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Abstract—A novel strategy for synthesizing shaped power
pattern by using element rotation and phase optimization for
a linear dipole array is presented. Element rotation can be
considered as an array amplitude weighting technique, and it
provides additional degrees of freedom in the pattern synthesis
but potentially increases the cross-polarization level (XPL). In
order to obtain a desired co-polarized shaped pattern with both
the sidelobe level (SLL) and XPL constrained, we simultaneously
optimize all the rotation angles and excitation phases of all the
dipole elements by applying the dynamic differential evolution
(DDE) algorithm. Two experiments for synthesizing flat-top
and cosecant-squared patterns are conducted to validate the
effectiveness and advantages of the proposed strategy.

Index Terms—Shaped power pattern, dipole rotation, cross-
polarization level (XPL), dynamic differential evolution (DDE).

I. INTRODUCTION

ATENNA arrays with shaped power patterns have been
widely applied in high-performance wireless communi-

cation and sensing systems. Many advanced shaped pattern
synthesis methods have been presented in the past, such
as the analytical techniques [1], [2], the iterative sampling
method [3], alternating projection method [4], mathemati-
cal programming-based optimization techniques [5]-[8], and
stochastic optimization algorithms [9]-[13]. Owing to the
complexity of the shaped pattern synthesis, however, most
of synthesis methods need to optimize both the excitation
amplitudes and phases to achieve the desired pattern shape and
sidelobe level. Despite their success in pattern shape control,
they tend to result in a relatively complicated feeding network
design especially when multiple unequal power dividers are
required. Hence, a few methods such as those in [14]-[16] have
tried to only optimize the excitation phases to achieve desired
pattern shaping. Owing to the limited degrees of freedom,
however, both the mainlobe shape accuracy and the sidelobe
performance are considerably worse comparing the case when
full control of both the excitation amplitudes and phases
are employed. In [17], an effective deterministic method is
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presented which combines element positions and phases to
improve the shaped pattern approximation accuracy.

It is understood that using element rotation can change
the power distributions of both the co- and cross-polarized
components on a fixed observation plane. Hence, the element
rotation technique can be considered as an alternative way of
realizing amplitude weighting for antenna arrays. In [18] and
[19], the element rotation technique was used to effectively
reduce sidelobe levels of focused beam patterns for dipole
antenna arrays. However, to be the best of our knowledge, such
a technique has never been applied to improve the performance
of shaped pattern synthesis in literature. In this paper, we will
show that a desired co-polarized shaped power pattern with
constrained sidelobe level (SLL) and cross-polarization level
(XPL) can be obtained by finding appropriate element rotation
angles and excitation phases for the case of dipole antenna
arrays. Compared to the conventional shaped pattern array by
using both the amplitude and phase weighting, the currently
obtained array avoids usage of multiple unequal power dividers
and significantly simplifies the feeding network.

Synthesizing rotation angles and excitation phases is a
highly nonlinear problem. Stochastic optimization algorithms
would be good choices in dealing with this problem because
of their powerful search schemes to find the global opti-
mum. Among them, the dynamic differential evolution (DDE)
method is one of demonstrated powerful global optimizers.
In this work, the DDE is chosen to simultaneously optimize
the element rotation angles and excitation phases for obtain-
ing a desired co-polarized shaped pattern with constrained
XPL. In the DDE, if the generated trial individual is better
than the corresponding target individual, it will replace the
target individual and be immediately used in the following
evolution instead of in the next generation in the conventional
DE (CDE) [20]. This leads to a larger virtual population
and quicker response to the change of population status.
The reliability and efficiency of the DDE have already been
verified in different antenna array synthesis applications [20]-
[22]. Numerical results are given for synthesizing flat-top
and cosecant-squared patterns by only element rotation and
phase optimization of linear dipole arrays, and the results
demonstrate the effectiveness and advantages of the proposed
method.

