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Abstract: Early damage detection is critical for a large set of global ageing infrastructure.
Structural Health Monitoring systems provide a sensor-based quantitative and objective approach
to continuously monitor these structures, as opposed to traditional engineering visual inspection.
Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges.
This paper presents a novel algorithm to detect and assess damage in structures such as bridges.
This method applies tensor analysis for data fusion and feature extraction, and further uses one-class
support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this
approach, we collected acceleration data from a sensor-based SHM system, which we deployed on
a real bridge and on a laboratory specimen. The results show that our tensor method outperforms
a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen
case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the
wavelet-based approach. While our method was applied to bridges, its algorithm and computation
can be used on other structures or sensor-data analysis problems, which involve large series of
correlated data from multiple sensors.

Keywords: tensor analysis; damage identification; damage severity assessment; structural health
monitoring (SHM)

1. Introduction

All civil structures degrade over time, and many also experience harsh environmental and/or
excessive operational stress. For most structures such as bridges, the current monitoring practice relies
on visual engineering inspections. They use simple tests, which are are expensive, time-consuming,
qualitative, often subjective, and only capable of assessing suspicious problems. In the case of bridges,
the increase in traffic loading and undetected structural degradation may violate current safety
standard requirements. In extreme cases, bridge overloading has led to collapses as in the recent cases
of the Lecco overpass in Italy, the Yellow ’Love’ Bridge in Indonesia or the Tolten River in Chile.

Structural Health Monitoring (SHM) systems provide a quantitative, objective, and less expensive
alternative to continuously monitor these ageing infrastructures. SHM systems tightly integrate
sensor-based data collection, complex data analysis algorithms, and intuitive information presentation
software to allow managers and engineers to make informed decisions on a structure’s maintenance
and damage mitigation. SHM may provide early damage detection, ongoing condition assessment,
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and future failure prediction. This contributes to safer structures, less expensive and targeted
maintenance tasks, and decreased service interruptions.

Research in SHM is intrinsically interdisciplinary, and spans research areas such as sensor
networks, civil engineering, computer science, or data analytics. This paper focuses on one of the
major challenges within SHM, namely how to collect and analyse the relevant data to detect and assess
existing damage in structures such as bridges.

Thus, this paper presents a novel algorithm based on tensor analysis and one-class learning
for structural damage detection. Tensor analysis is used to fuse and extract information collected
from multiple sensors instrumented in a structure. These sensors’ measurements usually have a high
redundancy and correlation, which two-way matrix analysis may fail to capture all of these correlations
and relationships together [1]. In contrast, tensor analysis allows the learning from these highly
correlated data in multiple modes at the same time [2]. We build on these contributions and integrate
tensor analysis for data fusion with a one class support vector machine (OCSVM) to propose a novel
damage detection method.

This work is part of our broader efforts to apply data-driven SHM approaches to real bridges
in operation, including the Sydney Harbour Bridge (SHB) [3]. We evaluated the performance of
our method using the data collected from one of our SHM deployments on a cable-stayed bridge in
operation in Western Sydney, and from one of our laboratory-based experiments on a replica of an SHB
substructure. In that latter case, the experimental data were collected using the same sensor system
that we deployed on the SHB. This evaluation demonstrated that our novel method provides better
damage detection performance than the existing state-of-the-art approach, which is based on wavelet
energy spectrum [4].

There are existing reports of SHM system deployments on large-scale bridges. For example,
a vibration-based system has been deployed on the Infante D.Henrique Bridge, an arch bridge with
a span of 280 m in Portugal. It uses twelve accelerometers to capture the vibration response of the
bridge and derives its modal parameters using automated operational modal analysis, which are
further used as damage indicative features [5]. In another example, a large-scale SHM system using
2400 low-cost accelerometers and 800 smart sensor nodes has been permanently deployed on the 1.2 km
of the Sydney Harbour Bridge in Australia since 2011 [3]. A machine learning algorithm was deployed
at the edge of the system on the sensor nodes, and provides successful damage identification [6,7].
Another system of 110 strain gauges has been implemented on the 2160 m Tsing Ma Bridge in
Hong Kong [8]. The measured strain data under actual traffic conditions are used to generate the daily
stress spectra via a rainflow counting algorithm. The obtained stress spectra is further processed by
statistical analysis for identification of fatigue-related damage. As mentioned earlier, our proposed
novel method was evaluated using data and/or equipment from such similar real life deployments.

