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Abstract

This paper proposes a framework for the design of sparsely distributed output feedback discrete-time sliding mode
control (ODSMC) for interconnected systems. The major target here is to develop an observer based discrete-time sliding
mode controller employing a sparsely distributed control network structure in which local controllers exploit some other
sub-systems’ information as well as its own local information. As the local controllers/observers have access to some other
sub-systems’ states, the control performance will be improved and the applicability region will be widened compared to the
decentralised structure. As the first step, a stability condition is derived for the overall closed-loop system obtained from
applying ODSMC to the underlying interconnected system, by assuming a priori known structure for the control/observer
network. The developed LMI based controller design scheme provides the possibility to employ different information
patterns such as fully distributed, sparsely distributed and decentralised patterns. In the second step, we propose a
methodology to identify a sparse control/observer network structure with the least possible number of communication links
that satisfies the stability condition given in the first step. The boundedness of the obtained overall closed-loop system
is analysed and a bound is derived for the augmented system state which includes the closed-loop system state and the
switching function.

I. INTRODUCTION

The modern practical systems such as power distribution networks, water distribution systems, manufacturing systems,
biological systems, computer communication systems, irrigation systems and transportation systems can be considered as
large-scale interconnected dynamical systems, for which decentralised and distributed control schemes have been proposed.
Utilising a centralised control scheme in networked control systems (NCSs), which requires the central controller to have
access to the states of all subsystems’ plants, is not practical as it needs a larger and more costly control network. The main
idea behind the decentralised control scheme is to use only the local state information in order to control the subsystems
and thus there is no control network. This can be effective only when the interconnections between the subsystems are
not strong [1, 2]. When the interconnections are strong, utilising distributed control frameworks has been considered. In
this strategy, each subsystem can exploit local states as well as some of the other subsystems states. Hence, compared
to the decentralised control scheme, distributed control scheme can ensure the stability of large scale interconnected
systems in the presence of stronger subsystem interconnections [3]. Meantime, it also has less complexity and improved
computational aspects compared to the centralised control scheme. The idea of spatially distributed control systems is
implementable by using NCSs. In NCSs, local measurements are transferred among local controllers/observers using a
control network. Spatially distributed control systems have extensive applications such as electrical networks, factory
automation and transportation networks [4].

In interconnected systems, the structure of the distributed controller network is usually restricted due to a number of
factors such as implementation-related concerns and communication costs. This issue in distributed systems is also referred
to as information pattern, which means that, unlike traditional distributed control schemes in which all the involving
sub-controllers share the same information, the sub-controllers can share or receive different information [5]. Since the
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fully distributed controller structure is not always feasible, one may consider the design of distributed control systems
with imposing a priori constraints on communication network structure. Alternatively, another choice for the distributed
control systems is to design a control network with the minimum number of communication links while satisfying a global
control objective [4, 6]. Indeed, a trade off between the control performance and sparsity of the control network should
be considered [7, 8, 9]. Note that recently several work in the literature has focused on the design of sparsely distributed
controller/observer networks; see e.g. [4, 7]. Indeed, this is performed for minimising the overall cost of the control
network utilised to control the system. Assuming that the general cost, including the construction and data transferring costs
etc, are identical for all the links, minimising the costs of a control network can intuitively be considered as minimising
the number of communication links in the control network structure or equivalently finding the sparsest control network
structure satisfying the control objective.

Basically, to address network sparsification problems, one has to, in worst case, check all possible topologies, implying
an exhaustive search for a number of configurations that can grow exponentially with the number of communication links.
This is practically intractable and impossible to perform. As explained in [10], to avoid performing an exhaustive search, a
trade-off can be made either in the choice of the search strategy or in the choice of the selection criterion. Another alternative
to avoid solving a combinatorial problem is to consider a multi-objective problem of controller structure and control law
co-design by incorporating secondary cost functions which are convex approximations of the original `0-quasi-norms and
can promote sparsity of the distributed controller, into a main cost function, which represents a performance specification
of the closed-loop system [7, 11]. The reweighted `1 (REL1) norm algorithms can be further employed to identify the
sparse optimal feedback gain [7]. The weights (entries of the weighting matrix), in the REL1 algorithms, are updated at
each iteration using the solutions of the previous iteration.

One thread of the literature of sliding mode control (SMC) has focused on developing decentralised SMC for the
interconnected systems; see [12, 13, 14, 15] and the references therein. Nevertheless, the distributed SMC has received less
attention and hence it requires more investigations. The objective of this paper is to extend the idea of spatially distributed
control systems to the field of discrete-time SMC (DSMC) problems. This paper firstly explores the problem of designing a
sparse DSMC network with an arbitrary but fixed topology for a given networked system. A methodology is provided
to stabilise the underlying interconnected dynamics utilising a (sparsely) distributed controller/observer network. We
will show that the proposed observer-based DSMC has the ability to cover all the cases such as fully decentralised, fully
distributed, and sparsely distributed topologies. It is worth noting that exploiting a sparse structure for the control network,
which is a subset of dynamics structure, is crucial in the control system for large scale systems, for instance, the smart grids
[16]. The next arising problem is how to find a sparse control network structure that satisfies the control objective. One
may resort to find the sparsest control/observer structure that can stabilise the interconnected system. This issue has been
investigated in e.g. [7] in order to find the suboptimal controllers that minimise a special objective function considering the
sparsity of the feedback gain. However, this may result in a non-convex condition. Also, the authors of [4] have considered
the problem of finding the sparsest control/observer network that satisfies a set of stability conditions, obtained through a
Lyapunov direct scheme. In this paper, as the second step, we will search for a sparse control/observer network structure
with the least possible number of communication links satisfying the given stability condition. To this end, a heuristic
iterative algorithm will be proposed, distinguishing itself from a trial-and-error process which requires to check all the
possible structures.

Disturbance observer-based control strategies have been exploited in different fields in the literature; see e.g. [17]. The
authors of [18] have proposed to employ disturbance estimate in the DSMC rather than a discontinuous component. It is
also stated that this can reduce the boundary layer thickness. However, the DSMC in [18] is only applicable to the problems
whose system states are available and more importantly no unmatched uncertainty exists. The method in [19] exploits only
output information for discrete-time MIMO systems involving unmatched exogenous disturbances but without unmatched
uncertainties, by using the so-called proportional integral observer. The distributed output feedback DSMC (ODSMC),
presented in this paper, utilises a disturbance observer in order to deal with the influences of the exogenous disturbances on
the boundary layer thickness. This sparsely distributed ODSMC is designed by means of an LMI scheme.
In brief, the main contributions of this paper are on

• designing a sparse discrete-time sliding mode control (DSMC) network with an arbitrary but fixed topology for a
given networked system;

• providing a methodology for stabilising the underlying interconnected dynamics utilising a (sparsely) distributed
controller/observer network;

• searching for a sparse control/observer network structure with the least possible number of communication links
satisfying the given stability condition.