It should be noted that the proposed method is involved
in synthesizing vectorial pattern with cross-polarization sup-
pression. Some early relevant studies are available in the
literature, such as [23] for the cross-polarization and sidelobe
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Fig. 1. The rotated dipole in a N -element array.

suppression by using appropriate subarray configuration with
part of mirrored elements in dual linear polarization antenna
arrays, and [24] where efficient co- and cross-polarization
pattern synthesis is achieved by introducing two auxiliary
phase patterns for reducing the vectorial power synthesis
problem to a field synthesis one.

II. FORMULATION AND ALGORITHM

A. Vectorial pattern of a dipole-rotated array
For the shaped pattern synthesis of a dipole-rotated array,

formulation of its co- and cross-polarized patterns is necessary.
At first, consider a dipole with a rotation angle ξ ∈ [−π, π]
from z-axis in the global coordinate system (GCS) xyz, as
shown in Fig.1. To facilitate the pattern analysis, a local
coordinate system (LCS) x′y′z′ is built such that the z′-axis
coincides with the dipole’s orientation. Hence, the electrical
field pattern of this dipole in the LCS can be written as

a(θ′, ϕ′) =
cos(π2 cos θ′)

sin θ′
θ̂′ (1)

where θ′ and ϕ′ are the angles measured from z′-axis and
x′-axis, respectively, and θ̂′ is a unit vector in θ′-direction.
In order to obtain the array pattern by summing all the field
patterns of rotated dipoles in the same coordinate, we now
transform the element pattern expression in the LCS to the
one in the GCS via coordinate transformation. Note that in
the LCS, the ϕ′-polarized component of the electrical field
pattern does not exist, but in the GCS, both θ- and ϕ-polarized
components exist. They can be written by

aθ(θ
′, ϕ′) =

cos(π2 cos θ′)

sin θ′
θ̂′ · θ̂ (2)

aϕ(θ
′, ϕ′) =

cos(π2 cos θ′)

sin θ′
θ̂′ · ϕ̂. (3)

In the above, θ̂′ in the LCS is given by

θ̂′ = cos θ′ cosϕ′x̂′ + cos θ′ sinϕ′ŷ′ − sin θ′ẑ′. (4)

By using coordinate transformation, it can be rewritten in the
GCS as
θ̂′ = (cos ξ cos θ′ cosϕ′ + sin ξ sin θ′)x̂+ cos θ′ sinϕ′ŷ

+ (sin ξ cos θ′ cosϕ′ − cos ξ sin θ′)ẑ.
(5)

Hence, by considering the component expressions of θ̂ and ϕ̂,
we can obtain that

aθ(θ
′, ϕ′) =

cos(π2 cos θ′)

sin θ′
[
cos θ cosϕ(cos ξ cos θ′ cosϕ′

+ sin ξ sin θ′) + cos θ sinϕ cos θ′ sinϕ′

− sin θ(sin ξ cos θ′ cosϕ′ − cos ξ sin θ′)
] (6)

aϕ(θ
′, ϕ′) =

cos(π2 cos θ′)

sin θ′
[
cosϕ cos θ′ sinϕ′

− sinϕ(cos ξ cos θ′ cosϕ′ + sin ξ sin θ′)
]
.

(7)

Then we need to transform the above expressions as the
functions of θ and ϕ. The method adopted here is to treat
cos θ′, sin θ′, cosϕ′ and sinϕ′ as independent variables, and
directly replaces them with expressions of ξ, θ and ϕ. For
instance, since θ′ is the angle between the unit propagation
vector r̂ and ẑ′, we have cos θ′ = r̂ ·ẑ′. After using coordinate
transformation, we can express ẑ′ in the GCS, and then
obtain cos θ′ = − sin ξ sin θ cosϕ + cos ξ cos θ. Then sin θ′

can be obtained from the relationship of cos2 θ′+sin2 θ′ = 1.
Similarly, we can express cosϕ′ and sinϕ′ in the GCS by
recognizing the relation of cosϕ′ = r̂ ·x̂′/ sin θ′. Thus the two
components of vectorial element pattern for the rotated dipole
can be obtained. For simplicity, we consider the expressions
of the two components of vectorial element pattern at XOY
plane (θ = π/2) which is the principal cut of array pattern.
They are given as

aθ(ϕ; ξ) =
cos ξ cos(π2 sin ξ cosϕ)

