
Elsevier required licence: © <2019>. This manuscript version is made 
available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0/. The definitive publisher version is available online 
at [insert DOI]

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Risk Transmission Mechanism between Energy Markets:

A VAR for VaR Approach
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Abstract

The Global Financial Crisis (GFC) of 2007-2009 that originated in the US has revealed the need for

measuring and monitoring the transmission of extreme downside market risk. This paper investigates the

risk transmission mechanism between the oil and natural gas markets. We apply the recently introduced

test statistics based on cross-quantilogram function and the multivariate quantile regression model (VAR

for VaR) to the US oil and natural gas prices, which are independently formed. Our results show two

asymmetric patterns. First, the shocks in the oil market substantially increase the Value at Risk (VaR) in

the natural gas market. However, the reverse impact does not exist. Second, we highlight the significant

asymmetric response of gains and losses transmission in energy markets, cautioning about the underlying

weakness of adopting volatility to measure risk in the energy market. Moreover, extreme market risk is

more easily transmitted across markets than moderate risk. Our results are in general robust in applica-

tion to other regional energy markets, such as Europe and Asia, but the heterogeneities in responses are

underpinned by the differing role of natural gas in regions. The findings in this paper have important im-

plications for academic researchers, policy makers in gas-dependent economies, and business practitioners

in light of projected increases in the use of natural gas worldwide as well as development of independent

gas-on-gas competitive prices in Asia.
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1 Introduction

Measuring and monitoring the distributional interdependence between different financial series is a primary

concern among academic researchers, policy makers, and business practitioners. The global financial crisis

(GFC) in 2007-2009 that originated in the US has further heightened the need for research to evaluate the

transmission mechanism of extreme downside market risk. Given the changing trend of market integration,

understanding the risk transmission mechanism not only helps to improve portfolio allocation strategies

in seeking the international investment opportunities, but also leads to the formulation of the best policy

responses for maintaining financial stability and avoiding financial contagion.

Understanding the risk spillover between energy markets has important implications for the academic

researchers, policy makers, and business practitioners. Such a deepened understanding is particularly im-

portant for energy products that are being commoditized, such as natural gas (NG) and liquefied natural

gas (LNG). East Asian countries are considering the development of their own oil and gas benchmark prices.

From the 1960s until the early 1990s, natural gas prices were indexed to oil prices, a practice that changed in

North America and is in transition in Europe but is still dominant in East Asia. The concept of Asian pre-

mium, which originated in crude oil markets, has also been extended to the natural gas market (Zhang et al.,

2018). Motivated by the significant and unexplained gap between East Asian LNG prices and gas prices in

North America and Europe (often called as Asian premium), East Asia is gearing up to change its dominant

oil indexation in its long-term contracts to more flexible hub-indexed prices for LNG and gas imports ( IEA,

2013; Shi and Padinjare Variam, 2016). One of the results of the pricing transition will be the development

of regional benchmark prices for gas. Moreover, the pricing transition will cause the commoditization and

financialization of gas, as new financial contracts tied to independent prices develop. This leads to a question

of considerable interest to both academia and policy makers that how the commoditization, financialization,

and subsequent integration of energy markets would affect the risk transmission mechanism across energy

markets. Many studies observed that decoupled natural gas prices were much more volatile than oil prices

(Serletis and Shahmoradi, 2005), which is illustrated in Figure 1.

In terms of policy front, a risk transmission study could generate insights that are relevant for policy

makers in both gas importing and exporting countries. In particular, risk transmission presents a realistic

policy question for those countries, mainly in East Asia, that face a decision on whether to change their

current import pricing mechanism from oil indexation to gas-on-gas competitive prices (hub indexation). 1

If this volatility is generated by gas prices, but not passed from oil prices, the policy makers will face a

significant negative consequence for their gas pricing transition decision. Revealing this latent relationship

1A gas trading hub is a trading market that promote gas-on-gas competition and the prices reflect gas’s own market funda-
mentals if the competition is free from interventions and the market is liquid.
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other than the price link would help them to make informed decisions about the transition and prepare

for the consequences. Given the importance of East Asia in the current and future gas market, this policy

concern has global policy significance. Natural gas demand growth in Asia is projected at a compound

annual growth rate (CAGR) of 3.6% until 2040, thus making for almost 40% of the incremental demand for

gas worldwide. As natural gas assumes an even larger role in Asia, Asian growth is driven by China and

India, where gas consumption is projected to increase by 560 billion cubic metres (bcm) by 2040 from the

2014 levels (IEA, 2016). This increased role of natural gas in the Asian economy makes Asian policy makers

increasingly concerned about the risk transmission mechanism between oil and gas markets. Additionally, for

gas-exporting countries, especially those with a significant share of the gas-exporting sector in their national

economy—such as Australia, Brunei, Malaysia, Indonesia, Qatar, and Russia—understanding the impact of

a fall in crude oil prices on gas prices can help policy makers a better prepare for unexpected shocks from oil

markets.

Figure 1. Daily Returns in the US Energy Market
           Daily Returns of West Texas Intermediate (WTI) Oil Index

          Daily Returns of Henry Hub Natural Gas Index

This paper aims to trace out the dynamic risk transmission mechanism between energy markets. In

particular, we address the following issues: Can information in the oil market help to predict the risk in the

natural gas market? What will happen quantitatively to the natural gas market if there is a shock to the oil
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market? Does the risk interdependence structure change over time? Is there any different response patterns

in the natural gas market between losses and gains, given the external shocks? Is the heterogeneity present

in other representative regional energy markets?

In attempting to answer these questions above, we first construct recently introduced test statistics, which

are based on the cross-quantilogram function, to investigate the existence of risk spillover. More specifically, a

class of kernel-based tests proposed by Hong et al. (2009) is used to detect the extreme downside risk spillover

between energy markets. These statistics have a convenient asymptotic standard normal distribution and

can be used to check a large number of lags, thus we can detect risk spillover that occurs with time lags or

that has weak spillover at each lag but carries over a very long distributional lag.2

After confirming the existence of the risk spillovers, we further apply a bilateral vector autoregressive

model (VAR) for Value at Risk (VaR) (White et al., 2015) to quantitatively trace out dynamic risk transmis-

sion mechanism between energy markets. The idea of VaR naturally lends itself to the concept of quantile

regression. Compared to the more traditional method, which models the whole multivariate distribution, the

quantile approach has at least three appealing features. First, it directly models the quantile and links it

to market risk. As a result, it avoids the indirect risk measure based on estimating the time-varying first

and second moments. Second, the quantile regression is known to be robust to outliers, which is particularly

important in analyzing financial time series. Third, the quantile regression is a semi-parametric approach

and therefore imposes little distributional assumption on the underlying data-generating process (DGP).