This paper includes the following major novel folds:

• In contrast to the current methods for the design of sparse feedback gains for NCSs in most existing literature
assuming all the system states are available, this paper proposes a sparse DSMC scheme to control the system by
directly employing the measured system outputs.
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• A general explicit framework for the design of sparse or structured feedback gains is developed which can address
the structured and sparse output feedback DSMC controller design problem for uncertain NCSs.

• The proposed observer-based DSMC has the ability to cover all the cases such as fully decentralised, fully distributed,
and sparsely distributed topologies.

• A method for exploring a sparse control/observer network structure with the least possible number of communication
links is proposed which can satisfy the given stability condition.

Notation: [Σi j]r×r is a block matrix with block entries Σi j, i = 1, · · · ,r, j = 1, · · · ,r. diag [Σii]
r
i=1 is a block-diagonal

matrix with block entries Σii, i = 1, · · · ,r. Moreover, col(νi(k))r
i=1 denotes a block-vector with block diagonal entries

νi(k), i = 1, · · · ,r. {◦} denotes an operator for Ξ = [ξi j]h×h in which ξi j ∈R and W = [Wi j]h×h in which Wi j ∈Rri×s j

such that Ξ ◦W = [ξi jWi j]h×h. ⊗ denotes the Kronecker product.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an interconnected system consisting of h sub-systems: xi(k+ 1) = [Gii +∆Gii(k)]xi(k)+Hi[ui(k)+ ξi(k)]+
h

∑
j=1, j 6=i

[Gi j +∆Gi j(k)]x j(k),

yi(k) =Cixi(k), i = 1, · · · ,h,

(1)

where xi ∈Rni , yi ∈Rpi and ui ∈Rmi are the state vector, output vector and control input vector of the i-th sub-system,
respectively. Without loss of generality, it is assumed that mi ≤ pi ≤ ni, rank(Bi) = mi, rank(Ci) = pi. The term ∆Gii(k)
denotes the uncertainty of i-th sub-system and ∑

h
j=1
j 6=i

Gi jx j(k), ∑
h
j=1
j 6=i

∆Gi j(k)x j(k) are, respectively, a known interconnection

and an uncertain interconnection of the i-th sub-system. We also assume

∆Gi j(k) = Ξi jΘi j(k)Λi j, (2)

where Ξi j and Λi j are known matrices and Θi j(k) is an unknown time varying matrix satisfying ΘT
i j(k)Θi j(k)≤ I. ξi(k)

is the matched external disturbances of the i-th sub-system with a known bound.

Remark 1. It is worth noting that the assumption on the norm boundedness of ξi(k) is a very common assumption
in several fields of control theory, especially SMC. Alternatively, the assumption that the disturbance is given by an
additive random noise with (partially) known probability density function (pdf) can be made. However, in many real cases
disturbance may not be of the very random nature. An interesting approach, which has progressively been employed in the
literature, is set membership or unknown but bounded (UBB) error description [20].

In order to make the problem closer to practical cases and improve the generality of the controller synthesis problem,
we consider mismatched uncertainties, i.e., ∆Gii and ∆Gi j as shown in the system (1).

Define
x(k) := col(xi(k))h

i=1, u(k) := col(ui(k))h
i=1,

y(k) := col(yi(k))h
i=1, ξ (k) := col(ξi(k))h

i=1,
(3)

and
G := [Gi j]h×h, ∆G(k) := [∆Gi j(k)]h×h,

H := diag[Hi]
h
i=1, C := diag[Ci]

h
i=1.

(4)

Also, the uncertainty matrix for overall system can be rearranged as:

∆G(k) =

h

∑
i=1

ΞiΘi(k)Λi, (5)

in which

Ξi =(ei⊗ I)
[
Ξi1 · · · Ξih

]
,

Θi(k) =diag(Θi1(k), · · · ,Θih(k)),

Λi =diag(Λi1, · · · ,Λih),

with ei denoting the canonical basis of Rh and ⊗ being the Kronecker product. Using (1), (3) and (4), the system in (1) at
the network level can be written as:{

x(k+ 1) = [G+∆G(k)]x(k)+H[u(k)+ ξ (k)]
y(k) =Cx(k).

(6)
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i. Preliminaries

Definition 1. A matrix whose elements are either 0 or 1 is said to be a structure matrix. Let Λ = [Λi j]m×n be a block
matrix with Λi j ∈Rai×b j , then the structure matrix of Λ is obtained as S(Λ) , [γi j]m×n with

γi j =

{
0 if Λi j = 0, i 6= j,
1 otherwise.

Definition 2. Two matrices Λ1 and Λ2 are structurally the same if S(Λ1) = S(Λ2).

Definition 3. The matrix Λ1 with S(Λ1) , [γ1
i j]m×n is structurally a subset of Λ2 with S(Λ2) , [γ2

i j]m×n if γ2
i j− γ1

i j ≥ 0.
We denote this as S(Λ1) ⊆ S(Λ2).

Lemma 1. Consider

0 <W =

[
diag[W̄i]

h
i=1 diag[Ŵi]

h
i=1

diag[Ŵi]
hT
i=1 diag[W̃i]

h
i=1

]
∈R(m+n)×(m+n),

with W̄i ∈Rni×ni , W̃i ∈Rmi×mi , Ŵi ∈Rni×mi . We have

S(W ) = S(W−1).

Proof. This lemma can easily be proved by applying the block matrix inverse formula.

Lemma 2. Consider the matrix 0 <W ∈R(m+n)×(m+n) given in Lemma 1 and let Γ be a known structure matrix. For any
Y =

[
Y1
Y2

]
, where Y1 ∈Rn×p and Y2 ∈Rm×p, while

[
J1
J2

]
=W−1Y and S(Y1) ⊆ Γ, S(Y2) ⊆ Γ, we have

S(J1) ⊆ Γ,

S(J2) ⊆ Γ.

Proof. Due to the simplicity, we omit the proof here.

Although the proofs of Lemmas 1, 2 are straightforward, these lemmas can be applied to relax the structure limitation
from block diagonal to S(W ), which tolerates the off-diagonal blocks given that they are also in block diagonal forms. To
the best knowledge of the authors, these lemmas are new in literature.

Definition 4. The overall system (6) is said to be structurally controllable with respect to the structure matrix Γ = [γi j]h×h
if there exists K = [Ki j]h×h with S(K) ⊆ Γ such that the modes of G−HK are arbitrarily assignable.