Wireless sensor networks (WSNs) provide a cost effective and logistically less complex
deployment alternative than the previous wired-based systems. A recent survey [9] of WSN-based
SHM systems identified some examples such as the 70-node system on the Jindo Bridge (South Korea),
which uses a threshold approach to damage detection, i.e., an alarm is sent to a gateway node when
some data feature exceed a pre-defined threshold [10]. However, WSNs raise other specific challenges,
such as energy cost (e.g., battery-powered nodes), wireless channel stability (e.g., data delay, loss,
throughput), time synchronisation, or storage and computation constraints. Some solutions were
proposed to address some of these issues, such as hybrid wakeup/sleep schemes, cluster-based
processing algorithms, or time synchronization error resilient algorithms [9]. While our novel method
was evaluated using a wired-based data collection system, it could be readily applicable and deployable
to WSN-based systems.

The significant cost of these stationary SHM systems has led researchers to investigate alternatives
such as Drive-By-Inspection or Indirect SHM for damage identification on bridges. These approaches
use the vibration response of a vehicle passing over the bridge to detect damage. Theoretical and
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experimental validation of such methods have been described in [11]; however, there is no reported
successful real-world deployment to date.

Most recent algorithms proposed to detect and assess damage in structures are based on signal
processing and domain expert analysis. Examples of such approaches include the use of the amplitudes
of the structure’s natural frequencies [12], wavelet transform-fractality model [13], or subspace
methods [14]. As opposed to these recent algorithms, our method is completely data-driven, i.e.,
it does not rely on domain expert guided signal processing, but rather extract informative features
from the data and apply machine learning on them to construct a model for anomaly detection. Thus,
it could be potentially applied to a wider range of SHM problems as it does not depend on a specific
type of signal (e.g., vibration, strain, acoustic signals).

The remainder of the paper is organized as follows. Section 2 presents the case studies, which provide
the data to evaluate our method. Section 3 describes our novel damage identification approach using
tensor analysis for data fusion and OCSVM for anomaly detection. Section 4 presents our experimental
performance evaluation. Finally, Section 5 concludes this paper with a summary of our contributions.

2. Case Studies

2.1. The Cable-Stayed Bridge

We deployed a sensor-based monitoring system on a cable-stayed bridge in Western Sydney,
Australia [15]. This bridge carries one traffic lane and one pedestrian lane. It is 46 m long and connects
two university sites across a highway section. It is composed of single deck which is 0.16 m thick
and 6.3 m wide. This deck is supported by four I-beam steel girders, and 16 stay cables. These cables
are connected to the 33 m mast of the cable-stayed bridge. Figure 1 shows a side and top view of
this bridge.

(a) (b)

Figure 1. The cable-stayed bridge from our first case study, Western Sydney, Australia (source: c©2017
Google). Side view (a) and top view (b).

Our monitoring system is composed of multiple off-the-shelf sensors, including 29 accelerometers
and 28 strain gauges of various types (uniaxial, triaxial, and shear rosette). The locations of these
sensors were selected using domain-based knowledge from structural engineers, in order to capture
the most relevant response signal from the bridge. In this paper, we are using only features based on
accelerations data, and thus we further detail the locations of the accelerometers only. Figure 2 shows
the locations of the 24 uniaxial accelerometers (Ai with i ∈ [1; 24]), which were used in this study and
installed on the bridge deck. The remaining five accelerometers were installed on four cables and the
mast, and are omitted from Figure 2.
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Figure 2. The locations on the bridge’s deck of the 24 Ai accelerometers used in this study. The cross
girder j of the bridge is displayed as CGj.