1− sin2 ξ cos2 ϕ
(8)

aϕ(ϕ; ξ) =
sin ξ sinϕ cos(π2 sin ξ cosϕ)

sin2 ξ cos2 ϕ− 1
. (9)

Hence, for the linear array with N rotated dipoles shown in
Fig. 1, the θ- and ϕ-polarized array patterns at XOY plane can
be written as

Fθ(ϕ) =
N∑

n=1

anθ(ϕ; ξn)e
j(βxn cosϕ+αn) (10)

Fϕ(ϕ) =

N∑
n=1

anϕ(ϕ; ξn)e
j(βxn cosϕ+αn) (11)

where j =
√
−1, β = 2π/λ is the wavenumber in free space,

anθ(ϕ; ξn) and anϕ(ϕ; ξn) are θ- and ϕ-polarized patterns of
the nth dipole with a rotation angle of ξn, respectively. xn and
αn are the position and excitation phase of the nth dipole.

B. Shaped pattern synthesis using dipole rotation and phase
optimization

In order to obtain a desired shaped power pattern for a
dipole array with fixed positions, the variables of ξn and αn

for n = 1, 2, ..., N should be optimized with an appropriate
fitness function. For the considered dipole array shown in Fig.
1, the co- and cross-polarized components of the vectorial
array pattern in XOY plane are Fθ(ϕ) and Fϕ(ϕ), respectively.
Suppose the desired SLL and XPL are ΓSLL and ΓXPL,
respectively. The desired co-polarized shaped power pattern
is Pt(ϕ). Then the fitness function can be chosen as follows

f = 1
B

B∑
b=1

{|Fθ(ϕb)|2 − Pt(ϕb)}2 + 1
C

C∑
c=1

1
2 (Xc + |Xc|)

2

+ 1
D

D∑
d=1

1
2 (Yd + |Yd|)

2

(12)
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where{
Xc = |Fθ(ϕc)|2 − ΓSLL, ϕc ∈ SLL region
Yd = |Fϕ(ϕd)|2 − ΓXPL, ϕd ∈ XPL region. (13)

In the above, ϕb (b = 1, 2, ..., B) and ϕc (c = 1, 2, ..., C) are
the sampling angles in the shaped beam region and sidelobe
region of Fθ(ϕ), respectively, and ϕd (d = 1, 2, ..., D) are the
sampling angles in the full-space of ϕ ∈ [0, π].

Now, the DDE algorithm is adopted to minimize the fit-
ness function by optimizing the variables ξn and αn (n =
1, 2, ..., N). The DDE inherits all the basic evolutionary oper-
ators of CDE but introduces a dynamic evolution mechanism.
In every evolution loop of DDE, if a newly generated trial
vector is better than the corresponding target individual, it
will replace the target individual immediately in the following
evolution of the current loop instead of in the next generation.
Furthermore, the optimal individual will also be replaced
once a newly generated trial vector is better than it. This
mechanism makes the DDE perform better at balancing the
exploration and exploitation. The reliability and efficiency of
the DDE have been shown in different antenna array synthesis
applications [20]-[22]. Here, the DDE is applied to optimize
element rotation angles and phases for the shaped pattern
synthesis with both SLL and XPL control. The proposed
synthesis procedure is given in Algorithm 1.

Algorithm 1 The proposed DDE-based vectorial shaped pat-
tern synthesis procedure

1: Specify the parameters including the desired co-polarized shaped
pattern Pd(ϕa), the maximum SLL ΓSLL, the maximum XPL
ΓXPL, the maximum number of generations M , population size
Np, mutation intensity δ and crossover probability Cr .

2: Randomly generate initial population x0 whose individuals con-
sist of {(ξn, αn); |n = 1, 2, ...N}, and then set m = 0.

3: Count m = m+ 1, and set i = 1.
4: Mutate: randomly select two individuals xm

p1 and xm
p2 in the

population, generate a trial vector as vm
i = xopt+δ∗[xm

p1−xm
p2 ]

where p1 ̸= p2 ̸= i, xopt is the optimal individual in the
population.