Definition 5. The overall system (6) is said to be structurally observable with respect to the structure matrix Γ = [γi j]h×h
if there exists L = [Li j]h×h with S(L) ⊆ Γ such that the modes of Γ ◦G−LC are arbitrarily assignable, where Γ ◦G =
[γi jGi j]h×h.

Assumption 1. The matrix triple (G, H, C) in (6) is structurally controllable and observable with respect to the given
structure matrix Γ = [γi j]h×h.

Assumption 2 ([19]). The matrices G, H and C in the system (6) and the structure matrix Γ satisfy

rank
([

Γ ◦G− In H
C 0

])
= n+m.

Note that the above assumption is equivalent to not having transmission zero at 1.

Assumption 3. The exogenous disturbance ξi(k) in the i-th sub-system in (1) satisfies the Lipschitz continuity condition:∥∥∥ξ̃i(k)
∥∥∥≤ L̃iTs, ∀k ≥ 0, (7)

where ξ̃i(k) = ξi(k)−ξi(k−1), L̃i > 0 denotes the Lipschitz constant and Ts is the sampling time.

The above assumption is a usual assumption in the control theory literature, specifically when using the disturbance
estimate in the control law is the case; see [18]. We assume that L̃i is a small scalar. For this reason, we assume that the
sampling rate of the discrete signal processing system is large enough compared to the maximum frequency component of
the exogenous disturbance ξi(k).
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ii. State and disturbance observer

In this paper, the estimation scheme below is proposed to provide the i-th local controller with the system state information
and disturbance estimate,

x̂i(k+ 1) = Giix̂i(k)+Hiui(k)+
j=h

∑
j=1, j 6=i

γi jGi j x̂ j(k)+
j=h

∑
j=1

γi jLi j[y j(k)− ŷ j(k)]+Hiξ̂i(k)

ξ̂i(k+ 1) = ξ̂i(k)+
j=h

∑
j=1

γi jDi j[y j(k)− ŷ j(k)]

ŷi(k) =Cix̂i(k),

(8)

where x̂i(k) ∈Rni is the state estimate of the i-th sub-system in (1), ŷi(k) ∈Rpi is the observer output, Li j ∈Rni×p j and
Di j ∈Rmi×p j are local observer gains if i = j and coupling observer gains if i 6= j for the state and disturbance respectively.
Here γi j denotes the availability of communication links among subsystems in the controller and observer design, that is,
γi j = 1 if i j-th link exists in the control/observer network and γi j = 0 otherwise. Then the overall estimator is

x̂(k+ 1) = Γ ◦Gx̂(k)+Hu(k)+Ls[y(k)− ŷ(k)]+Hξ̂ (k)
ξ̂ (k+ 1) = ξ̂ (k)+Ds[y(k)− ŷ(k)]
ŷ(k) =Cx̂(k),

(9)

where Ls := Γ ◦L with L = [Li j]h×h, Ds := Γ ◦D with D = [Di j]h×h and Γ = [γi j]h×h.

III. SPATIALLY DECENTRALISED SLIDING MODE CONTROL

The goal of this paper is to determine an appropriate decentralised sliding surface as:

S := {x(k)|σ(k) , Sx(k) = 0}, (10)

where σ := col(σi)h
i=1 and S := diag[Si]hi=1 is a block diagonal matrix which will be designed in the sequel of this section

such that SH is invertible, and a distributed control law which depends only on the system outputs such that:

• in the absence of external matched disturbance (ξ = 0) and in the presence of mismatched uncertainty (∆G), an ideal
sliding motion is achieved in finite time;

• in the presence of external matched disturbance and mismatched uncertainty, the harmful influence of the matched
disturbance is minimised and an appropriate bounded motion around the ideal decentralised sliding surface S is
maintained.

One may obtain from (6) and (10) that

σ(k+ 1) = S[G+∆G]x(k)+ SH[u(k)+ ξ (k)]. (11)

Remark 2. Notice that since the sliding function σ(·) will not be used in the variable structure discontinuous component
of the ODSMC, the decentralised sliding surface is not required to be designed by utilising known information of the
system. Instead, it is only required to be ensured that the system state trajectories are driven into a boundary layer about
the decentralised sliding surface and be kept there thereafter. This is the key feature of the ODSMC presented in this paper
for NCSs. This can also lead to a considerable extension to the applicable region of the framework given in this paper
compared to the existing literature for the continuous-time counterpart. The same manner can be seen in [21] for the static
ODSMC.

The distributed controller is assumed to have the following form:

ui(k) = −(SiHi)
−1[(SiGii−ΦiSi)x̂i(k)+ Si

j=h

∑
j=1, j 6=i

γi jGi j x̂ j(k)]− ξ̂i(k), (12)

where Φi ∈Rmi×mi is a stable matrix and aims to govern the state convergence rate. Here, similar to [22], it is assumed
that Φi = λiImi , where 0≤ λi < 1 is a given constant value. The control law ui(k) in (12) can be written as

ui(k) = −(SiHi)
−1Si[G

λi
ii x̂i(k)+

j=h

∑
j=1, j 6=i

γi jGi j x̂ j(k)]− ξ̂i(k), (13)

5



Running title •May 2016 • Vol. XXI, No. 1

where Gλi
ii = Gii−λiIni . Then the compact control law is

u(k) = −(SH)−1S(Γ ◦Gλ )x̂(k)− ξ̂ (k), (14)

where Gλ = G−diag[λiIni ]
h
i=1. It is worth mentioning that, referring to e.g. [21, 18, 19], the DSMC does not necessarily

require switching component and the linear part in (14) leads to a boundary layer with thickness O(Ts). As discussed
in [19], by exploiting a proper sampling period in the digital processing system along with a disturbance observer in
the discrete-time sliding mode control design, rather than conventional discontinuous components, the boundary layer
thickness can be reduced to O(T 2

s ). Note also that in a previously published paper [23], we have discussed and compared
different choices that can be used rather than a discontinuous component in DSMC. As the major focus of this paper is
on the design of sparsely distributed DSMC, we use only the choice of disturbance estimate in the control law without
any further discussion on other possible choices. We however encourage the readers to see [23]. Moreover, the controller
in (14) is indeed based on the equivalent control, by removing unknown uncertainty terms and taking into account the
structure constraint. The removed terms can be taken care of by robust control techniques.

Remark 3. Employing different structure matrices Γ in the controller/observer in (14), (9), one can design different control

network topologies. By letting γi j =

{
1 if i = j
0 otherwise

, the decentralised control strategy will be obtained, i.e. no control

network is required in the system. Additionally, if we set Γ = S(A) a fully distributed control system is derived, where
each local controller exploits the states of all other physically coupled subsystems in addition to its own state. Lastly, any
other arbitrary structure matrix Γ ⊆S (G) would give a middle-of-the-road solution, between fully distributed control
approaches and decentralised ones, referred to as sparsely distributed control systems.