The multivariate quantile regression framework of a VAR for VaR model can be regarded as a multivariate

extension of the univariate conditional autoregressive value at risk (CAViaR) model of Engle and Manganelli

(2004).

To the best of our knowledge, this paper is the first study to provide a systemic analysis of an international

risk-transmission mechanism, with a special emphasis on energy markets. Our paper makes the following

contributions. First, we complement the studies that investigate the first- and second-moment relationships

between energy markets. We extend these papers by directly focusing on the quantile interdependence

structure of the energy market return distribution. In practice, the occurrence of a left quantile has a clear

economic meaning as market risk. Second, our paper contributes to the current quantile regression studies

by investigating the two-way quantile interdependence patterns between the US oil and natural gas markets,

using the recently developed statistics based on the cross-quantilelogram function. More importantly, we

extend quantile analysis used in early studies to the multivariate framework, and adopt the VAR for VaR

method to explicitly capture these multilateral distributional relationships. The new method allows us to

2Han et al. (2016) further establish the asymptotic distribution of the cross-quantilogram and the corresponding test statistics,
where the consistent confidence intervals are derived by the stationary bootstrap.
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construct a dynamic tail-interdependence system, and quantitatively trace out the risk transmission patterns

between energy markets. Our result shows that the shocks in the oil market substantially affect the VaR in

the natural gas market. However, the risk in the natural gas market has no predictive power for the risk in

the oil market. Moreover, extreme market risk is easier to transmitted across energy markets more easily

than moderate risk. Third, we highlight the significant asymmetric response of gains and losses transmission

in energy markets, thereby illustrating the potential weakness of adopting volatility to measure market risk.

In sum, our results are valuable for anyone who needs evaluation and forecasts of the risk environment in

international energy markets. Taking the extreme co-movement into account leads to an improvement in the

accuracy of the out-of-sample VaR forecasts (Aloui et al., 2014).

The rest of this paper is organized as follows. Section 2 summarizes the relevant literature. Section 3

outlines the methodology used for this study, and section 4 analyzes the data sets and empirical results. The

last section concludes with policy implications.

2 Literature review

Many empirical studies of energy market integration focus on market interdependence in the first and second

moments (Asche et al., 2002; Siliverstovs et al., 2005; Panagiotidis and Rutledge, 2007; Zhang and Yao, 2016).

In empirical financial studies, the first moment relationship between financial series refers to mean spillover,

measuring the price discovery ability across the markets. The second moment relationships represent volatility

spillover. In theory, it quantifies the mass of information transmits across different markets. Asche et al.

(2002) tested the Law of One Price (LOP)—that is, focus on the first moment—and find that Russian gas

is systematically cheaper than Norwegian and Dutch gas. Sheng et al. (2014) examine the role of energy

market integration on price volatility focus on the second moment, and find that energy market integration

will mitigate price volatility. Siliverstovs et al. (2005) investigate the degree of natural gas market integration

in Europe, North America, and Japan between the early 1990s and 2004 and reveal that both of them show a

high level of natural gas market integration within Europe, within the North American market, and between

the European and Japanese markets, but the European and the North American markets are not integrated.

Panagiotidis and Rutledge (2007) examine the UK wholesale gas prices and the Brent oil price over the

period 1996-2003 and find that the two prices are coupled. Asche et al. (2006) tested market integration

between natural gas and other energy sources in the UK and demonstrate that a single energy market exists.

Furthermore, they find that the crude oil price is the driving force behind prices. Zhang and Yao (2016)

analyze interdependence between crude oil, diesel and gasoline markets. They also explore the dynamic

bubbles of oil prices and predict their crash time.
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So far, most studies still focus on the first and second moments only. Lin and Tamvakis (2001) claim

to have conducted the first study of an information transmission mechanism in the energy market, which

finds that substantial spillover effects exist between two futures markets: the New York Mercantile Exchange

(NYMEX) and London’s International Petroleum Exchange (IPE), and IPE morning prices seem to be

considerably affected by the close of the previous day on the NYMEX. A similar study with similar results

was done by Lin and Tamvakis (2004). Hammoudeh et al. (2003) examine the spillover among the prices

of three different petroleum products. Lin and Li (2015) explore the spillover effect between crude oil and

natural gas markets in the US, European and Japanese markets within the first and second moments. The

results suggest that crude oil and natural gas prices are cointegrated in Europe and Japan but decoupled in

the US, and the price spillover direction is from crude oil to natural gas, not vice versa. Fan et al. (2008)

assess both the extreme downside and upside VaR of returns in the West Texas Intermediate (WTI) and

Brent crude oil spot markets and reveal a significant two-way risk spillover effect between the WTI and Brent

markets. Chang et al. (2010) analyze the volatility spillover and asymmetric effects across and within four

oil markets and reveal volatility spillovers and asymmetric effects on the conditional variances for most pairs

of series.

Studies on VaR have been proliferated in the 2000s. Conventional techniques, such as generalized au-

toregressive conditional heteroskedasticity approach with generalized error distribution (GED-GARCH) (Fan

et al., 2008), and historical simulation approach (David Cabedo and Moya, 2003), were applied in the early

stage. Later, new methods, such as Extreme Value Theory (EVT) were applied. Marimoutou et al. (2009)

model VaR for long and short trading positions in the oil market by applying both unconditional and con-

ditional EVT to forecast VaR and find that the new methodology has better performance than those con-

ventional methodologies. Aloui and Mabrouk (2010) show that considering long-range memory, fat-tails,

and asymmetry is better at predicting a one-day-ahead VaR for both short and long trading positions, and

the fractionally integrated asymmetric power ARCH (FIAPARCH) model outperforms the other models in

the VaR’s prediction. Meanwhile, the mean and volatility transmission studies have proliferated and extend

beyond oil markets to between the oil and natural gas markets (Ewing et al., 2002) and between oil and

other markets, such as equity markets (Arouri et al., 2012; Malik and Hammoudeh, 2007; Zhang et al., 2017),

non-energy commodity markets (Ji and Fan, 2012), specifically agricultural commodity markets (Du et al.,

2011; Nazlioglu et al., 2013; Serra, 2011) and, more recently, the carbon market (Balclar et al., 2016; Zhang

and Sun, 2016). Recent studies also investigate the role of behavioral factors in determining oil prices, such

as investor attention (Yao et al., 2017). Ewing et al. (2002) find that current oil volatility depends on past

volatility and not so much on specific events or economic news, but natural gas return volatility responds

more to unanticipated events. Joëts (2014) investigates transmission mechanisms across forward price returns
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for oil, gas, and coal and show that energy price co-movements, although they exist in normal times, increase

during extreme fluctuations. Aloui et al. (2014) showed evidence of asymmetric dependence between the oil

and natural gas markets: they tend to comove closely together during bullish periods, but not at all during

bearish periods.

