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Causal inference has received great attention across different fields ranging from 

economics, statistics, biology, medicine, to machine learning. Observational causal 

inference is challenging because confounding variables may influence both the treatment 

and outcome. Propensity score based methods are theoretically able to handle this 

confounding bias problem. However, in practice, propensity score estimation is subject to 

extreme values, leading to small effective sample size and making the estimators unstable 

or even misleading. Two strategies– truncation and normalization – are usually adopted to 

address this problem. In this paper, we propose a new Pareto-smoothing strategy to tackle 

this problem. Simulations and a real-world example validate the effectiveness. 

1.   Introduction 

To minimize the confounding bias in observational causal inference, statistical 

“case-mix adjustment” techniques are frequently adopted. Among them, 

Rosenbaum and Rubin [1] introduced the propensity score to summarize the 

information required to control the confounders. The propensity score is the 

conditional probability of an individual to be assigned to the treatment group. 

Theoretically, one can account the difference between the treatment and control 

groups by directly modelling the assignment mechanism with propensity scores, 

and thus making the treated and control populations more comparable. 

      Though propensity score provides us a convenient solution to ease the issue 

of confounding, the true propensity scores are intrinsically unknown in pure 

observational studies. A practical concern is that the causal effect may be difficult 

to estimate precisely if the estimated propensity score is close to zero for a 

substantial fraction of the population [2]. This is a particular concern in setting 

with many covariates or the assignment mechanism is highly skewed.  

      When many of the estimated propensity scores are close the zero, the 

distribution of their reciprocals – the inverse propensity (IP) weights – can have a 

heavy right tail, which will lead to unstable inverse propensity weighting 



 

estimates, sometimes with infinite variance. To cope with this problem, methods 

including truncation and self-normalization have been proposed [3-5]. In this 

paper, we propose a new Pareto-smoothing strategy. Compared with truncation, 

our method is less biased. Compared with the normalization strategy, our 

experiment result shows that they both converge to the true value if we have 

enough data. One special merit of our method is that it is more stable in the small 

sample size cases, which are common in many real problems. 

      The reminder of the paper is organized as follows. In Section 2, we formalize 

the causal inference problem, introduce the concept of propensity score and two 

stabilization strategies for propensity score based estimators. Section 3 illustrates 

the proposed strategy and methods for parameter estimation. Experiments on 

simulated and real data are conducted in Section 4. Section 5 concludes the paper. 

2.   Causal Inference and Inverse Propensity Weighting 

2.1.   Notation and Problem Formalization 

Suppose there are 𝑁 units 𝑋𝑖  (𝑖 = 1, … , 𝑁), denote the treatment condition for 

unit 𝑖 with 𝐴𝑖, where 𝐴𝑖 = 0 indicating that unit 𝑖 received the control treatment 

and 𝐴𝑖 = 1 the active treatment. Let 𝑌 be the outcome variable of interest. 𝑌𝑖(𝐴) 

is defined as the potential outcome of unit 𝑖 had she received treatment 𝐴. We 

postulate the existence of a pair of potential outcomes for each 

unit, (𝑌𝑖(0), 𝑌𝑖(1)), and the observed outcome 𝑌𝑖 = 𝑌𝑖(𝐴𝑖) =  𝐴𝑖𝑌𝑖(1) + (1 −

𝐴𝑖)𝑌𝑖(0). With this notation, the individual treatment effect for unit 𝑖 is 𝜏𝑖 =

𝑌𝑖(1) − 𝑌𝑖(0) and the average causal effect (aka, average treatment effect, ATE) 

is its expectation, i.e., 𝜏 = 𝔼[𝜏𝑖] = 𝔼[𝑌𝑖(1)] − 𝔼[𝑌𝑖(0)]. 

      ATE measures the expected causal difference of a population if all of them 

were treated versus all were untreated, which is generally different from the 

conditional difference 𝔼[𝑌𝑖|𝐴𝑖 = 1] − 𝔼[𝑌𝑖|𝐴𝑖 = 0]. As a baseline, we also 

denote the empirical conditional difference as the naïve ATE estimator in Eq. (1) 

                   𝜏̂𝑛𝑎𝑖𝑣𝑒 =
1

𝑁1

∑ 𝐴𝑖𝑌𝑖

𝑁

𝑖=1

−
1

𝑁0

∑(1 − 𝐴𝑖)𝑌𝑖

𝑁

𝑖=1

         (1) 

where 𝑁1 = ∑ 𝐴𝑖
𝑁
𝑖=1  is the number of treated and 𝑁0 = 𝑁 − 𝑁1 the number of 

control. 