Define the overall state estimation error as

e(k) := x(k)− x̂(k), (15)

and disturbance estimation error as
eξ (k) := ξ (k)− ξ̂ (k). (16)

Applying the controller (14) to (6) and using (15), (16) and (9), the overall closed-loop system is obtained as follows:{
x(k+ 1) = (G+∆G− Ĝ)x(k)+H(SH)−1S [ Γ◦Gλ H ]et(k)
et(k+ 1) =

[
G+∆G−Γ◦G

0

]
x(k)+ (Gt −LtCt)et(k)+ ξ̄ (k+ 1),

(17)

where Ĝ = H(SH)−1S(Γ ◦Gλ ), ξ̄ (k+ 1) =
[

0
ξ̃ (k+1)

]
with ξ̃ (k) = col(ξ̃i(k))h

i=1, et(k) =
[

e(k)
eξ (k)

]
, Gt =

[Γ◦G H
0 Im

]
with

m = ∑
h
i=1 mi, Lt =

[
Ls
Ds

]
and Ct = [C 0 ].

Lemma 3 ([19]). If the matrix pair (Γ ◦G, C) is observable and (Γ ◦G, H, C) satisfies the rank condition in Assumption 2,
then the matrix pair (Gt , Ct ) is observable.

Also, it can simply be found that

σ(k+ 1) =S(∆G+G−Γ ◦Gλ )x(k)+ S [ Γ◦Gλ H ]et(k). (18)

IV. STABILITY ANALYSIS

Continuous time SMC can ensure the robustness of the closed-loop system against matched disturbances and uncertainties,
i.e. if the SMC is designed appropriately, the sliding motion when constrained to the switching surface is fully insensitive
to matched uncertainty. However, it has been shown that its discrete time counterpart can only ensure the state trajectories
to be driven into a boundary layer around the ideal sliding surface σ(k) = 0 [21]. This phenomenon is referred to as quasi
sliding mode (QSM) in the related literature. This is because the control command in discrete time control systems is held
constant during the sample period. As a result, switching at infinite frequency is not possible, and thus, the invariance
properties of continuous time SMC cannot be repeated in discrete time cases. The theorem below analyses simultaneously
the reachabiltiy of QSM and the stability of the system states. For this purpose, we temporarily neglect the exogenous
disturbance in the system, and only analyse the stability of the overall system, albeit with a priori known structure matrix Γ.
We later characterise the boundedness of the overall closed-loop system states and sliding function’s boundary layer in
Theorem 2 in the sequel of this section. Moreover, it is worth noting that, since Theorem 2 will use the cross terms between
the system state (sliding function) and the component ξ̄ (k+ 1), the proof of Theorem 1 is started more generally (i.e.
ξ 6= 0 and ξ̂ 6= 0). This would help us to avoid unnecessary repetition of the technical manipulations. Letting ξ (k) = 0,
ξ̃ (k) = 0, and thus, ξ̄ (k+ 1) = 0, we then derive an LMI sufficient condition while ensuring the stability of the overall
closed loop system. The achieved LMI is employed for the control/observer synthesis purposes.
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Theorem 1. In the absence of exogenous disturbance, i.e. ξ (k) = 0, the linear part of the control law (14) can steer the
system state onto the ideal sliding surface (10), and the system state is stabilised, if there exist matrices P = diag[Pi]hi=1,

with 0 < Pi :=UT
i
[Pi11 0

0 Pi22

]
Ui, Pi ∈Rni×ni , Q =

[
diag[Q̄i]

h
i=1 diag[Q̂i]

h
i=1

diag[Q̂i]
hT
i=1 diag[Q̃i]

h
i=1

]
> 0, with Q̄i ∈Rni×ni , Q̃i ∈Rmi×mi , Q̂i ∈Rni×mi ,

X1, X2 and X3 =
[

Γ◦XL
Γ◦XD

]
, with XL ∈Rn×p, XD ∈Rm×p, and scalars εi j > 0, i = 1, · · · ,h, j = 1, · · · ,h, and ρ > 0 satisfying

the following LMI:

χ̌11 ? ? ? ? ? ? · · · ?

0 χ̄22 ? ? ? ? ? · · · ?√
2HT P(G−Γ ◦Gλ )

√
2HT P [ Γ◦Gλ H ] −HT PH ? ? ? ? · · · ?

Q
[

G−Γ◦G
0

]
QGt −X3Ct 0 −Q ? ? ? · · · ?

PG+HX1 0 0 0 −P ? ? · · · ?

HX2 0 0 0 0 −P ? · · · ?

0 0
√

2ΞT
1 PH [ΞT

1 0 ]Q ΞT
1 P 0 −Υ1 · · · ?

...
...

...
...

...
...

...
. . .

...
0 0

√
2ΞT

h PH [ΞT
h 0 ]Q ΞT

h P 0 0 · · · −Υh


< 0, (19)

where 0 < Pi11 ∈Rmi×mi , 0 < Pi22 ∈R(ni−mi)×(ni−mi) and Ui ∈Rni×ni is defined in Lemma 5 in [24], χ̌11 =−P+XT
2 HT +

HX2 + ρI +∑
h
i=1 ΥiΛT

i Λi, with Υi = diag[εi jIn j ]
h
j=1, χ̄22 = −Q+ ρI, Γ = [γi j]h×h is a given structure matrix and {?}

denotes the symmetric elements in a symmetric matrix. Here S = HT P and the observer gain is

Lt = Q−1X3. (20)

Proof. Define

V (ζ (k)) =xT (k)Px(k)+ eT
t (k)Qet(k)+σ

T (k)(SH)−1
σ(k), (21)

where ζ (k) = [ xT (k) eT
t (k) σT (k) ]T , P > 0 and Q > 0 are symmetric matrices and S = HT P. Note that the inclusion of both

state x(k) and sliding function σ(k) in the Lyapunov candidate function makes it possible to analyse simultaneously the
reachabiltiy of QSM as well as the boundedness of the system state and sliding function, as will be seen later in the proof
of Theorem 2. Defining

ϖ =
[
xT (k) eT

t (k) ξ̄ (k+ 1)
]T ,

it can be written

∆V (ζ (k)),V (ζ (k+ 1))−V (ζ (k)) (22)

=ϖ
T (k) [χi j]3×3 ϖ(k).

where
χ11 =(G+∆G)T P(G+∆G)− (G+∆G)T PH(HT PH)−1HT P(G+∆G)

−PH(HT PH)−1HT P−P+ 2(∆G+G−Γ ◦Gλ )
T PH(HT PH)−1

×HT P(∆G+G−Γ ◦Gλ )+

[
∆G+G−Γ ◦Gλ

0

]T

Q
[

∆G+G−Γ ◦Gλ

0

]
,

χ12 =2(∆G+G−Γ ◦Gλ )
T PH(HT PH)−1HT P

[
Γ ◦Gλ H

]
+

[
∆G+G−Γ ◦Gλ

0

]T

Q(Gt −LtCt),

χ13 =

[
∆G+G−Γ ◦Gλ

0

]T

Q,

χ22 =2
[
Γ ◦Gλ H

]T ST (SH)−1S
[
Γ ◦Gλ B

]
+(Gt −LtCt)

T Q(Gt −LtCt)−Q,

χ23 =(Gt −LtCt)
T Q,

χ33 =Q.