This paper uses a multivariate framework of quantile regressions, a recent development in econometrics,

to increase the informational content of previous tests. The finance literature has frequently employed

quantile regression to study quantile interdependence between financial series (e.g., Bassett Jr and Chen,

2002; Chuang et al., 2009; Tsai, 2012; Baur et al., 2012; Baur, 2013; Ciner et al., 2013; Gebka and Wohar,

2013; Mensi et al., 2014). In addition, studies have also used quantile regression to construct a new VaR

measure (e.g., Engle and Manganelli, 2004; Rubia and Sanchis-Marco, 2013). Lee and Li (2012) and Li and

Miu (2010) further apply quantile regression to firm-level data, examining the effect of diversification on

firm performance and obtaining bankruptcy prediction, respectively. We extend quantile analysis used in

early studies to the multivariate framework, and adopt the VAR for VaR method to explicitly capture the

multilateral distributional relationships, with a particular focus on the energy markets.

3 Methodology

Our study employs two new statistical methods to study risk spillover between oil and gas markets and the

tail interdependence structure. First, for the study of risk spillover between markets, we employ the recently

introduced test statistics, which are based on the cross-quantilogram function. The definition of market

risk is in line with the conventional idea of VaR. More specifically, a class of kernel-based tests proposed

by Hong et al. (2009) is used to detect the extreme downside risk spillover between financial markets. As

these statistics have a convenient asymptotic standard normal distribution and can be used to check a large

number of lags, we can detect risk spillover that occurs with time lags or that has weak spillover at each lag

but carries over a very long distributional lag.

Second, after confirming the existence of risk spillover, we employ the VAR for VaR model (White

et al., 2015) to quantitatively uncover these tail-interdependency patterns. The VAR for VaR framework

can be viewed as a vector autoregressive extension of traditional quantile models. This method allows us

to go beyond the analysis of the univariate quantiles, and directly investigates dynamic risk-transmission

mechanism between energy markets. Based on the results from our analysis of VAR for VaR, we offer

conclusions and suggest some policy implications.
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3.1 Value at risk

Given the rising need for monitoring and controlling financial risk, risk prediction plays an essential role in

the field of banking and finance. The VaR concept, originally proposed by J.P. Morgan in 1994, has become

a standard measure of market downside risk. The VaR is defined as a threshold of loss value, such that the

losses will exceed this VaR threshold with only a small target probability, α. In practice, α is commonly

chosen to be 1%, 5%, or 10%. Mathematically speaking, the VaR for period t of a portfolio is the negative

α-quantile of the conditional return distribution, which has the following specification:

V aRα
t ≡ −Qα(rt|Ft−1) = − inf

x
{x ∈ R : P(rt ≤ x|Ft−1) ≥ α}, 0 < α < 1, (1)

where Qα denotes the quantile function, rt is the return on an asset or portflio in period t, and Ft represents

the information available at date t.

Despite its conceptual simplicity, the VaR prediction is a challenging statistical problem. The difficulty

mainly lies in how to find a suitable model for the widely reported stylized facts of financial series—for

example, volatility clustering, substantial kurtosis, and mild skewness of financial returns. The existing

models for calculating VaR, which differ mainly in the way of estimating the empirical distribution, can be

classified as follows: historical simulation methods, fully parametric models, extreme value theory methods,

and quantile-regression methods.3 In this study, we mainly employ the filtered historical simulations (FHS)

to measure univariate VaR, which is a combination of the historical simulation method and fully parametric

models. Kuester et al. (2006) show that this method performs relatively better by comparing the out-of-

sample performance of existing methods. We also utilize the quantile-regression method as a robustness check

for the risk-spillover results (Engle and Manganelli, 2004).

For implementing the FHS-based VaR measure, we first apply the univariate generalized autoregressive

conditional heteroskedasticity (GARCH) model proposed by Bollerslev (1986) to filter out persistent volatility

clustering and serial dependence in each series. For example, denoting rt as the daily return of energy index,

the AR(m)-GARCH(1,1) model can be defined as:






rt = b0 +
m∑

j=1

bjrt−j + εt,

εt = ξtσt,

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1.

(2)

The error term ξt is assumed to follow a student t distribution.4 Parameters in the above equations are

3An extensive review of these methods can be found in Kuester et al. (2006).
4We experiment with the alternative distribution of errors terms, such as generalized error distribution (GED), and skewed
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estimated by quasi-maximum likelihood (QML) method to obtain the consistent estimator in the absence of

normality in the conditional shocks.5

For the FHS, the VaR estimate forecasts are then generated by computing the VaR from paths simu-

lated using draws from the filtered residuals. More specifically, we first estimate the unconditional quantile

functions by solving the following minimization problem:

q̂(α) = arg min
v∈R

T∑

t=1

πα(ξt − v), (3)

where πα(u) ≡ u(α− 1[u < 0]). The indicator function 1[∙] takes a value of 1 when its argument is true, and

0 otherwise. Then, the VaR estimate can be calculated by substituting it into an estimated GARCH model.