These sensors are connected to an HBM Quantum-X data logger (https://www.hbm.com/en/
2128/quantumx-compact-universal-data-acquisition-system/) attached to an embedded computer on
one side of the bridge. This embedded device provides time synchronization to the data, and stores
them temporarily before forwarding via WiFi to a gateway on a nearby building. This gateway then
forwards the data over a Virtual Private Network (VPN) to our laboratory. The acceleration data are
collected at 600 Hz, with a range of 2 G and a sensitivity of 2 V/G.

This bridge is located on top of a hill (33◦45′50.49′′ S, 150◦44′31.14′′ E) and subjected to high
wind-induced vibration. The bridge is also located over a busy highway (Great Western HWY),
which has a high influence on excitation of the bridge. In this study, we emulated some damage
on this bridge as real damage were not available. From a structural engineering perspective,
having a large static load at a location of a structure can simulate the reduced stiffness of that location.
When measuring the acceleration response of the structure at and around that point, this increased
mass produces acceleration measurements that are similar to the ones that would have been produced
by damage at that location. Three scenarios have been considered, which includes: no vehicle is placed
on the bridge (healthy state), a light vehicle with approximate mass of 3 t is placed on the bridge
at different locations (“Car-Damage”) and a bus with approximate mass of 12.5 t is located on the
bridge at mid-span (“Bus-Damage”). This emulates a series of several independent damage points,
which were used in our evaluation in Section 4.1. The vibration response of the bridge under these
scenarios was collected from different times along a day, e.g., the healthy state data are collected at
around 2:00 a.m., the car damage data are approximately collected from 11:00 a.m. to 3:00 p.m. and the
bus data are collected from 4:00 p.m. to 5:00 p.m. As a result of the time difference between different
scenarios, operational and environmental variation of the bridge is highly expected; for instance, just by
investigating the closest whether station reports at Penrith, New South Wales [16], a temperature
variation of 46%, a humidity variation of 28% and a wind speed variation of 6 km/hr can be observed
during the course of measurement. Operational modal analysis using ARTeMIS [17] was conducted on
the measured ambient vibration response of the bridge when there was no added mass on the bridge
and when a light car was sitting close to the cross girder 5 where maximum of the first bending mode
occurred. The fundamental frequency of the structure for these two cases was, respectively, 2.04 Hz
and 1.98 Hz, which indicates a drop of only 2.94%. For all of the other cases, where the light car was
placed at other locations, the change in the fundamental frequency compared to the healthy case was
even smaller than 2.94%, which corresponds to small damage. For the case that the bus was sitting on
the deck, the natural frequency of the bridge dropped to 1.80 Hz, which is equivalent to a frequency
change of 11.76% compared to the benchmark state.

2.2. The Jack Arch Specimen

For this case study, we built a replica of a structural component (i.e., a jack arch) of the SHB.
The real SHB has about 800 of these jack arches located under the bus lane on its eastern side.
Our replica specimen was built as a steel reinforced concrete beam with a similar geometry to those on
the SHB, and with an I-beam (UB 200-18) embedded inside the concrete as shown in the cross section

https://www.hbm.com/en/2128/quantumx-compact-universal-data-acquisition-system/
https://www.hbm.com/en/2128/quantumx-compact-universal-data-acquisition-system/
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of Figure 3a. The length of the specimen was 2000 mm, the width was 1000 mm and the depth was
375 mm. The specimen was fixed at one end using a steel bollard to form a cantilever, where 400 mm
along the length of the beam were fully clamped. In addition, a support was placed at 1200 mm away
from the tip to avoid any cracking occurring in the specimen under self-weight.

(a)

(b)

Figure 3. Illustration of the jack arch specimen with attached sensors, (a) schematic diagram, (b) photo.