Now, in order to analyse the system stability let ξ̄ (k+ 1) = 0. The system will be stable if

Ξ := [χi j]2×2 <−ρI, (23)

7
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where ρ > 0 is a scalar variable. To consider the feasibility of (23), by the Schur complement, (23) is equivalent to
χ̄11 ? ? ?

0 χ̄22 ? ?√
2HT P(G+∆G−Γ ◦G)

√
2HT P [ Γ◦Gλ H ] −HT PH ?

Q
[

G+∆G−Γ◦G
0

]
Q(Gt −LtCt) 0 −Q

< 0, (24)

where
χ̄11 =(G+∆G)T P(G+∆G)− (G+∆G)T ST (SH)−1S(G+∆G)

−ST (SH)−1S−P+ρI,

χ̄22 =−Q+ρI.

Consequently, Lemma 2.1 in [25] can be used to show that the feasibility of (24) is equivalent to that of[
χ̂11 · · ·

...
. . .

]
< 0, (25)

with

χ̂11 =(G+∆G+HF1)
T P(G+∆G+HF1)−P

+FT
2 (HT PH)F2 +FT

2 HT P+PHF2 +ρI, (26)

where F1 and F2 are auxiliary variables [26] and note that except χ̂11, other elements of (25) are the same as those in (24).
Therefore, using Lemma 5 in [24], χ̂11 in (26) can be rearranged as

χ̂11 =[P(G+∆G)+HZF1]
T P−1[P(G+∆G)+HZF1]−P

+FT
2 ZT HT P−1HZF2 +FT

2 ZT HT +HZF2 +ρI, (27)

where Z satisfies PH = HZ. Defining X1 = ZF1, X2 = ZF2 and X3 = QLt , with the help of the Schur complement and
Lemma 1 in [24], it can be seen that (25) is sufficed by the LMI in (19).

Remark 4. The LMI condition (19), used to obtain the controller parameters, is derived using a lossless technique in
Lemma 2.1 of [25], leading to a less conservative stability condition compared to the current literature which uses trivial
inequalities to make a convex platform for the controller synthesis. However, it is worth noting that the block diagonal
structure of the symmetric positive definite matrix P, required to (i) form a decentralised sliding surface (i.e. S = HT P),
and (ii) satisfies PH = HZ, as well as the certain structure of the symmetric positive definite matrix variable Q, necessary
to keep the structure of the state and disturbance observer gains same as the structure matrix Γ, can potentially introduce
conservatism to the problem. Other non-convex or convex approaches may be proposed in future that is less conservative.

The following theorem aims to characterise the boundedness of the obtained overall closed-loop system state and
corresponding decentralised sliding function in the presence of disturbance ξ (k).

Theorem 2. In the presence of disturbance ξ (k), if the LMI in (19) is feasible, for the obtained P, Q, Lt = Q−1X3 and ρ ,
the controller (14) satisfying (7) leads to a bound on the augmented system state ζ (k) = [xT (k),eT

t (k),σ
T (k)]T as follows:

∀ς > 0, ∃k? > 0, s.t. ∀k > k?, ‖ζ (k)‖2 ≤ λmax(M)

ρ̂λ1
δ + ς , (28)

where λ1 = λmin(diag(P,Q, (HT PH)−1)), M= diag(MP,Q), MP =PH(HT PH)−1HT P+P, and δ = ‖Π+Q‖∑
h
i=1 L̃2

i T 2
s ;

here the scalar variable ρ̂ > 0 and matrix variable Π > 0 are obtained from solving the following LMI:

Ω1 ? ? ? · · · ?

0 (ρ̂−ρ)I ? ? · · · ?

χ̄T
13 χT

23 −Π ? · · · ?

0 0 [ΞT
1 0 ]Q −Ῡ1 · · · ?

...
...

...
...

. . .
...

0 0 [ΞT
h 0 ]Q 0 · · · −Ῡh


< 0, (29)

where χ̄13 =
[

G−Γ◦Gλ

0

]T
Q, χ23 = (Gt − LtCt)T Q, Ω1 = (ρ̂ − ρ)I +∑

h
i=1 ῩiΛT

i Λi and Ῡi = diag[ε̄i jIn j ]
h
j=1 in which

ε̄i j > 0, i = 1, · · · ,h, j = 1, · · · ,h are scalar variables.

8
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Proof. Defining
ν(k) =

[
xT (k) eT

t (k)
]T ,

χv =
[
χT

13 χT
23
]T ,

and according to Lemma 4 in [27] it can be written that

2ν
T (k)χvξ̄ (k+ 1) ≤ν

T (k)χvΠ−1
χ

T
v ν(k)+ ξ̄

T (k+ 1)Πξ̄ (k+ 1), (30)

where Π > 0 is of appropriate dimension. It follows from (22), (23) and (30) that

∆V (ζ (k))≤−ν
T (k)[ρI−χvΠ−1

χ
T
v ]ν(k)+ ξ̄

T (k+ 1)[χ33 +Π]ξ̄ (k+ 1). (31)

If we choose Π > 0 such that
ρ̂I < ρI−χvΠ−1

χ
T
v , (32)

where ρ > ρ̂ > 0, which is always possible if ρ > 0 exists, then, it follows from (31) that

∆V (ζ (k))≤− ρ̂ν
T (k)ν(k)+ ξ̄

T (k+ 1)[χ33 +Π]ξ̄ (k+ 1). (33)

Moreover, note that
V (ζ (k)) =ν

T (k)Mν(k), (34)

where M = diag(MP,Q), and MP = PH(HT PH)−1HT P+P, hence,

λmin(M)‖ν(k)‖2 ≤V (ζ (k))≤ λmax(M)‖ν(k)‖2 . (35)

Additionally, it is known that
λ1 ‖ζ (k)‖2 ≤V (ζ (k))≤ λ2 ‖ζ (k)‖2 . (36)

where λ1 = λmin(diag(P,Q, (HT PH)−1)) and λ2 = λmax(diag (P,Q, (HT PH)−1)). Hence, from (33) and (35) one can
derive that