5: Crossover: generate a random number γm
i ∈ [0, 1]. If γm

i < Cr ,
set the baby individual ym

i = vm
i , otherwise ym

i = xm
i .

6: If the baby individual ym
i is better than xm

i , replace xm
i with

ym
i . If xm

i is better than xopt, replace xopt with xm
i .

7: Repeat Step 4 to 6 until i reaches the population size Np.
8: Repeat Step 3 to 7 until m reaches the maximum generations M

or the fitness value of xopt remains unchanged for many times.
9: return xopt.

III. NUMERICAL RESULTS

In this section, two typical examples for synthesizing a flat-
top pattern of an equally spaced array and a cosecant-squared
pattern of an unequally spaced array are provided to evaluate
the performance of the proposed strategy. The comparisons
with other methods are also given in the examples.

A. Flat-top pattern synthesis

As the first example, we consider to synthesize a flat-
top power pattern which was obtained in [14] by optimizing
the phase distribution of a 10λ-long uniform amplitude line
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Fig. 5a in [14]
Rotat.-phase, Co-polar.
Rotat.-phase, Cross-polar.
Simulated Co-polar.
Simulated Cross-polar.

Fig. 2. The synthesized and full-wave simulated co-polarized flat-top patterns
and cross-polarized patterns for a 21-element dipole array, and the pattern
obtained by phased-only optimization of 10λ-length linear source in [14].

source. The pattern shown in Fig. 5a of [14] has a flat-top
mainlobe with a beamwidth of 28.2◦ and a ripple of 0.38
dB, and the obtained sidelobe level (SLL) is −9.2 dB. Here
we try to reproduce this pattern with better performance by
simultaneously optimizing the rotation angles and phases of
a 21-element λ/2-spaced dipole array. In the proposed DDE-
based synthesis procedure, we set ΓSLL = ΓXPL = −12.5
dB for the desired maximum SLL and XPL, Np = 210
for the population size, δ = 0.8 for the mutation intensity,
Cr = 0.8 for the cross probability, and M = 3000 for
the maximum number of generations. The synthesized co-
and cross-polarized patterns as well as the original pattern
in [14] are shown in Fig. 2 of this paper. As can be seen,
the synthesized co-polarized pattern by the proposed method
has a slightly reduced mainlobe ripple (the current ripple
is 0.26 dB), narrower transition region, and much lower
sidelobe distribution. And the obtained maximum SLL and
XPL are −12.32 dB and −12.3 dB which are very close to the
specified value. It indicates that the proposed method by using
the element rotation and phase optimization has much more
degrees of freedom than the phase-only optimization and con-
sequently improves the shaped pattern synthesis performance.
The obtained dipole rotation angles and excitation phases are
listed in the left column of TABLE I. In addition, the dipole
array with the obtained rotation angles and excitation phases
is simulated using the full-wave simulation software HFSS.
The dipole modeled in the simulation has length of 48 mm
and diameter of 1 mm, working at the frequency of 3 GHz.
The simulation results are also depicted in Fig. 2. It can be
seen that they are generally in accordance with the synthesized
patterns except for some fluctuations (about ±0.5 dB) in the
mainlobe and a litter bit deviation in the sidelobe region. The
maximum SLL is almost unchanged and the maximum XPL
is increased to −11.73 dB from −12.3 dB when considering
mutual coupling.

B. Cosecant-squared pattern synthesis

In the second example, the effectiveness of the proposed
method is validated for synthesizing an asymmetric shaped
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Fig. 3. The synthesized and quantized co-polarized cosecant-squared patterns
and cross-polarized patterns by the proposed method, the pattern obtained by
the amplitude-phase joint optimization, and the result obtained in [17] for a
29-element unequally spaced linear array.