      Estimating ATE from observational data is generally impossible because of 

the fundamental problem of causal inference [4]. Under the conditional 

exchangeability (or unconfoundedness) condition, 𝑌𝑖(0), 𝑌𝑖(1) ⫫ 𝐴𝑖|𝑋𝑖, Pearl [6] 

proves that the ATE can consistently estimated by Eq. (2) as: 



 

               𝜏 = ∫(𝔼[𝑌𝑖|𝐴𝑖 = 1, 𝑋𝑖 = 𝑥] − 𝔼[𝑌𝑖|𝐴𝑖 = 1, 𝑋𝑖 = 𝑥])𝑑𝑃(𝑥)               (2) 

      This formula is also called the G-computation formula [7] and the back-door 

adjustment formula [6]. Although feasible for estimating ATE in principle, it is in 

practice infeasible to implement with many covariates. In the following section, 

we introduce the propensity score and its importance for solving this challenge.  

2.2.   Propensity Score and Inverse Propensity Weighting (IPW)  

As discussed earlier, adjusting for all observed covariates to eliminate 

confounding bias may go out of the question. As the coarsest balancing score [4], 

the propensity score is a scalar proxy of them that suffices for removing the bias 

associated with imbalance in the pre-treatment covariates and is defined as:  

Definition 1 (Propensity Score, PS) The propensity score 𝑒(𝑋𝑖) is the 

conditional probability of an individual 𝑋𝑖   to be assigned to the treatment group. 

Defining the inverse propensity weight (IP weight) for unit 𝑖 as  

                                   𝑤𝑖 =
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where 𝕝(𝑎𝑖 = 𝑎) is the indicator function, we can build a balanced pseudo-

population where the treatment assignments are randomized and all confounding 

is removed. The conditional difference in this super population consistently 

estimates 𝜏 by the inverse propensity weighted (IPW) estimator [8] [1]  
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      Note that the propensity scores 𝑒𝑖 = 𝑒(𝑋𝑖) occur in the denominator of Eq. 

(3), we thus need to make the “positivity” or “overlapping” assumption, for 

all 𝑖, 0 < 𝑒(𝑋𝑖) < 1, so that the IP weights are bounded, 𝑤𝑖 < ∞. Theoretically, 

𝜏̂𝐼𝑃𝑊 is unbiased and consistent under this positivity assumption if we have 

infinite many observations. However, for finite data, the estimated 

propensities 𝑒̂(𝑋𝑖) can be very close to zero for some 𝑋𝑖 = x. An extreme case 

may occur that there are regions of covariate values observed in only one of the 

two treatment conditions. In this case, the IP weights 𝑤𝑖  will be highly variable 

and even unbounded, thus estimation based on then will be unstable and 

misleading.  



 

2.3.   Stabilization by Truncation and Normalization 

To remedy the issue of high variability, there are mainly two strategies for 

stabilization [5]: truncation (aka clipping) and normalization of the propensity 

score. The truncated IPW estimator for causal inference is given by  
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with the estimated treatment probabilities truncated by a constant 𝐶:  

                    𝑔𝑖(𝐴𝑖|𝑋𝑖) = {
𝐶, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      𝑖𝑓  𝑝(𝐴𝑖|𝑋𝑖) < 𝛿

𝑝(𝐴𝑖|𝑋𝑖),                                          𝑒𝑙𝑠𝑒
                          (6) 

      A consequence of PS truncation is the introduction of bias in the estimated 

PS, which in turn causes bias in PS-based causal estimators. Moreover, the cut-

point 𝛿 is usually unknown and choosing it relies on experience or intuition. 

Recently, [9] propose a data-adaptive PS truncation algorithm which can select 

the optimal truncation threshold adaptively, but it is specially designed for target 

maximum likelihood estimators [10]. 

Alternatively, the normalized IPW estimator [5,11] divides the IP weights by 

the empirical mean of each treatment group and is given by  
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      For a set of IP weights 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑁}, denote 𝑊̅ =
1

𝑁
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1
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𝑛=1 , we also define the effective sample size as 𝑁𝑒𝑓𝑓 =

𝑁𝑊̅2

𝑊2̅̅ ̅̅ ̅ , 

which will be used as a measure of stability in the experiment sections. If the 

weights are highly imbalanced, they will have a high sampling variance, and the 

resulting estimate will be unreliable with a very small 𝑁eff. 