The idea of the VaR naturally lends itself to the concept of quantile regression. Instead of modeling the

whole distribution, the specified left quantile of the time series can be explicitly modeled using any relevant

information. One appealing feature of this method is that we do not need to impose any distributional

assumptions on the return series. More specifically, the conditional quantile of a portfolio, Qα(rt|xt) =

−V aRα
t , can be modeled as some functions of the information xt ∈ Ft−1, that is,

V aRα
t ≡ −gα(xt; βα), (4)

where gα(xt; βα) and parameter vector βα explicitly depend on α. The objective function for the general,

possibly non-linear case of equation (5), proposed by Engle and Manganelli (2004), is

min
β∈RK






∑

rt≥V aRt

α |rt + V aRt| +
∑

rt<−V aRt

(1 − α) |rt + V aRt|





, (5)

with, according to equation (5), V aRα
t = −g(xt; βα) or, in the linear case, V aRα

t ≡ x′
tβα. Consistency and

asymptotic normality of the nonlinear regression quantiles for the time-series case are established in Engle and

Manganelli (2004). In particular, their CAViaR specifications includes V aRα
t−1 as an explanatory variable

in xt, to adapt to serial dependence in the first two moments. A function of rt is also included to link the

conditional quantile to return innovations. More specifically, the absolute value in the CAViaR specification

can be written as:

V aRα
t = β0 + β1V aRα

t−1 + β2 |rt−1| . (6)

It utilizes the autoregression parameter, β1, to capture the response to the previous V aRα
t−1, and introduces

generalized error distribution (SGED). The results in the following section are robust to these alternative distribution choices.
5We also experiment with the GJR GARCH, Exponential GARCH (EGARCH), and APARCH model to capture possible

asymmetric volatility, the results in the following section are robust to these alternative modeling strategies.
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a direct response of the quantile to the return process, treating the effect of extreme returns on V aRα
t and

volatility symmetrically.

3.2 Test statistics

To illustrate the test statistics for Granger causality in risk, we first introduce the cross-quantilogram function.

The cross-quantilogram function (Linton and Whang, 2007; Hong et al., 2009; Han et al., 2016) is proposed

to measure the quantile dependence between two series.

After calculating the VaR estimate, we may define the estimated quantile-hit or quantile-exceedance

process for each return series ri,t:

Ẑi,t ≡ 1[ri,t < −V aRi,t], i = 1, 2, ..., (7)

where 1[∙] is the indicator function as before.

Then we can define our cross-quantilogram function between two series:

ρ̂ (j) = Ĉ(j)/
[
Ĉ1(0) ∗ Ĉ2(0)

]1/2

, (8)

where the numerator is the sample cross-covariance function:

Ĉ(j) ≡






T−1
T∑

t=j+1

(Ẑ1,t − α̂1)(Ẑ2,t−j − α̂2), J > 0,

T−1
T∑

t=1−j

(Ẑ1,t+j − α̂1)(Ẑ2,t − α̂2), J < 0,

(9)

where α̂i ≡ T−1ΣT
t=1Ẑi,t and the denominator in equation (9) is the corresponding variance: Ĉi(0) =

T−1
∑T

t=1(Ẑi,t − α̂i)2.

Given a set of quantiles, the cross-quantilogram considers dependence in terms of the direction of deviation

from quantiles, and thus measures the directional predictability from one series to another. Hong et al. (2009)

first propose a kernel-based test statistics to investigate the Granger causality in risk:

Q = T

T−1∑

j=1

k2(j/M)ρ̂2(j), (10)

where k (.) is a weighting function and M defines the bandwidth, which is a positive integer. Examples of

k (.) include the truncated, Bartlett, Daniell, Parzen, quadratic-spectral (QS), and Tukey-Hanning kernels.
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In this paper, we employ the Daniell kernel to investigate the empirical questions:

k (z) = sin(πz)/πz,−∞ < z < +∞. (11)

Another appropriately standardized version of this statistic is

Q1(M) = {T
T−1∑

j=1

k2(j/M)ρ̂2(j) − C1T (M)}/(2D1T (M))1/2, (12)

where:

C1T (M) =
T−1∑

j=1

(1 − j/T )k2(j/M),

D1T (M) =
T−1∑

j=1

(1 − j/T ){1 − (j + 1) /T}k4(j/M).

Under appropriate regularity conditions, it can be shown that under H0, Q1(M) → N (0, 1) in distribution.

In addition to Q1, the test statistic for the bidirectional hypothesis has also been introduced:

Q2(M) =





T

T−1∑

|j|=1

k2(j/M)ρ̂2(j) − C2T (M)





/{2D2T (M)}1/2, (13)

where the centering and scaling factors are:

C2T (M) =
T−1∑

|j|=1

(1 − |j| /T )k2(j/M),

D2T (M) = [1 + ρ̂4(0)]
T−1∑

|j|=1

(1 − |j| /T )(1 − (|j| + 1)/T )k4(j/M).

This statistic of Q2 also converges to standard normal distribution under the null hypothesis, and it is a

suitable statistic in the absence of prior information about the direction of causality. The proposed tests have

the convenient asymptotic standard normal distribution under the null hypothesis of no Granger causality in

risk. These tests check a large number of lags but avoid suffering from a severe loss of power due to the loss

of a large number of degrees of freedom, by adopting a downward-weighting kernel function. This downward

weighting is consistent with the stylized fact that today’s financial markets are influenced more by more

recent events than by remote past events, thus enhancing the power of the proposed tests.
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3.3 VAR for VaR

After confirming the existence of risk spillover, we employ a VAR for VaR model (White et al., 2015) to trace

out the dynamic tail-interdependence structure between financial markets. The VAR for VaR framework

can be viewed as a vector autoregressive extension of traditional quantile models. This method allows us to

go beyond the analysis of the univariate quantiles, and directly investigate the risk-transmission mechanism

between energy markets.

A bivariate version used in this study relates the conditional quantiles of two random variables according

to a VAR structure, conditional on the past information set Ft−1. The later empirical analysis indicates that

VAR(1) for VaR model is sufficient to capture the energy market tail interdependence. The model can be

written as:

q1t = c1 + a11 |r1t−1| + a12 |r2t−1| + b11q1t−1 + b12q2t−1, (14)

q2t = c2 + a21 |r1t−1| + a22 |r2t−1| + b21q1t−1 + b22q2t−1,

where |r1t−1| and |r2t−1| represent the return series of the US and corresponding Asian markets, and q1t

and q2t are the conditional quantiles. If b12 = b21 = 0, this model reduces to the CAViaR model of Engle

and Manganelli (2004). This bivariate quantile model in equation (15) can be expressed more compactly in

matrix form as follows:

qt = c + A |rt−1| + Bqt−1, (15)

Any empirical evidence for non-zero off-diagonal terms in either A or B will indicate the presence of tail

interdependence between the two variables.

