063 -13.53 2.6 days
(Multi-beam synth.) [−48.75◦, 48.75◦] 19 36.67% 2.000 0.5000 0.8056 -13.63 13.7 days

[−61.75◦, 61.75◦] 21 30% 1.750 0.5000 0.7250 -13.87 17.5 days
[−16.25◦, 16.25◦] 17 43.33% 1.625 0.6250 0.9063 -13.92 17.0 mins

Original SOCP [−32.50◦, 32.50◦] 19 36.67% 2.250 0.5000 0.8056 -13.78 20.2 mins
(Single-beam synth.) [−48.75◦, 48.75◦] 21 30% 2.000 0.5000 0.7250 -13.86 22.4 mins

[−61.75◦, 61.75◦] 21 30% 1.875 0.5000 0.7250 -13.84 25.7 mins
[−16.25◦, 16.25◦]

21 30% 1.552 0.5000 0.7275

-14.29 2.1 sec
ATD method [−32.50◦, 32.50◦] -11.42 2.3 sec

(Single-beam synth.) [−48.75◦, 48.75◦] -11.08 2.5 sec
[−61.75◦, 61.75◦] -10.15 2.6 sec
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Fig. 2. The synthesized 15 cross-over FI beam patterns (0.3 ∼ 0.6 GHz)
covering the ±48.75◦ angle space. (a) Joint space-frequency distribution,(b)
patterns at 16 discrete frequencies.

that 11 cross-over patterns within the same frequency band
of 0.3 ∼ 0.6 GHz are required to cover a ±33◦ space ,
with the beam interval of 6◦ (the obtained cross-over level
would be higher than the one in the first example). The
desired SLL is still −14 dB. Now, a −50 dB space-frequency
notching is added to each FI pattern within the space range of
[−68◦,−52◦] and the frequency band of [0.4, 0.6] GHz. Fig. 4

−6 −4 −2 0 2 4 6

0

x
n
 /λ

U

 

 
Unselected
Selected

Fig. 3. The selected and unselected element positions for the 15 cross-over
FI beam patterns in Fig. 2.

shows the synthesized 11 cross-over FI beam patterns by the
proposed method. As can be seen, all the synthesized beam
patterns still keep the FI property and the desired uniform
SLL as expected. The lowest cross-over level is now about
−1.8 dB in the frequency band of interest. In addition, the
−50 dB pattern notching is accurately implemented within the
required space-frequency region. In this example, 19 elements
are selected from the potential ones of the initial array. Fig. 5
shows the distribution of these element positions. The element
saving is 36.67% in this case.

C. Synthesizing multiple cross-over FI patterns with uniform
SLL and more complicated space-frequency notching

In the third example, we consider to synthesize a sparse
array with multiple cross-over FI patterns and more compli-
cated space-frequency notching requirement. Now assume that
10 cross-over FI patterns in 0.4 ∼ 1 GHz band are required to
cover a ±38◦ angle space, with the beam interval of 7.6◦. The
desired sidelobe level is set to be less than −13.5 dB for each
pattern in the frequency band of interest. For each FI pattern,
two space-frequency notching regions are required: 1) the first
is a −50 dB notching within the space range of [−52◦,−60◦]
and the whole frequency band of [0.4, 1] GHz; 2) the second
is a −53 dB notching within the space range of [54◦, 58◦] and
the frequency band of [0.6, 0.8] GHz. Choose an initial linear
array with 130 λU/8-spaced potential elements (the aperture
is about 16.125λU ), and set L = 16 and Ts = 1/2GHz for the
FIR filters. Fig. 6 shows the synthesized 10 cross-over FI beam
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Fig. 4. The synthesized 11 cross-over FI beam patterns (0.3 ∼ 0.6
GHz) covering the ±33◦ angle space. Each beam pattern is imposed with
an additional −50 dB space-frequency notching within [−68◦,−52◦] and
0.4 ∼ 0.5 GHz. (a) Joint space-frequency distribution, (b) patterns at the
frequencies of [0.3, 0.4, 0.44, 0.5, 0.6] GHz.
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Fig. 5. The selected and unselected element positions for the 11 cross-over
FI beam patterns with one space-frequency notching in Fig. 4.

patterns with the two space-frequency notching regions by the
proposed method. As can be seen, even with so complicated
multiple pattern requirement, the obtained broadband radiation
characteristics including FI property, broadband SLL and the
space-frequency notching performance for each pattern are still
satisfactory. The lowest cross-over level between neighboring
FI beams is about −3 dB within the frequency band of
interest. Fig. 7 shows the selected and unselected elements
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Fig. 6. The synthesized 10 cross-over FI beam patterns (0.4 ∼ 1 GHz)
covering the ±33◦ angle space. Each beam pattern is imposed with a −50 dB
space-frequency notching within [−52◦,−60◦] and [0.4, 1] GHz and another
−53 dB notching within [54◦, 58◦] and [0.6, 0.8] GHz. (a) Joint space-
frequency distribution, (b) patterns at the frequencies of [0.4, 0.6, 0.7, 0.8, 1]
GHz.

for the synthesized array. As can be seen, 24 elements are
now required due to the complicated notching requirement,
and the element saving is about 27.27% in this example.
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Fig. 7. The selected and unselected element positions for the 10 cross-over
FI beam patterns with two space-frequency notching regions in Fig. 6.
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D. Synthesizing multiple FI patterns with non-isotropic ele-
ments and quantization errors