3.   Pareto Smoothing for Causal Inference 

Our method builds upon results in the extreme value theory [12]. The idea is 

simple, given the estimated IP weights {𝑤1 , 𝑤2, … , 𝑤𝑁}, we fit a generalized 

Pareto distribution (GPD) on these extreme values, and replace them with order 

statistics of the fitted GPD. By this smoothing strategy, we try to stabilize the IP 

weights while keep the information of their relative order. 



 

3.1.   The Generalized Pareto Distribution 

Among the series of extreme value distributions in the extreme value theory [12], 

the generalized Pareto distribution, named by Pickands [13], is a family of 

extreme value distributions that is often used to model the tails of another 

distribution. A GPD is specified by the location 𝜇, scale 𝜎 > 0, and shape 𝜅:  

      𝐹(𝑥) = [1 − (1 +
𝜅(𝑥 − 𝜇)

𝜎
)

−
1
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𝜎 ) 𝕝(𝜅 = 0)       (8) 

where the 𝜇 is a lower bound, i.e., 𝑥 ∈ (𝜇, ∞). Pickands [13] proves that if an 

unknown distribution function 𝐹(𝑥) lies in the “domain of attraction” of some 

extremal distribution function, then 𝐹(𝑥) has a generalized Pareto upper tail. 

3.2.   Parameters Estimation 

To fit the parameters 𝜽 = (𝜇, 𝜎, 𝜅), we follow [14] and choose the location 

parameter 𝜇 so that the size of the upper-tail is 

                                                      𝑀 = 𝑚𝑖𝑛(⌊0.2𝑆⌋, ⌊3√𝑆⌋ )                                     (9)  

      Having decided the location 𝜇, the other two parameters 𝜎 and 𝜅 can be 

estimated by maximum likelihood [12]. Given a random sample 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑀}, [15] reparametrize Eq. (8) by two parameters (𝛼, 𝜅), where 𝛼 =

𝜅/𝜎,  and the estimate 𝛼̂ is obtained by maximizing a profile likelihood function 

with a weakly informative prior, 𝜅 and 𝜎 are estimated by 
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1
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3.3.   Summary of the Pareto-smoothed IPW Estimator 

Given a set of 𝑁 observations 𝒟 = {𝑋𝑖 , 𝐴𝑖, 𝑌𝑖}𝑖=1
𝑁 , our proposed Pareto-smoothed 

IPW method can be easily implemented and proceeds as follows: 

1. Estimate the propensity scores and get {𝑒𝑖 , 𝑖 = 1,2, … , 𝑁}; 

2. Sort 𝑒𝑖 descending, calculate 𝑀 by Eq. (9) and choose the corresponding 𝜇; 

3. Let 𝜇 = 1/𝜇, and calculate the IP weights {𝑤𝑖 , 𝑖 = 1,2, … , 𝑁}; 

4. Estimate 𝜎 and 𝜅 using the largest 𝑀 IP weights by Eq. (10); 

5. Replace the largest 𝑀 weights with ordered statistics of the fitted GPD, and 

obtain the “Pareto-smoothed” weights {𝑤𝑖
𝑃𝑆, 𝑖 = 1,2, … , 𝑁}; 

6. Estimate the ATE using {𝑤𝑖
𝑃𝑆, 𝑖 = 1,2, … , 𝑁} by 



 

                             𝜏̂𝑃𝑆−𝐼𝑃𝑊 =
1

𝑁
( ∑

𝑤𝑖
𝑃𝑆

𝑤𝑃𝑆̅̅ ̅̅ ̅
𝑡

𝑌𝑖

𝑖:𝐴𝑖=1

− ∑
1 − 𝑤𝑖

𝑃𝑆

𝑤𝑃𝑆̅̅ ̅̅ ̅
𝑐

𝑌𝑖

𝑖:𝐴𝑖=0

 )             (11) 

where 𝑤𝑃𝑆̅̅ ̅̅ ̅
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4.   Experimental Study 

In this section, we validate our proposed method using simulated and semi-

simulated data. In all the experiments, we use logistic regression to fit the 

propensity score model. The mean absolute error (MAE) 𝜖𝐴𝑇𝐸 =
1

𝑛
|∑ (𝑌𝑖(1) −𝑛

𝑖=1

𝑌𝑖(0) − 𝜏̂𝑖)| =
1

𝑛
|∑ (𝜏𝑖 − 𝜏̂𝑖)𝑛

𝑖=1 | will be reported. An application on a real world 

job training study is also conducted. 