After we construct the VAR for VaR model, we can further quantify the impacts of the external shocks

on the tail of returns by estimating the pseudo impulse response functions (PIRFs). PIRFs differ from

traditional functions because they assume that intervention δ affects the observable return rt only at time t.

At all other periods, no change occurs in rt. In this way, the pseudo αth-quantile impulse-response function

(IRF) for the ith return ri,t can be written as:

Δi,s(r̃i,t) = q̃i,t+s − qi,t+s, s = 1, 2, 3... (16)

where q̃i,t+s is the αth conditional quantile of the treated series (r̃i,t), and qi,t+s is the αth conditional

quantile of the unaffected series (ri,t). One advantage of this setting of PIRFs is that they retain the tradi-

tional interpretation of IRFs, even now we can assess the responses of different quantiles of the distribution.
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Mean Std Min Max Skew Kurt JB.test Q(10) LM(10)
WTI 0.020 2.365 -16.545 16.410 -0.207 7.676 3456.30 51.47 498.95

Henry Hub 0.010 4.610 -56.818 57.666 0.643 24.997 75944.00 422.02 1052.30

Note 1: Q(10) is the Box-Pierce test statistic with 10 lags, which is asymptotically distributed as Chi-squared with 10 degrees of freedom.

Note 2: LM(10) is the Lagrange multiplier test statistic with 10 lags, which is asymptotically distributed as Chi-squared with 10 degrees of freedom.
Note 3: The 5% critical value for χ^2 (10) is 18.307 and the 1% critical value for χ^2 (10) is 23.209.

Table 1: Summary Statistics of Daily Returns 

Therefore, we can directly model the tail interdependence structure across the financial series, and further

examine how risk is transmitted from one market to another, instead of indirectly estimating risk spillover by

recovering the first and second conditional moments of the financial series. In our empirical application, we

also take into account the contemporaneous correlation by identifying the structural shocks using a standard

Cholesky decomposition.

4 Empirical analysis

4.1 Data description

The energy data for this study are extracted from Bloomberg and the US Energy Information Administration

(EIA) website. It consists of the daily closing prices of two primary energy market indices in the United

States: the WTI Crude Oil Index (US Oil) and the Henry Hub Natural Gas Index (US NG).6 The data sets

span from January 3, 2000, to December 31, 2014. The daily returns of these indices are computed as:

ri,t = ln(Pi,t/Pi,t−1) ∗ 100

where ri,t stands for the daily return of the indices, and Pi,t stands for the closing price.

Table 1 displays the summary statistics of the daily returns of these two indices. It first shows that these

markets experienced a positive average return during the sample period. Table 1 also reports that gas markets

are in general featured with greater volatility. More specifically, we document the standard deviation of 4.610

in the US natural gas market and 2.365 in the US oil market. Compared with the standard deviation of 1.284

in the US stock market (S&P 500 Index), we highlight the instability of the investment in the energy markets. 7

Table 1 further reports that the oil series is left skewed, and both two return series are leptokurtic. Such non-

normal properties are also captured by the highly significant Jarque-Bera test statistics. These results imply

the potential weakness of treating the variance as the measure of risk for the energy series. Furthermore,

the Box and Pierce (1970) type portmanteau statistics suggest the existence of mild autocorrelation in each

6In the later section, we further extract data for Brent Oil of the Europe, National Balancing Point (NBP) natural gas of
the Europe, and Japan Korea Marker (JKM) Natural Gas of Asia from the same data source.

7We calculate the variance of the US stock index series in the same sample period for the comparison.
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series. The Engle (1982) tests for an autoregressive conditional heteroskedasticity (ARCH) effect clearly

reject the null hypothesis of no ARCH effect. As a result, appropriate AR-GARCH models seem adequate

to accommodate the statistical feature of each series and thereafter filter out the volatility clustering.

4.2 Model estimation

In this section, we employ the FHS to calculate the univariate VaR. In the empirical finance literature,

research has often found that GARCH(1,1) models can capture most volatility clustering in financial time

series. Therefore, we apply the AR(4)-GARCH(1,1) model discussed in the previous section to both energy

series. The results below show that this specification is adequate to clear out the autocorrelation.

Table 2 summarizes the estimation results of univariate GARCH models for each index. The coefficients

correspond to equation (2). Table 2 first shows the minimal serial correlation in the mean of these return

series, which is reflected by the limited number of significant autoregressive coefficients. In general, this result

is in line with the efficient market hypothesis (EMH), indicating that past information has weak predictive

power for future returns. However, regarding the second moment, we observe obvious volatility clustering,

which is shown by the significant ARCH and GARCH coefficients for all the indices. In Table 2, we also

present diagnostic statistics for model adequacy along with the estimated parameters. The corresponding

p-values of portmanteau statistics for autocorrelation in standardized residuals are all above 0.10, as are

the p-values of a similar test for autocorrelation in squared standardized residuals. These results imply the

adequacy of the specified models for each index, which means our model can capture all the first- and second-

moment variations that can be explained by its own past information for each index. Based on the model we

construct, the VaR estimates can be easily calculated by substituting the draws from the filtered residuals

into the estimated GARCH model.

4.3 The interdependence structure within the energy markets

4.3.1 Mean and volatility spillover

Before we investigate risk spillover, which is of major interest in this study, it is useful to revisit the in-

terdependence structure of the energy markets within the first two moments. In particular, we examine

the existence of mean and volatility spillover between the US oil and natural gas markets by adopting the

test statistics presented earlier. Tables 3 and 4 reports the kernel-based test statistics, together with their

p-values. We use the Daniell kernel and report the bandwidth as M=5, 10, 20.8 The first row shows the two-

way statistics for the existence of mean or volatility spillover between two markets. The second row presents

8Because commonly used non-uniform kernels deliver similar power, we only report the results based on the Daniell kernel.
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US Oil US NG
b0 0.057** -0.018

(0.029) (0.047)
b1 -0.029* 0.042**

(0.016) (0.017)
b2 -0.005 -0.105***

(0.016) (0.016)
b3 0.007 -0.017

(0.016) (0.016)
b4 0.015 0.019

(0.016) (0.016)
ω 0.021** 0.500***

(0.008) (0.099)
α1 0.045*** 0.146***

( 0.006) (0.015)
β1 0.952*** 0.829***

(0.006) (0.015)

Q(10) 7.854 13.064
P-Value 0.643 0.220
LM(10) 14.169 3.514
P-Value 0.165 0.967

AIC 4.286 5.333
BIC 4.301 5.348
Note 1: Q(10) is the Box-Pierce test statistic on squared standardized residuals with 10 lags.
Note 2: LM(10) is the Lagrange Multiplier test statistic on the autocorrelation of the squared
standardized residuals with 10 lags.
Note 3: The 1%, 5% and 10% critical value for χ^2 (10) are 23.209, 18.307 and 15.987, respectively.
*** p<0.01.
  ** p<0.05.
    * p<0.10.