pattern. A cosecant-squared pattern which was produced in
[17] by using 29 nonuniform positions and phases is consid-
ered. For comparison, a 29-element dipole array with the same
element positions as shown in Fig. 10 of [17] is adopted, and
its rotation angles and phases are simultaneously re-optimized
by using the proposed method. We choose the cosecant-
squared function for the mainlobe region from ϕ = 95◦ to
ϕ = 83.5◦, and set ΓSLL = ΓXPL = −22 dB. The population
size is set as Np = 290, and other parameters are used as
in the first example. The synthesized co- and cross-polarized
patterns as well as the original pattern in Fig. 9 of [17]
are shown in Fig. 3 of this paper. In addition, the result by
using amplitude-phase joint optimization for the 29-element
unequally spaced array is also given in this example. It is
seen that the proposed method has almost the same mainlobe
shape but with narrower transition region and much better
sidelobe distribution. The amplitude-phase joint optimization
has the same co-polarization synthesis performance. However,
an amplitude dynamic range ratio of 2.15 is required in this
situation. The proposed method does not need to design un-
equal power dividers. The right column of TABLE I shows the
rotation angles and phases obtained by the proposed method.
In addition, we also check the effect on the array pattern if
both of the rotation angle and excitation phase implemented
in practice cannot reach their required accuracies given in
TABLE I. For example, suppose the achieved resolution of
the mechanical rotation angle is 3 degrees, and the realizable
phase quantization interval is 5.625 degrees. The obtained co-
and cross-polarization array patterns by such quantization are
also shown in Fig. 3. As can be seen, the co-polarized shaped
mainlobe remains almost the same, but the maximum SLL and
XPL increase by 1.07 dB and 0.33 dB, respectively, due to
the quantization. Nevertheless, such performance degradation
is usually acceptable in practice.

IV. CONCLUSION

A novel strategy for synthesizing shaped power patterns by
optimizing the element rotation angles and phases of dipole

TABLE I
THE ROTATION ANGLES AND EXCITATION PHASES BY THE PROPOSED

METHOD FOR THE FLAT-TOP AND COSECANT-SQUARED PATTERNS

Flat-top Pattern Cosecant-squared Pattern
n Rotation (◦) Phase (◦) Rotation (◦) Phase (◦)
1 -167.07 172.96 -95.15 214.61
2 -70.62 268.19 8.70 265.88
3 37.41 240.71 22.61 268.05
4 -11.92 224.26 -58.39 260.69
5 -5.78 208.56 35.60 261.20
6 8.17 182.04 -38.70 249.25
7 -3.29 169.53 57.29 253.63
8 0.13 132.86 -28.22 107.10
9 -178.71 290.60 9.10 111.77
10 -2.99 100.70 -14.64 97.14
11 0.22 108.84 -151.59 292.63
12 -1.74 119.77 163.33 290.81
13 0.21 163.42 -177.84 290.97
14 -11.98 189.36 6.33 114.21
15 4.93 199.08 -6.80 121.01
16 -14.72 217.82 -7.76 111.23
17 -5.62 253.84 3.94 135.41
18 -83.77 196.25 -3.96 140.56
19 141.75 147.01 -9.25 129.14
20 -111.42 172.81 20.67 167.35
21 96.78 206.76 -20.85 151.39
22 -20.38 157.05
23 35.18 179.24
24 -27.92 192.17
25 23.68 210.22
26 -23.16 202.10
27 -175.04 52.58
28 171.21 62.11
29 -5.56 264.76

array using DDE algorithm has been presented. Compared
with the phase-only optimization, the proposed strategy by
adding the element rotation technique has much more degrees
of freedom to improve the performance of the shaped power
pattern synthesis. In addition, this strategy eliminates the need
for multiple unequal power dividers and significantly reduces
the complexity of the feeding network design. One issue would
be the possibly increased XPL which can be controlled by the
DDE optimization with an appropriate fitness function. Two
examples for synthesizing flat-top and cosecant-squared power
patterns are provided, and the comparisons with the phase-only
optimization as well as the amplitude-phase joint optimization
are also given in the examples.

Finally, it should be noted that although the current for-
mulation is based on linear dipole-rotated array with analyt-
ical array pattern expression, the proposed idea capable of
synthesizing a shaped pattern by using element rotation and
phase optimization can be further extended to general array
geometry with arbitrary antenna element structure. In that
situation, vectorial element pattern should be obtained using
full-wave simulation or measurement. Further research on the
extension of the proposed idea is on the way.
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