∆V (ζ (k))≤− ρ̂

λmax(M)
V (ζ (k))+ δ , (37)

where δ = ‖Π+Q‖∑
h
i=1 L̃2

i T 2
s . Moreover, from (23) it can simply be written that ∀ ν(k) 6= 0

ν
T (k)Ξν(k) =V (ζ (k+ 1))

∣∣
ξ̄ (k+1)=0−V (ζ (k))

<−ρν
T (k)ν(k). (38)

It is known that V (ζ (k+ 1))
∣∣
ξ̄ (k+1)=0 ≥ 0, and thus, from (38) and (35), it can be claimed that ρ < λmax(M). Therefore,

ρ̂

λmax(M)
< 1. Finally, from [28] (Theorem 5.1, Corollaries 5.1, 5.2) and (37), one can find the bound given in (28). Moreover,

to find Π > 0 in (32), for given P > 0, Q > 0, Lt = Q−1X3 and ρ > 0, by using Lemma 1 in [24], we can show that (32) is
sufficed by the LMI in (29).

As seen in the proposed sparse distributed ODSMC, local controllers/observers are able to utilise some interconnections
in the nominal G matrix, and the remaining interconnections in G matrix together with ∆G are considered as the uncertainties
of the overall system. The second step of this paper will consider the issue of minimising the costs of a control/observer
network utilised for the stabilising distributed ODSMC. This will be the subject of the next section.

Remark 5. It is easy to realise from Lemma 1 and 2 that S(Q−1) = S(Q), and thus S(Ls) ⊆ Γ, S(Ds) ⊆ Γ.

V. IDENTIFYING THE MOST SPARSE STABILISING CONTROL NETWORK

The previous section has developed an LMI based framework for the design of distributed ODSMC for NCSs while
assuming a priori known structural constraint on communication requirements between sub-systems. This section aims to
design a control network with the minimum number of links that satisfies the stability condition (19). Note that the main
reason that we consider network sparsification problem here is the minimisation of the cost of the control network utilised
to stabilise the system. As it is assumed that the general costs, including the construction and data transferring costs etc, are
identical for all the links, minimising the costs of a control network can intuitively be considered as minimising the number

9
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of communication links in the control network structure or equivalently finding the sparsest control network structure that
can stabilise the system. We formulate this problem as

min
P,Q,X1,X2,X3,ρ ,Υ1,··· ,Υh

card(Γ) (39)

subject to (19) and Γ ⊆ S(G),

where Γ = [γi j]h×h and card(·) denotes the cardinality function (the number of nonzero elements of a matrix). The above
optimisation problem is a convex mixed-binary problem which is broadly speaking NP-hard. A number of exact schemes
for addressing the convex mixed-binary programs are considered [29]. However, exact schemes require an exhaustive
search whose computation time grows faster than polynomial, as the number of communication links increases. In our case,
in the worst case, one should solve 2N convex problems, where N denotes the number of physical interconnections in the
plant network, to achieve the exact solution. Instead, in this paper, a heuristic sub-optimal scheme is proposed that is able
to successively deal with this problem.

As explained in [10], to avoid performing an exhaustive search, a trade-off can be made either in the choice of the
search strategy or in the choice of the selection criterion. Another alternative to avoid solving a combinatorial problem is
to consider a multi-objective problem of controller structure and control law co-design by incorporating secondary cost
functions which are convex approximations of the original `0-quasi-norms and can promote sparsity of the distributed
controller, into a main cost function, which represents a performance specification of the closed-loop system [7, 11]. The
reweighted `1 (REL1) norm algorithms can be further employed to identify the sparse optimal feedback gain [7]. The
weights (entries of the weighting matrix), in the REL1 algorithms are updated at each iteration based on the solutions of the
previous iteration. It should be emphasised that the existing reweighted algorithms cannot be employed to address the
optimisation problem in (39), as they cannot handle binary matrix variable.
In this paper, in order to identify a control network with the minimum number of links that satisfies the stability condition
(19), we propose an algorithm presented below. Note that in this algorithm, we relax the constraint on γi j, i 6= j from binary
variables to the constraint 0≤ γi j ≤ 1.

Algorithm 1.

1) Set Γ = I. If the LMI feasibility problem in (19) is feasible with respect to P > 0,Q > 0,X1,X2,X3,ρ > 0,Υ1 >

0, · · · ,Υh > 0, {γ?i j}← {γi j}, no control network is required and the sparsest structure is the decentralised structure.
Terminate the search and go to Step 6.

2) Initialise Γ = S(G) and s = 1, in which s denotes the iteration number.

3) Solve the LMI feasibility problem in (19) to find P > 0,Q > 0,X1,X2,X3,ρ > 0,Υ1 > 0, · · · ,Υh > 0. If it is feasible,
{γ?i j}← {γi j}. Otherwise, if s = 1 terminate the search and the problem has no solution, or else go to Step 6.

4) With known P,Q,X1,X2,X3,ρ ,Υ1, · · · ,Υh and replacing those entries γi j = 1, i 6= j with the relaxed constraints
0≤ γi j ≤ 1, minimise ∑

h
i, j=1, i6= j γi j subject to the LMI (19) and 0≤ γi j ≤ 1 to find the relaxed γr

i j. Sort the set {γr
i j}

in ascending order.

5) Set γi j corresponding to the first entry of {γr
i j} to zero and s = s+ 1. If s < Card(S(G))− n, return to Step 3,

otherwise go to Step 6.

6) Return γ?i j.

In the above algorithm, Step 4 characterises the contribution of each link in the stability of the overall system. Moreover,
as seen, the algorithm searches for the sparsest structure using the sorted set {γr

i j}. In the worst case, in order to find the
solution, 2 (Card(S(G))−n) convex problems may be addressed. Finally, it should be stressed that this alternate scheme
is only a sub-optimal method to deal with the sparsification problem considered in this section. Broadly speaking, to obtain
the optimal solution, one should solve the original mixed-binary convex problem in (39), which is NP-hard.

VI. NUMERICAL EXAMPLES

In order to evaluate the proposed theory, three numerical examples are given in this section. In order to evaluate the
proposed theory, two numerical examples are given in this section. In the first example, which is from the reference [4], the
underlying interconnected system consists of three inverted pendulums that are mounted on coupled carts. It is shown
that the control network topolgy with the minimum number of communication links that can stabilise this system is the
decentralised structure, i.e. the local controllers does not need to receive other subsystems’ information. We consider a
second example to analyse the cases that the decentralised structure is not stabilising, and thereby evaluate the performance
of Algorithm 1 proposed to sparsify the control network. We used YALMIP [30] as the interface in Matlab, as well as
SDPT3 [31] as the LMI solver to solve the LMI feasibility problems.