Table 2: Estimation Results of AR-GARCH model

15



M=5 M=10 M=20
US_Oil↔US_NG 35.695*** 28.369*** 20.558***

0.000 0.000 0.000
US_Oil→US_NG 36.638*** 28.441*** 20.289***

0.000 0.000 0.000
US_Oil←US_NG -0.702 -0.588 -0.682

0.758 0.722 0.752

Table 3. Mean Spillover between the US Oil and Natural Gas Markets 

Note 1: M is the integer in Daniell kernel.
Note 2: “↔” represents the two-way tests (Q2).  “→” and “←” represents the one-way tests (Q1) for causality from the former to the latter and the
latter to the former with respect to with respect to Ft-1.
 *** p<0.01.
   ** p<0.05.
     * p<0.10.

M=5 M=10 M=20
US_Oil↔US_NG 1.018 0.861 0.240

0.154 0.195 0.405
US_Oil→US_NG 1.214 0.522 -0.536

0.112 0.301 0.704
US_Oil←US_NG 0.967 1.094 1.089

0.167 0.137 0.138

Table 4. Volatility Spillover between the US Oil and Natural Gas Markets 

Note 1: M is the integer in Daniell kernel.
Note 2: “↔” represents the two-way tests (Q2).  “→” and “←” represents the one-way tests (Q1) for causality from the former to the latter and the
latter to the former with respect to with respect to Ft-1.
 *** p<0.01.
   ** p<0.05.
     * p<0.10.

one-way test statistics for whether the first index Granger-causes the second index in mean or volatility, with

respect to the information Ft−1. The third row documents the counterparts.

Table 3 presents the results of mean spillover. We document significant Q2 statistics in the first row,

implying the substantial two-way mean spillover between the US oil and US NG market. This result shows

these energy markets are highly integrated in terms of the mean. Furthermore, we document that information

in the oil market Granger causes price movements in the US NG market. In contrast, price movements in the

NG market have no significant reverse impact on the oil market. These results are in line with the dominating

status of the US oil market, implying that information in the US oil market has price discovery ability for

the NG market.

Table 4 presents the results for the second moment, volatility spillover. The results first show that there

is no significant two-way volatility spillover between the US oil and US NG market. Meanwhile, the similar

insignificant Q1 statistics in the second and third rows also indicate that the volatility in one market does not

have predictive power for another. Notably, the patterns of the volatility spillover differ considerably from

the previous mean spillover. These results provide the first evidence that interdependence structure between

two financial series can be very different across different moments.

16



4.3.2 Value at risk and risk spillover

In this section, we examine the existence of risk spillover between the US oil and US NG markets. Table 5

reports the kernel-based test statistics at the 1% risk level, together with their p-values. 9 The first row shows

the two-way statistics for the existence of risk spillover between the two markets. The second row presents

one-way test statistics for whether the first index Granger-causes the second index in risk, with respect to

the information Ft−1. The third row documents the counterparts.

We document the following stylized facts:

First, the Q2 statistics are highly significant, implying the two-way risk spillover between the US oil and

US NG market. As a result, we confirm these two energy markets are integrated in terms of market risk.

Moreover, the risk spillover pattern is largely different from the volatility spillover pattern. This observation

further highlights the importance of using the left tail of the distribution (VaR), instead of conventional

volatility, to measure the market risk.

Second, risk in the US oil market has strong predictive power for the risk in the US NG market. These

observations are supported by highly significant one-way test statistics Q1 in the second row. Meanwhile,

risk in the NG market has few impacts on the oil market. These results show that we could utilize the

information in the oil market to estimate the extreme downside market movements in the NG market.

M=5 M=10 M=20
US_Oil↔US_NG 18.661*** 14.310*** 10.229***

0.000 0.000 0.000
US_Oil→US_NG 31.897*** 22.512*** 15.891***

0.000 0.000 0.000
US_Oil←US_NG -0.352 -0.561 -0.849

0.638 0.713 0.802

Table 5. Risk Spillover between the US Oil and Natural Gas Markets 

Note 1: M is the integer in Daniell kernel.
Note 2: “↔” represents the two-way tests (Q2). “→” and “←” represents the one-way tests (Q1) for causality from the former to the latter and the latter
to the former with respect to with respect to Ft-1.
 *** p<0.01.
   ** p<0.05.
     * p<0.10.

9We also experiment test statistics at the 5% and 10% risk levels. In general, they deliver similar risk interdependence
patterns. To conserve space, we concentrate on results at the 1% risk levels as a baseline case. We further discuss downside risk
at the 5% and 10% levels in section 4.5.1, which investigates the asymmetric property of international transmission patterns.
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US_OIL on US_NG
c1 a11 a12 b11 b12

-0.21*** -0.32*** 0.06*** 0.82*** 0.04**
(0.08) (0.04) (0.01) (0.03) (0.02)
c2 a21 a22 b21 b22

-0.45* -0.33* -0.55*** -0.08 0.78***
(0.24) (0.17) (0.02) (0.13) (0.06)

Table 6. Estimates and Standard Errors, VAR for VaR Model

Note: Estimated coefficients are in the first row. Standard errors are reported in brackets in second
row. The coefficients correspond to the VAR for VaR model reported in Eq.(14) of the paper.
*** p<0.01.
  ** p<0.05.
    * p<0.10.

4.4 VAR for VaR

After confirming the existence of two-way risk spillovers, we employ a bivariate VAR for VaR model (White

et al., 2015) to trace out the dynamic tail-interdependence structure between these markets. In our bivariate

framework (Eq. 14), the first equation describes the quantile responses of the oil market, and the second

equation describes the quantile responses of the corresponding NG market. Because conventional wisdom

and previous test statistics both suggest that the oil market plays a dominating role in energy markets, we

focus on how risk in the oil market can help to predict the risk in the NG market. We assume shocks to oil

markets Granger-cause changes in the NG market contemporaneously, but shocks to the NG market do not

have the instant direct impact on the oil market the same day.