4.1.   Simulated and Semi-simulated Data 

The specific data-generating process of our simulation is: 𝑋𝑖,1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5),

𝑋𝑖,2~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(3, 0.5), (𝐴𝑖|𝑋𝑖)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Sigmoid(−1.3 − 3𝑋𝑖,1 + 3𝑋𝑖,2)),

(𝑌𝑖|𝑋𝑖 , 𝐴𝑖)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Sigmoid(−2 − 2𝑋𝑖,1 + 3𝑋𝑖,2 + 3𝐴𝑖 + 2𝐴𝑋𝑖)). We 

simulate data with sample size 𝑁 ranging from 100 to 105, and run each 

simulation 10 times. Comparisons of the MAE and effective sample size are in 

Fig. 1. We known that on one hand, 𝜏̂𝑃𝑆−𝐼𝑃𝑊 is less biased than 𝜏̂𝑇−𝐼𝑃𝑊. On the 

other hand, the estimate of 𝜏̂𝑃𝑆−𝐼𝑃𝑊 converges together with 𝜏̂𝐼𝑃𝑊 and 𝜏̂𝑁−𝐼𝑃𝑊 to 

the true estimate as the sample size gets large, say104. Actually, both 𝜏̂𝐼𝑃𝑊 

and 𝜏̂𝑁−𝐼𝑃𝑊  are theoretically unbiased, but when the sample size is relatively 

small, their estimates are unstable compared with our Pareto-smoothed estimator. 

This indicates the advantage of our method in the small data cases. As to the 

effective sample size, since many of the IP weights are truncated to the same 

value, the effective sample size of 𝜏̂𝑇−𝐼𝑃𝑊 is supposed to be high. However, 

𝜏̂𝑃𝑆−𝐼𝑃𝑊 has higher effective sample size than 𝜏̂𝐼𝑃𝑊 and 𝜏̂𝑁−𝐼𝑃𝑊 in general. 

 
Figure 1. Comparison of the MAE (left) and log effective sample sizes (right) of different estimators. 



 

 
Table 1. ATE estimates and effective sample size for the IHDP data. 

 

 Naïve IPW T-IPW N-IPW PS-IPW 

MAE 4.782 0.32 2.894 0.008 0.0008 

𝑁eff 747 304.247 608.234 292.390 273.241 

      We also evaluated the performance of our algorithm through the semi-

simulated IHDP dataset introduced in [16]. It is based on covariates from a real 

randomized experiment that evaluated the impact of the IHDP on the subjects’ IQ 

test scores at the age of three while all outcomes are simulated. In total, the dataset 

consists of 747 subjects (139 treated, 608 control), and 25 covariates measuring 

properties of children and their mothers. The MAE and effective sample size 

results are listed in Table 1. Our proposed method outperforms other estimators 

regarding MAE. Actually, while the truncation strategy suffers a relatively high 

bias, the performances of 𝜏̂𝑁−𝐼𝑃𝑊 and 𝜏̂𝑃𝑆−𝐼𝑃𝑊 are very close. 

4.2.   Real Data: NSW Job Training Study 

As an application of the methods introduced in this paper, we use the randomized 

experiment data of [17], which is part of the “National support work” (NSW) 

demonstration programme implemented in the mid-1970s to study whether a 

systematic job-training programme would increase post-intervention income 

levels among workers [18]. In this paper, we simply use the nsw dataset in the R 

package ATEa, which provides LaLonde’s original 722 observations (297 treated 

and 425 control). The kernel density fits of the estimated IP weights in Fig. 2 

indicates the imbalance between the treatment and control group. The resulting 

estimates are 𝜏̂𝑛𝑎𝑖𝑣𝑒 = −537.803, 𝜏̂𝐼𝑃𝑊 = 3.696, 𝜏̂𝑇−𝐼𝑃𝑊 = 736.033, 𝜏̂𝑁−𝐼𝑃𝑊 =

798.488, and 𝜏̂𝑃𝑆−𝐼𝑃𝑊 = 805.881. The result again validate the performance 

similarity between our Pareto-smoothing strategy and the normalization strategy. 

 
Figure 2. Comparison of density distribution of the estimated IP weights for the NSW dataset. 

                                                           
a https://cran.r-project.org/package=ATE  

https://cran.r-project.org/package=ATE


 

5.   Conclusion 

In this paper, we concluded two stabilization strategies for handling the problem 

of IP weights variability in PS-based causal inference, and proposed a new Pareto-

smoothing strategy. Empirical results indicate that the proposed method has 

appealing advantages, i.e., it is less biased than brute-force truncation and more 

stable than the normalization strategy in the small sample size setting. Though 

empirically appealing, our future work will be in its theoretical analysis as well as 

its applications in other causal effect estimators, for example, propensity score 

matching and balancing estimators. 
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