10
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Figure 1: Three coupled inverted pendulums system

i. Example 1

Consider an interconnected system consisting of three inverted pendulums that are mounted on coupled carts [4, 32], shown
in Fig. 1. The linearised equations of motions are [4]:

Milθ̈i = (Mi +m)gθi + ciẋi +

h

∑
j=1, j 6=i

[bi j(ẋi− ẋ j)+ ki j(xi−x j)]−ui,

Miẍi = −ciẋi−
h

∑
j=1, j 6=i

[bi j(ẋi− ẋ j)+ ki j(xi−x j)]−mgθi + ui,

(40)

where ki j = k ji, bi j = b ji, ci and l are spring, damper, friction coefficients, and pendulum length, respectively. Here, it is
assumed that the moment of inertia of the pendulums is zero. Define xi = [xi,1,xi,2,xi,3,xi,4]T = [θi, θ̇i,xi, ẋi]T , and now the
system in (40) is rearranged as an interconnected state space in continuous-time with the system matrices as below:

Aii =


0 1 0 0

Mi+m
Mil

g 0 ki
Mil

ci+bi
Mil

0 0 0 1
−m
Mi

g 0 −ki
Mi

−ci−bi
Mil

 , Ai j =


0 0 0 0
0 0 −ki j

Mil
−bi j
Mil

0 0 0 0
0 0 ki j

Mi

bi j
Mi


Bi =

[
0 −1

Mil
0 1

Mi

]T
, Ci =

[
1 0 0 0
0 0 1 0

]
,

for (i, j) ∈ E , {(1,2), (2,1), (2,3), (3,2)}. Here ki = ∑ j∈Ji ki j and bi = ∑ j∈Ji bi j, where Ji := { j | (i, j) ∈ E}. The
numerical system parameters are assumed as M1 = 2, M2 = 1, M3 = 3, m = 0.5, g = 10, l = 0.5, k12 = k21 = 5, k23 =
k32 = 15, b12 = b21 = 1, b23 = b32 = 5, c1 = 4, c2 = 2 and c3 = 1. A discretised representation based on a sample
interval of 0.005 s is obtained. We set λi = 0.7. In order to check the robustness properties of the controller, the following
uncertainty parameters are considered: Ξi j = 0.01×14×1, Λi j = −0.01×11×4, i, j = 1,2,3. Algorithm 1 is solved and
then it is found that the most sparse structure that can satisfy the rank condition in Assumption 2 and, more importantly, the
stability condition in the LMI (19) is the decentralised structure. For comparison, we then exploit an exhaustive search on
the binary variables, followed by convex optimisation of other variables, and the obtained structure is also the decentralised
one. We can see that the proposed sub-optimal algorithm leads to the same result as the optimal solution.

11
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ii. Example 2

Consider the system (1) with the following parameters:

G =



0 0.2 0 0.2 −0.1 0.2 0
−0.3 1.45 0.3 −0.1 0 0.03 0
0.3 0 0.4 −0.2 0.2 −0.1 0
−0.03 0.1 0.1 0.05 0.2 0 0.2

0 0.1 0.05 0 1.3 0.1 −0.1
0 0.2 0.1 0 0 0.1 −0.3
0 −0.2 0.2 −0.2 0 0 1.1


,

H =



1 0 0 0
0 0.5 0 0
2 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 2


, C =


−10 2 1 0 0 0 0

1 −3 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 −2 1 0 0
0 0 0 0 0 2 1

 ,

Ξ11 =

 0.1
0.02
0.1

 , Ξ12 =

 0.1
−0.1

0

 , Ξ13 =

 0.01
0

−0.01

 , Ξ21 =

[
0.1
0.2

]
, Ξ22 =

[
0
−0.2

]
,

Ξ23 =

[
−0.01

0

]
, Ξ31 =

[
0.2
−0.01

]
, Ξ32 =

[
−0.01

0

]
, Ξ33 =

[
0.1
0.2

]
,

ΛT
11 =

 0.1
0.1
−0.1

 , ΛT
21 =

0.08
0.1
0.1

 , ΛT
31 =

 0.01
−0.02

0

 , ΛT
12 =

[
0.05

0

]
, ΛT

22 =

[
0.05
0.2

]
,

ΛT
32 =

[
0

0.03

]
, ΛT

13 =

[
0.01
0.2

]
, ΛT

23 =

[
−0.1
0.2

]
, ΛT

33 =

[
−0.02

0

]
,

Θi j(k) = 0.5sin(k), λ = 0.8.

All three open-loop subsystems are unstable. Suppose

ξ (k) =
[
0.1sin( k

4 )cos( k
12 ), 0.07sin( k

5 ), 0.1cos( k
5 )sin2( k

9 ), 0.05sin( k
8 )cos2( k

9 )
]T

.

Solving the LMI feasibility problem in (19), by assuming a fully distributed structure for the control network; i.e.
Γ = S(G), we obtain

S =


0.0503 −0.0331 0.1005 0 0 0 0
−0.0033 0.0276 −0.0066 0 0 0 0

0 0 0 0.0466 0.0466 0 0
0 0 0 0 0 0.0768 0.0829

 ,

L =



−0.0991 −0.1359 0.0832 −0.0411 0.0466
−0.1752 −0.7749 −0.1106 0.0314 0.0526
−0.2725 −0.2341 0.3745 0.3325 −0.0075
−0.0331 −0.0892 1.3070 0.5230 0.1154
−0.0342 −0.1026 3.8072 1.8234 −0.0135
−0.0496 −0.1109 −0.1630 −0.0545 0.0914
−0.0312 0.0566 −0.5126 −0.1075 0.9784


,

D =


−0.0759 −0.0484 0.0826 0.0537 −0.0040
0.0009 −0.1370 −0.0544 −0.0256 −0.0021
−0.0060 −0.0172 0.7952 0.2834 0.0039
−0.0083 0.0043 −0.1712 −0.0637 0.2050

 ,

Υ1 =diag(0.3183,0.9880,0.0793),

Υ2 =diag(0.2577,0.0889,0.0813),

Υ3 =diag(1.6401,0.5180,1.1030),

ρ =4.4631×10−4.
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Figure 2: Trajectories of the system state with fully distributed structure
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Figure 3: Deviation from the sliding surface with fully distributed structure

The control law and observer in (14) and (9) are derived by the achieved S, L, D, Γ?, and with λ = 0.8. Applying
this controller to the system (1), we illustrate the results in Figs. 2 - 4. Here, the initial state is assumed to be
x(0) =

[
3 −3 −2 2 −2 0.5 −1

]T . Fig. 5 shows the performance of the designed disturbance estimator. Now,
we consider the problem of identifying the most sparse stabilising control network structure. Firstly, the LMI in (19) is
not feasible with the decentralised structure. Following the procedure given in Algorithm 1, the sparse structure matrix is
obtained as

Γ? = [γ?i j]3×3 =

1 1 0
0 1 0
1 1 1

 .