The data was collected from two sets of sensor nodes placed on the base of the joint, one node
was positioned at the tip while the other was mounted 750 mm away from the tip. There were three
accelerometers connected to each sensor node, which were mounted to the left, middle and right sides
of the arch, as illustrated in Figure 3b. These sensor nodes and accelerometers are identical to the ones
that we deployed on the SHB in another study [3]. The excitation was made using an impact hammer.
Once the specimen was triggered by a hammer, the node records data for 3 s at a sampling rate of
500 Hz, resulting in 1500 samples for each event. The variation in the excitation of the structure
was taken into account by considering impact loading with different energy levels. This variation
experimentally simulated the effect of operational conditions in real world applications.

After testing the benchmark in a healthy condition, a crack was gradually introduced into the
specimen with four level of crack dimensions: (75× 50) mm2, (150× 50) mm2, (225× 50) mm2,
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and (270× 50) mm2. The impact hammer test was conducted again in each damage severity.
About 200 events were collected in the healthy condition and in each level of damage severity.

3. Method

In this section, we present a method for data fusion and feature extraction using tensor analysis.
We then apply an OCSVM algorithm to these tensor-based extracted features in order to detect
anomalies in incoming collected data. We also discuss the use of wavelet package energy (WPE) as an
alternative state-of-the-art approach for feature extraction. Finally, we present a scheme that connects
these described methods to detect and assess the severity of damage on a structure.

Figure 4 illustrates the steps for both our tensor-based method for damage detection and
the WPE-based approach against which we compare our method. On this figure, we have some
training data collected during a period {ti}n

i=1 from a healthy structure using m sensors denoted
by {Si}m

i=1. The tensor approach aggregates these data from m sensors in a tensor form and then
applies a tensor decomposition technique to extract damage sensitive features represented by the
time component. This matrix is used to construct a OCSVM model, which is later used for anomaly
detection. When new data from multiple sensors arrive at time tn+1, the incremental tensor update
step transforms them into an equivalent tensor-based time component, which is then presented to the
OCSVM model for damage detection.

The WPE approach, on the other hand, applies a WPE algorithm on each sensor S = {Si}m
i=1 to

extract the WPE-features. These features are then concatenated into a one feature vector, which is used
to construct a different OCSVM model. Section 4 discusses the performance of this alternate model
against the one generated by our tensor approach. The following sections provide details of each step
in this framework together with the tools and algorithms we used.

Figure 4. Overview of damage detection using tensor-based approach and an alternate
WPE-based approach.
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3.1. Feature Extraction: Tensor Approach

3.1.1. Tensor Data Fusion

In SHM, data are usually collected from a large number of sensors, especially for large civil
structures like a long span bridge or a high-rise building. For instance, several accelerometers may
be put along a bridge’s spans to measure vibration signals excited by traffic loadings over long
periods of time. One traffic event at a specific time produces multiple signals measured by different
sensors. These SHM data can be considered as a three-way tensor, i.e., a three dimensional array
of (location× f requency× time) as described in Figure 5. However, it is also possible to generalize
all the theories for a n-way tensor. The frequency in Figure 5 is the measured data in frequency
domain (or other types of information extracted from raw measured data). Location represents sensors,
and time is data snapshots at different timestamps. Each cell of the tensor is a frequency value extracted
from a particular sensor at a certain time. Each slice along the time axis shown in Figure 5 is a frontal
slice representing all frequency values across all locations at a particular time.

These measured data from individual sensors are not only correlated with each other in time but
also autocorrelated over time. Two-way matrix analysis, as usually used in SHM, can not capture all
of these correlation and relationships together [1]. It usually involves a matricization of a multi-way
tensor followed by the use of techniques such as principal component analysis (PCA) or singular value
decomposition (SVD) to further analyze the data. For example, we can concatenate the frequency
data from multiple sensors at a certain time to form a single data instance at that time for anomaly
detection in time dimension. However, unfolding the multi-way data and analyzing them using
two-way methods may result in information loss and misinterpretation since it breaks the modular
structure inherent in the tensor data [1]. In contrast, tensor analysis allows for the learning from these
highly correlated data in multiple modes at the same time [2]. It has contributed to successes in many
domain applications such as social network and brain data analysis, web mining and information
retrieval, or health care analytics [18].
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Figure 5. Tensor data with three modes in SHM applications.