Table 6 reports the estimation results for the bivariate VAR for VaR system, showing that some of the non-

diagonal coefficients in the A or B matrices are significantly different from zero. This finding illustrates that

multivariate quantile model can reveal dynamics that cannot be detected by estimating univariate quantile

models, hence capturing two-way risk spillovers. For example, we document the significance of the coefficient

a21, implying that the VaR of the gas market depends not only on its own past information, but also on

information in oil markets.

Figure 2 displays the PIRFs of risks in the NG markets to a one-standard-deviation shock to the oil market,

together with the 95% confidence interval. The horizontal axis measures the time (expressed in days), and

the vertical axis measures the change in the 1% quantiles of the NG indices (expressed in percentage returns)

as a reaction to the oil shock. The PIRFs document that this shock propagates in the international risk-

transmission mechanism and how long it takes to absorb it. The shock is completely absorbed when the

PIRFs have converged to zero. Careful inspection of the PIRFs of NG markets reveals similar patterns
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Note: The plot reports the quantile impulse-reponse functions between the US oil and natural gas market at 1%
level, together with 95% confidence intervals.

Figure 2. Quantile Impulse-Response Function
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in how their long-run risks react to oil shocks. More specifically, a one-standard-deviation decline in the

oil market generates 0.78-percentage-point increase in the VaR for the US NG market. This effect is also

statistically significant, and the NG markets absorb the shocks slowly in the following 50 days. These results

confirm that the information in the oil market can help to predict risk in the NG market.

Based on the multivariate quantile model we estimated, we construct a multivariate VaR measure for

natural gas markets. The resulting estimated 1% quantiles are reported in Figure 3. These quantile plots

clearly capture extreme downside movements, providing the evidence that this multivariate VaR measure is

suitable for capturing the dynamics of energy market risk. The absolute value of VaR in the NG market is

much bigger than the oil market, suggesting huge risk in investing in this market.
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Figure 3. Estimated 1% Quantile for the US Natural Gas Market

Note: The chart reports the in-sample 1% daily Value at Risk (VaR) for natrual gas market, together with the daily return. The VaR is
computed from a bivariate VAR for VaR model, where the first equation contains the quantile of the oil market and the second
equation contains the quantile of the corresponding natural gas market.
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4.5 Further discussion

4.5.1 Responses across different risk levels

In most of the existing literature, researchers adopt volatility to measure risk, and focus on volatility spillovers.

One underlying limitation of these studies is that they treat gains and losses in a symmetric way. However, in

practice, the different quantiles of a return series may respond in a very different fashion given that external

shocks originated in different markets.10

In this section, we explicitly examine the responses across different risk levels. The objective is to show

how the energy market reactions vary across different magnitudes of market losses and gains. We present the

impacts of an external shock on energy market across different quantiles in Figure 4. We pick 1%, 5%, and

10% to measure the losses because they are the commonly used VaR levels. We also pick 99%, 95%, and 90%

to measure the corresponding market gains. The red solid line represents the down side risk, and the black

solid line reports the upside side risk. The corresponding dashed lines are the 95% confidence intervals.

Figure 4 delivers some interesting observations.

First, we show that the extreme losses and gains (e.g., 1% and 99% quantile pair) are more likely to

be transmitted across the market, compared to moderate losses and gains (e.g., 5% and 95% quantile pair,

10% and 90% quantile pair). For example, we document a substantial 0.8-percentage-point instant increase

in VaR at the 1% level, and the moderate 0.2-percentage-point instant changes of VaR at the 5% and 10%

10One explanation is that market participants behave asymmetrically in response to the positive or negative market informa-
tion.
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Figure 4. Responses of Gas Market across Different Quantiles

Days
0 5 10 15 20 25 30 35 40 45 50

Va
R

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
US OIL on US NG, 1% and 99%

VaR 1%
VaR 99%

Days
0 5 10 15 20 25 30 35 40 45 50

Va
R

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
US OIL on US NG, 5% and 95%

VaR 5%
VaR 95%

Days
0 5 10 15 20 25 30 35 40 45 50

Va
R

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
US OIL on US NG, 10% and 90%

VaR 10%
VaR 90%

level. Results are similar when we consider the market gains. These disproportionate patterns show that the

market is more sensitive the extreme events, highlighting the policy instruments to control for extreme risk

spillover.

Second, the significant asymmetric pattern has been identified in the extreme downside movements,

namely 1% risk. More specifically, we document 0.8-percentage-point instant changes in market losses and

0.4-percentage-point instant changes in market gains, given the external oil shocks. Meanwhile, regarding

the moderate risk level, the response pattern is in general symmetric. These empirical results are in line

with our expectation, which reflect the financial property of energy prices since market participants behave

asymmetrically when provided with extreme market gains and losses. Extreme market losses are more likely

to trigger financial contagion, easily transmitting across the markets and leading to a surge in the VaR.

Based on the asymmetric pattern we observe, we illustrate the potential weakness of adopting volatility to

measure the market risk. We suggest that future research to treat the losses and gains separately when

attempting to investigate the interdependence structure between financial series, such as the energy series in

our case. Our analysis on the distributional interdependence across different quantiles also contributes to a
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better understanding of how different types of information are transmitted between commodity markets.
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Figure 5. Time-varying Pattern of Tail Interdependence.
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4.5.2 Time-varying Risk Transmission Patterns

The world economic and energy consumption landscape has shifted dramatically in recent years. On the

one hand, informatization spurs increasing financial integration and enhances financial linkages between the

commodity markets. On the other hand, with the rise of demand for the clear energy and the development

of energy infrastructure such as pipeline, the world markets have experienced astonishing growth in natural

gas consumption. These stylized facts lead to a question of considerable interest regarding how the shift in

the global economic landscape and energy demand structure affects the risk-transmission patterns across the

time.

In this section, we investigate the time-varying property of the international risk-transmission mechanism

we trace out between the oil and natural gas markets. To shed light on this issue, we divide our sample into

three parts: the pre-crisis period from January 1, 2000, to December 31, 2006; the crisis-period from January

1, 2007, to December 31, 2009; and the post-crisis period from January 1, 2010, to December 31, 2014.11 To

make the results more comparable, we also standardize the shocks in the crisis period and post-crisis period

to the pre-crisis period level.