It is worth mentioning that using an exhaustive search instead of the proposed simplified Algorithm 1 would result in the
same structure. This demonstrates the effectiveness of the proposed sub-optimal algorithm in the paper for identifying
a favourable sparse stabilising topology for the control network. Solving the LMI feasibility problem in (19), with the
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Figure 5: Exogenous disturbances and disturbance estimator outputs with fully distributed structure
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Figure 6: Trajectories of the system state with structure Γ?

structure constraint obtained previously (Γ?), gives the parameters below:

S = 10−4×


0.0340 0.0143 0.0679 0 0 0 0
0.0014 0.0884 0.0029 0 0 0 0

0 0 0 0.0220 0.0220 0 0
0 0 0 0 0 0.6066 0.6702

 ,

L =



0.0080 −0.0891 −0.0994 −0.0831 0
0.0227 −0.5051 −0.1275 0.0042 0
−0.0149 −0.0253 0.2479 0.1975 0

0 0 0.5244 0.4810 0
0 0 3.0021 1.7892 0

−0.0069 −0.0994 0.1756 0.0148 −0.2955
0.0408 0.1892 −0.3746 −0.0298 0.4391


,

D =


−0.0000 −0.0020 −0.0001 0.0000 0
0.0000 −0.0006 0.0000 0.0000 0

0 0 0.0001 0.0001 0.00
0.0000 0.0001 −0.0002 −0.0000 0.0002

 ,

Υ1 =10−3×diag(0.0390,0.1996,0.0079),

Υ2 =10−5×diag(0.6881,0.3360,0.0392),

Υ3 =diag(0.0019,0.0000,0.0003),

ρ =4.7193×10−11.

Using the given S, L, D, Γ? and λ = 0.8, the control law and observer given in (14) and (9), respectively, can be obtained.
Figs. 6 - 8 demonstrate the closed-loop system state trajectories, deviation from sliding surface as well as control efforts,
obtained by applying the controller to the system (1). As seen from these figures, the proposed sparse ODSMC law
can successfully steer the state trajectories into a boundary layer about the ideal sliding surface and keep them there
thereafter. However, it should also be noted that with more sparse structures, the ultimate bounds on the overall system state
trajectories are wider compared to the less sparse structures. To evaluate this issue in a more quantitative way, we define

Erms , max
i
(erms,i), i = 1, · · · ,m, (41)

where erms,i is the discrete-time cumulative root mean square (RMS) value of eξ ,i, as

erms,i ,

√
1
N

N

∑
k=1
|eξ ,i(k)|2, i = 1, · · · ,m, (42)
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Figure 7: Deviation from the sliding surface with structure Γ?
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Figure 8: Control efforts with structure Γ?
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where N denotes the number of samples and eξ is defined in (16). Table 1 presents Erms corresponding to different
structures. As seen from these results, the less sparse the control network structure, the narrower the ultimate bound on the
state trajectories. This can also lead us to this conclusion that a trade off between the control performance and sparsity of

Table 1: Comparison of Erms for different structures

Γ
[

1 1 1
1 1 1
1 1 1

] [
1 1 1
1 1 0
1 1 1

] [
1 1 0
1 1 0
1 1 1

] [
1 1 0
0 1 0
1 1 1

]
Erms 0.0066 0.0068 0.0076 0.0076

the control network should be considered.

VII. CONCLUSIONS

This paper firstly, with assuming a priori known structure for the control/observer network, has proposed an output feedback
discrete time SMC for uncertain networked systems. A unified framework is derived for the observer-based controller
design, with the aid of an LMI scheme, which has the ability to cover all the cases such as fully decentralised, fully
distributed, and sparsely distributed topologies. Furthermore, our sparse ODSMC reduces the conservatism of the existing
methods in the literature for the LMI based DSMC. Then, this paper has explored the solution to the problem of finding
the sparsest control/observer network structure that satisfies the LMI stability condition obtained in the first part. The
effectiveness of the proposed schemes has been evaluated by three numerical examples presented in the simulation section.
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[17] Li S, Yang J, Chen Wh, Chen X. Disturbance observer-based control: methods and applications. CRC press; 2014.

[18] Su W, Drakunov SV, Özgüner Ü. An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE
Transactions on Automatic Control. 2000;45(3):482–485.

[19] Chang JL. Applying discrete-time proportional integral observers for state and disturbance estimations. Automatic
Control, IEEE Transactions on. 2006;51(5):814–818.

[20] Milanese M, Vicino A. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview.
Automatica. 1991;27(6):997–1009.

[21] Lai NO, Edwards C, Spurgeon SK. Discrete output feedback sliding-mode control with integral action. Int J Robust
Nonlinear Control. 2006;16:21–43.

[22] Edwards C. A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica.
2004;40:1761–1769.

[23] Argha A, Li L, Su SW, Nguyen H. On LMI-based sliding mode control for uncertain discrete-time systems. Journal
of the Franklin Institute. 2016;353(15):3857–3875.

[24] Argha A, Li L, Su SW, Nguyen H. Stabilising the networked control systems involving actuation and measurement
consecutive packet losses. IET Control Theory & Applications. 2016;10(11):1269–1280.

[25] Argha A, Li L, Su SW. Sliding mode stabilisation of networked systems with consecutive data packet dropouts using
only accessible information. International Journal of Systems Science. 2016;p. 1–10.

[26] Li L, Ugrinovskii VA, Orsi R. Decentralized robust control of uncertain Markov jump parameter systems via output
feedback. Automatica. 2007;43:1932–1944.

[27] Niu Y, Lam J, Wang X, Ho DW. Observer-based sliding mode control for nonlinear state-delayed systems. International
Journal of Systems Science. 2004;35(2):139–150.

[28] Khalil HK. Nonlinear Systems, 3rd Edition. New York: Prentice Hall; 2002.

[29] Grossmann IE. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and
Engineering. 2002;3(3):227–252.

[30] Löfberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. In: CCA/ISIC/CACSD; 2004. Available
from: http://control.ee.ethz.ch/index.cgi?action=details;id=2088;page=publications.

[31] Toh KC, Todd MJ, TÃijtÃijncÃij RH, Tutuncu RH. SDPT3 - a MATLAB software package for semidefinite
programming. Optimization Methods and Software. 1998;11:545–581.

[32] Ogata K. Modern control engineering. Prentice-Hall Inc.; 1997.

18