In this work, tensor analysis is used to fuse and extract information from different sensors for
damage detection and severity assessment in SHM.

3.1.2. Tensor Decomposition

Tensor decomposition is used to extract latent information in each dimension from tensor data.
Two typical approaches used for tensor decomposition are CP decomposition (CANDECOMP/
PARAFAC decomposition) and Tucker decomposition [2]. This work adopts the CP method for
tensor decomposition due to its ease of interpretation compared with the Tucker method [1].

In case of a three-way tensor X ∈ <I×J×K, three different matrices are obtained once X is
decomposed using CP. Each matrix represents latent information for each mode or dimension. In the
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case of SHM data as in Figure 5, they are associated with location (denoted matrix A), frequency
(matrix B) and time modes (matrix C), respectively. Then, a three-way tensor X is expressed as

X ≈
R

∑
r=1

λr Ar ◦ Br ◦ Cr ≡ [λ; A, B, C], (1)

where R is the number of latent factors, Ar, Brand Cr are r-th columns of component matrices A ∈ <I×R,
B ∈ <J×R and C ∈ <K×R, and λ is the weight vector so that the columns of A, B, C are normalized to
length one. The symbol “◦” represents a vector outer product.

The main purpose of CP decomposition is to minimize the sum of squares of the difference
between the tensor X and the model:

min
A,B,C

‖X −
R

∑
r=1

λr Ar ◦ Br ◦ Cr‖2
f , (2)

where ‖X ‖2
f is the norm value, which is the sum squares of all elements of X , and the subscript f

denotes the Frobenius norm.
The problem defined in Equation (2) is non-convex since it aims to minimize three factor matrices

at the same time. However, if we fix two of the matrices, then the problem reduces to a linear least
squares problem for solving the third one. Following this approach, the CP decomposition is carried
out using an alternating least square (ALS) technique. It iteratively solves each factor matrix by fixing
other two matrices using a least square technique until it meets a convergence criterion [2]. The ALS
technique is described in Algorithm 1 [2].

Algorithm 1 CP Decomposition Using Alternating Least Squares

Input: Tensor X ∈ <I×J×K, latent factors R
Output: Matrices A ∈ <I×R, B ∈ <J×R, C ∈ <K×R, and λ

1: Initialize A, B, C
2: Repeat

3: A = arg min
A

1
2‖X(1) − A(C� B)T‖2

4: B = arg min
B

1
2‖X(2) − B(C� A)T‖2

5: C = arg min
C

1
2‖X(3) − C(B� A)T‖2

(� is the Khatri-Rao product and X(i) is an unfolding matrix of X in mode i)
6: Until convergence criterion is met

Once the convergence criteria is met, the ALS algorithm returns the three matrices A, B and C .
As mentioned before, the matrix C ∈ <K×R, which is associated with the time mode, will be used later
for constructing an anomaly detection model. This matrix has K rows, each of which represents a data
instance aggregated from all the sensors at a specific time. This shows how tensor decomposition can
be used for data fusion and feature extraction from multiple sensors.

3.1.3. Incremental Tensor Update

When new data arrive (e.g., a frontal slice in time mode), we need to incrementally update
the tensor component matrices. For damage detection and assessment, time matrix C is utilized.
As a result of a new slice in time mode (a matrix of location × f requency), a new row Cnew will be
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added to C. This paper follows a method proposed by [19] to estimate the Cnew by fixing two
components A and B as follows:

C = arg min
C

1
2
‖X(3) − C(B� A)T‖2

= arg min
C

1
2

∥∥∥∥∥
[

Xold(3) − Cold(B� A)T

Xnew(3) − Cnew(B� A)T

]∥∥∥∥∥
2

.

The new row in time mode Cnew can be estimated by using only information from newly arrived
data Xnew(3) and matrices A and B obtained in the training phase:

C =

[
Cold
Cnew

]
=

[
Cold

Xnew(3)((B� A)T)†

]
, (3)

where † is the matrix pseudo-inverse.