In this example, we consider synthesizing a sparse array
with multiple FI patterns in the case of non-isotropic elements.
Assume that the array element has the angle dependence of
cos θ. Now, we try to generate 11 cross-over FI beam patterns
in a broad frequency band of 0.3 ∼ 1 GHz. The ratio of
the highest to lowest frequency reaches about 3.3. The 11 FI
beams in total cover a 44◦ angle space with an interval of 8◦,
and the desired SLL for each beam is set as −14 dB respect to
the broadside beam gain. Choose the initial linear array with
113 λU/8-spaced potential elements (the aperture is 14λU ),
and set L = 20 and Ts = 1/2GHz for the FIR filters. The
synthesized 11 FI beam patterns are shown in Fig. 8. As can be
seen, for each beam pattern, the obtained mainlobe maintains
the FI property and the SLL meets the specification as well.
This shows the robustness of the proposed method for the
non-isotropic element case. In addition, it is observed that the
obtained beam gain is reduced as the beam direction deviates
from the broadside due to the element pattern modulation. The
synthesized array has 14 selected elements, and the selected
elements as well as unselected ones are shown in Fig. 9.
In this example, we save about 50% elements if compared
with an array with λU/2-spaced elements occupying the same
aperture.

At last, let us consider something about implementing the
obtained FI patterns. As an illustration, Fig. 10 shows the
obtained FIR coefficients for producing the broadside FI beam
pattern shown in Fig. 8. Fig. 11 shows the corresponding
transfer functions including amplitude and phase frequency
responses for the FIR filters for this pattern. Note that only 7
transfer functions are plotted since they are symmetrical about
the array center for the broadside beam case. As can been
seen, both the amplitude and phase frequency responses look
different from conventional filter responses, and they would be
not easy to implement if analog filters are used. Fortunately,
we can use analog-to-digital convertors to sample the analog
signals and implement the complicated frequency-responses
in digital way. For the digital FIR filters, one thing we need
to care about is the quantization of coefficients which will
affect the accuracy of the realized coefficients and probably
degrade the performance of the obtained FI beam pattern. Fig.
12(a) shows the original broadside FI beam pattern extracted
from Fig. 8, and Fig. 12(b)-(d) show the realized patterns
produced by the quantized coefficients with 5, 6 and 7 bits
( all including one sign bit), respectively. As can be seen, the
obtained FI beam pattern becomes more and more approaching
to the original one as the length of quantization bits increases
from 5 to 7. The original SLL is −13.86 dB while those
for the quantized patterns with 5, 6 and 7 bits are −11.29,
−11.70 and −13.52 dB, respectively. Similar phenomena are
also observed for the scanned FI beam patterns. Fig. 13(a)-
(d) show the original FI pattern and the patterns realized by
quantized coefficients with 5, 6 and 7 bits (also including one
sign bit) for the beam which is pointing at 40◦ with covering
the space of [36◦, 44◦]. In this case, the original SLL is −14.11
dB while those for the quantized patterns with 5, 6 and 7 bits
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Fig. 8. The synthesized 11 cross-over FI beam patterns (0.3 ∼ 1 GHz)
covering the ±44◦ angle space. (a) Joint space-frequency distribution, (b)
patterns at 16 discrete frequencies.
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Fig. 9. The selected and unselected element positions for the 11 cross-over
FI beam patterns shown in Fig. 8.

are −10.32, −11.98 and −13.05 dB , respectively. We can see
that quantizing the FIR coefficients with 7 bits can maintain
acceptable pattern performance in this example.
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Fig. 10. The optimized FIR filter coefficients for the 14 selected elements
for the broadside FI beam pattern.
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Fig. 11. The transfer functions of the obtained FIR filters for the left 7
elements of the array (the results for the other 7 elements are not shown here
since they are symmetrical about the array center for the broadside beam
case). (a) Amplitude frequency response, and (b) phase frequency response.
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Fig. 12. The synthesized original broadside FI beam pattern shown in (a),
and the realized patterns produced by the quantized coefficients shown in
(b)-(d) for 5, 6 and 7 bits (all including one sign bit), respectively.
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Fig. 13. The original scanned FI beam pattern shown in (a), and the realized
patterns produced by the quantized coefficients shown in (b)-(d) for 5, 6 and
7 bits (all including one sign bit), respectively.

IV. CONLUSION

A significant extension to the original iterative SOCP syn-
thesis method has been presented to reduce the number of
elements for broadband arrays with multiple FI patterns by
finding the best common element positions with optimized
FIR coefficients. For most cases, it is shown that, by synthe-
sizing discretized multiple cross-over FI patterns, the proposed
method can save more elements than the original SOCP that
synthesizes a continuously scannable beam pattern. In addi-
tion, some complicated space frequency notching can also be
incorporated in the proposed synthesis for applications where
some powerful interferences exist within a certain frequency
band and angular range. The test cases show that the element
saving by the proposed method is about 27.27% ∼ 50%,
depending on the required space coverage range and pattern
characteristics such as sidelobe levels and space-frequency
notching requirements. The effect of quantizing the FIR coef-
ficients on the performance of the obtained FI patterns is also
studied.

It should be noted that the proposed method for synthesizing
simultaneous multiple broadband FI beam patterns has a
significantly increased computational burden since the number
of optimization variables and the number of pattern constraints
are raised by a factor of the beam number. Besides, although
the obtained minimum element spacings for the synthesized
arrays in the examples are larger than or close to half a
wavelength at the highest working frequency, the proposed
method cannot strictly constrain the minimum element spacing
in its optimization process. Further research on the proposed
method to realise accurate control of the minimum element
spacing would make the method more valuable for practical
applications.
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