11Note that because the crisis period contains only a relatively shorter time span with fewer observations, quantile analysis
based on that may lead to distorted results. Also, the financial crisis may create the extraordinary multilateral relationships.
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Figure 5 summarizes the pseudo impulse response patterns between the two markets across the pre-crisis

period, crisis period, and post-crisis period. First, we document the risk integration between oil and gas

markets has declined over time. The US oil market experienced an decreasing predictive power for risk in

the natural gas market. Quantitatively speaking, the instant impact of oil shocks on natural gas markets

has decreased dramatically, from -1.20 in the pre-crisis period to -0.80 and -0.18 in the crisis and post-

crisis periods, respectively. Our findings are in line with the observation that natural gas market is more

isolated from the oil market in the recent years, and providing the further evidence on this topic in the risk

transmission perspective. Meanwhile, these empirical findings suggest an extreme market event, such as the

global financial crisis, does not necessarily amplify the risk linkages between the commodity prices since we

do not document a surge in risk spillover during the financial crisis period. Last but not least, given the

declining patterns of risk spillover over time, our results also indicate that investing in oil and nature gas

commodity provides some opportunities if one seeks for risk sharing and portfolio diversification in energy

market.
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4.5.3 Impacts on other regional natural gas market.

In the recent decades, the world NG markets have developed rapidly. Hub-based gas prices in Northwest

European markets have reached market acceptance and a dominant position in gas pricing. More and more

price indices are also being developed for other parts of Europe as well as in Asia, which are applicable

to different regions. In this section, we include representatives of these natural gas price indices, the UK’s

National Balancing Point (NBP) and Asian Japan Korea Marker (JKM) indices, and discuss the risk spillover

patterns related to these markets. We utilize WTI oil price as the world oil index for these regions. 12 One

important question we attempt to shed light on is whether any difference exists across the markets in different

areas. Notably, the time span of these indices is relatively short. Our data for these series are from March 1,

2009, to December 30, 2014.13 Basically, we estimate the risk transmission patterns between these markets

in the post crisis period like before, which is more insightful for the current situation. To facilitate the

comparison, we also estimate the US results in this period. Our results are summarized in Figure 6.

Figure 6 delivers some interesting observations. On the one hand, we document the significant risk

transmission patterns in these regional markets. These findings show that the risk integration between oil

to natural gas market is not only a regional phenomenon in the US, but also a global phenomenon across

world major markets. On the other hand, our empirical findings also report substantial heterogeneities in

risk responses across different regional natural gas markets. More specifically, the instant impact on the UK

is -0.08, and -0.12 on the US. These results show that the risk shocks in the oil market still have the stronger

impact on the corresponding NG market, compared to the UK market. Meanwhile, the Asian gas market is

more integrated with the oil market in terms of risk transmission among these three markets. The instant

impact is around twofold compared to that of the US, and is statistically significant. This result is in line

with the current market structure of the Asian natural gas market.

12Our results are robust to the alternative well accepted oil index such as Brent Oil.
13The starting date of JKM series is Feb 03, 2009 from the Platts dataset.
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Figure 6. Responses of Gas Market across Different Regions
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5 Conclusion and policy implications

The GFC in 2007-2009 that originated in the US has brought to surface the need for measuring and mon-

itoring the transmission of extreme downside market risk. This paper investigates the risk transmission

mechanism between the oil and gas markets. By applying the recently introduced test statistics based on

cross-quantilogram function, we first confirm the existence of risk spillover between these two energy markets.

Furthermore, we apply the multivariate quantile regression model (VAR for VaR) to quantitatively reveal

these tail-interdependence patterns.

Our results show that the shocks in the oil market substantially affect the VaR in the natural gas market.

However, risk in the natural gas market has no predictive power for risk in the oil market. Moreover, extreme

market risk is easier to transmit across the energy markets, compared to the moderate risk. Another key

message this paper reveals is an asymmetric tail-interdependency structure between energy markets, warning

of underlying weakness of adopting volatility to measure the market risk. We also report the significant

time-varying risk interdependence patterns between the oil and natural gas markets. Our results are in

general robust in application to other regional energy markets, such as Europe and Asia, but heterogeneities

also arise. Compared to the US and European markets, the Asian gas market is more integrated with the

oil market in terms of risk transmission. The risk transmission response of gas prices to oil price shocks is

stronger in Asia than in the US and European markets.

The results in this paper offers clear practical insights and relevant policy implications for academia,

policy makers, and business sectors. The main practical insights and policy implications can be summarized

as follows. First, the evidence of substantial risk transmission from oil markets to natural gas markets

suggests the need for sound policies to stabilize energy markets during large price movements in oil market,

as well as the need for good instruments to effectively hedge the positions. One possible direction is to adopt

market regulation mechanisms in price controls, such as setting the downside price limits in trades.
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Second, the evidence of asymmetry in risk transmission on extreme downside market moves should be

considered in drafting gas market policy. The development of instruments to hedge against price risks should

be prioritized. This is increasingly important because of expanding role of natural gas in Asian economies as

well as countries with significant dependence on natural gas export revenue. Asia is projected to increase its

gas usage and hence, both gas-exporting-dependent countries and major natural gas and LNG importers, will

become economically vulnerable to volatility in gas prices, because gas prices show significant risk transmission

from oil markets at the left tail of the return distribution even the two prices are determined by their own

fundamentals. The perceived independence of market-determined natural gas prices mask the risk of tail

dependent risk transmission from the oil market.

Third, the observed tail dependence of oil and gas prices, especially during volatile price regimes, does

not also make them hedges (in light of differing growth opportunities in both fuels) in diversified portfolios.

But their co-movements make them candidates for investment strategies such as pair trade if they eventually

converge to some parity. These strategies entail that traders go long on contracts that are underperformers

and short contracts that are overperformers based on a parity target price.

Lastly, for policy makers and the gas industry, which are facing a decision on a gas pricing transition

from oil indexation to gas-on-gas competitive prices, such as those in East Asia, our results suggest that

even though hub prices formed independently from oil prices are used as benchmark prices, appropriate

mechanisms are still required to manage and hedge the negative consequences of high volatility and the

possibility of risk transmission from oil markets. Even though gas prices can be independent of oil prices,

results from our study of the US and European markets show that left-tail risk transmission still exist in

such a setting.
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