3.2. Feature Extraction: Wavelet Packet Energy

To demonstrate the robustness and reliability of our new tensor-based feature for SHM
applications, we compare its performance to an alternative approach based on a state-of-the-art
feature [4]. One example of such a proven feature for SHM is one using wavelet energy spectrum,
which is obtained via wavelet packet decomposition of the original data. This feature has been
demonstrated to be sensitive and robust for damage detection at an early stage of development [20].

Wavelet packet decomposition uses a set of low-pass and high-pass filters to decompose a signal
into different multi-layers frequency sub-bands, which are mutually independent. It improves
the frequency localised capacity and resolution of time domain analysis compared to conventional
multi-resolution wavelet analysis. As a result of damage occurrence, the information of each frequency
band of the signal decomposed by wavelet packet changes, e.g., the energy of signal in some frequency
bands increases while it is reduced in other frequency bands. Therefore, the energy spectrum
of the signal in each frequency band contains useful information, which is adopted as a damage
sensitive feature.

In this study, first, the wavelet packet decomposition of the signal is conducted in MATLAB using
Daubechies 2 wavelet (db2) as mother wavelet with decomposition level of j = 4. At level 4, a total
of 16 frequency sub-bands will be constructed. The relative energy of each frequency sub-band, e.g.,
i is obtained by normalising the energy of the signal in that frequency sub-band Ei

j with respect to the
total energy, E f , as

Ei =
Ei

j

E f
. (4)

The obtained relative energy at each frequency band is then stored in sequence to construct a
vector for a particular sensor,

E = (E1, E2, . . . , E16). (5)

Since, in this study, the response of the structure is measured from multiple sensors, the same
exercise is repeated for each sensor and the obtained vectors are concatenated to establish the single
feature vector. In Section 4, the performance of this feature is compared with the tensor-based feature.
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3.3. Anomaly Detection Model: One-Class Support Vector Machine

one class support vector machine (OCSVM) [21] is an extension of the support vector algorithm
to the case of unsupervised learning when you only have data from one class. This case represents
the main challenge in our application where only data instances forming one state i.e., healthy state
are available, and the samples from other classes are very few or do not exist. In this sense, OCSVM
is well suited to this kind of problem since it requires only observations from the healthy samples.
The rational idea behind OCSVM is to map the data into a high-dimensional feature space via a kernel
function and then learn an optimal decision boundary that separates the training positive observations
from the origin.

Given a set of training data X = {xi}n
i=1, with n being the number of samples, OCSVM

maps these samples into a high-dimensional feature space using a function φ through the kernel
K(xi, xj) = φ(xi)

Tφ(xj). Then, OCSVM learns a decision boundary that maximally separates the
training samples from the origin. The primary objective of OCSVM is to optimize the following equation:

max
w,ξ,ρ
−1

2
‖w‖2 − 1

νn

n

∑
i=1

ξi + ρ, (6)

s.t. w.φ(xi) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n,

where ν (0 < ν < 1) is a user defined parameter to control the rate of anomalies in the training data,
ξi are the slack variable, φ(xi) is the kernel matrix and w.φ(xi)− ρ is the separating hyperplane in the
feature space.

The problem turns into a dual objective by introducing Lagrange multipliers α = {α1, · · · , αn}.
This dual optimization problem is solved using the following quadratic programming formula:

W = min
W(α,ρ)

1
2

n

∑
i

n

∑
j

αiαjφ(xi, xj) + ρ(1−
n

∑
i

αi), (7)

s.t. 0 ≤ αi ≤ 1,
n

∑
i=1

αi =
1

νn
,

where φ(xi, xj) is the kernel matrix, α are the Lagrange multipliers and ρ is known as the bias term.
The partial derivative of the quadratic optimization problem (defined in Equation (7)) with respect

to αi is then used as a decision function to calculate the score for a new incoming sample:

g(xi) =
∂w
∂αi

= ∑
j

αiφ(xi, xj)− ρ. (8)

The OCSVM uses Equation (9) to identify whether a new incoming point belongs to the positive
class when returning a positive value, and vice versa if it generates a negative value:

f (xi) = sgn(g(xi)). (9)

3.4. Damage Detection and Severity Assessment

Given vibration data collected from multiple sensors when a structure is in a healthy case, tensor
analysis is used to fuse and extract damage sensitive features from all these sensors. A OCSVM model
is trained using a time matrix C decomposed from a healthy training tensor. When new data come in,
which are associated with a new row in C, the new row will be estimated using the approach described
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in Section 3.1.3, and it will be fed to the trained model for damage detection. A negative decision value
indicates that the structure behavior has changed (i.e., damage occurs) and vice versa.

For damage severity assessment, we analyze decision values returned from the OCSVM model.
The rationality is that a structure with more severe damage (e.g., a longer crack) will behave differently
from normal behaviour. Different ranges of the decision values may present different severity levels
of damage.

For features using Wavelet Packet Energy, we also used OCSVM for damage detection and
assessment in order to compare with the OCSVM model using tensor analysis.

4. Experimental Results

This section demonstrates how the combination of tensor-based features and OCSVM can
successfully detect and assess the severity of structural damage. It is using the sensor-based data from
the two case studies described in Section 2.

For all experiments, we have used the core consistency diagnostic technique (CORCONDIA)
method described in [22] to decide the number of latent factors R in the CP method. This method
suggested R = 2 for all experimented datasets. The Gaussian kernel, defined in Equation (10),
was employed in OCSVM since it has gained much more popularity in the area of machine learning
and it has turned out to be an appropriate setting for OCSVM [23]. The Gaussian kernel parameter
denoted by σ was set to the default value, and the ν parameter in Equation (6) was set to 0.01:

K(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
. (10)

The accuracy values were obtained using the F-Score (FS), defined as F-score = 2 ·
Precision× Recall
Precision + Recall

, where Precision =
TP

TP + FP
and Recall =

TP
TP + FN

(the number of true positive,

false positive and false negative are abbreviated by TP, FP and FN, respectively).

4.1. The Cable-Stayed Bridge

Our tensor-based approach was validated using vibration data collected from the cable-stayed
bridge described in Section 2. This case-study used 24 uni-axial accelerometers, which collected
262 samples (events). Each event consists of acceleration data for a period of 2 s at a sampling rate of
600 Hz. The magnitude of the uni-axial accelerometer data was normalized to have zero mean and
unity variance before transforming the data into frequency domain using fast Fourier transform (FFT).
The measured vibration responses for each sample resulted in a vector with 600 attributes representing
the frequencies of each sample. The resultant three-way tensor data has a structure of 24× 600× 262.

The collected 262 samples were separated into two main groups, Healthy (125 samples) and
Damaged (137 samples). The Damaged group was further partitioned into two different damaged cases:
the “Car-Damage” emulated by the stationary car (107 samples) and the “Bus-Damage” emulated by
the stationary bus (30 samples). Eighty percent of the healthy events (100 samples) from each sensor
were randomly selected as a training tensor X ∈ <24×600×100 (i.e., training set). The samples related to
the two damage cases (137) were added to the remaining 20% of the healthy data to form a testing set,
which was then used for the model evaluation.

The ALS method described in Algorithm 1 was used to decompose the training tensor X into
three matrices A, B and C. The matrix C ∈ R100×2 represents data in time mode. These data were then
used to construct an anomaly detection model using OCSVM. For each new incoming Xnew datum,
we used Equation (3) to calculate Cnew that represents the tensor-based features. The decision function
defined in Equation (9) is then used to generate a health score for Cnew and to specify whether this new
event is healthy or damaged.

Our constructed model using the tensor-based features was able to successfully detect all the
healthy and damage events in the testing data set, and achieved an F-Score of 100%. Moreover,



Sensors 2018, 18, 111 12 of 17

this model was able to assess the progress of the damage severity in the structure using the tensor-based
features. To illustrate this, we calculated decision values for all test samples that were shown in Figure 6.
The horizontal axis indicates the index of the test samples and the vertical axis indicates the magnitude
of the decision value. A positive value indicates a sample classified as healthy, whereas a negative
value indicates an event classified as damage.

The first 25 events, shown in green, refer to the healthy samples, i.e., before the presence of damage.
The next 107 samples, shown in orange, refer to the car-emulated damaged samples. The following
30 samples, shown in red, refer to the bus-emulated damaged samples. The mean of all the decision
values for each category was calculated and illustrated in Figure 6. A solid black line was constructed
to connect the mean values. As can be seen from Figure 6, considering the effect of environmental
and operational changes, the constructed OCSVM model using the tensor features was able not only
to reliably separate the healthy state from a very slight damage case (“Car-Damage"), but also to
assess the damage severity from “Car-Damage” to “Bus-Damage”. The decision values were further
decreased for the samples related to the more severe “Bus-Damage”.

To illustrate the effectiveness of our tensor approach for data fusion and feature extraction,
we compare the classification results of OCSVM using tensor-based features to the performance of
OCSVM using WPE-based features, which was described in Section 3.2. The same training data set
as above was used to extract the damage sensitive features using the WPE method and construct an
OCSVM model. Similarly, the same previous testing data set was used to evaluate the classification
performance of OCSVM using WPE features. The F-score accuracy of OCSVM was recorded at 97%.
Moreover, the OCSVM decision values were not able to clearly assess the progress of the damage
severity in the structure as illustrated in Figure 7.
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Figure 6. Damage identification results using tensor features on the cable-stayed bridge dataset.
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Figure 7. Damage identification results using WPE features on the cable-stayed Bridge dataset.

4.2. The Jack Arch Specimen

Our second experiments were conducted using the vibration data acquired from six accelerometers
instrumented on the specimen as described in Section 2. We applied our novel approach on this data set
to evaluate the classification performance of OCSVM using the tensor-based features. The magnitude
of the (x, y, z) from the tri-axial accelerometer reading was calculated and then normalized to have
zero mean and unity variance. The Fourier transform method was then used to represent the data
in frequency domain. The differences between vibrations of the three sensors in each node in the
frequency domain were used as frequency variables. These variables yield better representation of the
signal since the three accelerometers would move together if the structure is healthy and differently or
independently otherwise. The collected data set comprised of 950 samples (a.k.a. events) separated
into two main groups: Healthy (190 samples) and Damaged (760 samples). Each event consists of
acceleration data for 3 s at 500 Hz, resulting in a vector of 750 frequency values. The damaged cases
were partitioned into four different sub-cases of 190 samples, which each corresponds to a level of
damage severity (i.e., 1 for the minimum damage and 4 for the maximum damage).

We randomly selected 80% of the healthy events (152 samples) from six sensors as a training tensor
X ∈ <6×750×152 (i.e., training set). The remaining 20% of the healthy data and the data obtained from
the four damage cases were used for testing (i.e., testing set). We applied the ALS method described in
Algorithm 1 to decompose the tensor X into three matrices A, B, and C, which matrix C was used to
construct an OCSVM model. For each arriving Xnew datum, we used Equation (3) to calculate Cnew

that represents the tensor-based features. The decision function defined in Equation (9) was then used
to generate a health score for Cnew and to specify whether this new event was healthy or damaged.

These experiments produce an F-score of 96% as a classification accuracy of the OCSVM model.
Table 1 shows the resulting final confusion matrix from these experiments. The OCSVM model was
able to detect 92.5% of the damage cases knowing that most of the missed 57 samples are related
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to damage case 1. It should be emphasized that the level of damage in this case study is considerably
small with less than 0.5% reduction in the first natural frequency.

Table 1. Resultant confusion matrix of OCSVM using tensor-based features on the specimen dataset.

Damage Healthy

Damage 703 0
Healthy 57 48

In addition to the ability of identifying small defects, tensor-based features also have the capability
to assess the progress of the damage severity in the structure based on the decision values obtained
from OCSVM. It can be clearly observed from Figure 8 that the more severe the damage, the more
negative the decision values (i.e., the data were more deviated from the training data). It is illustrated
by a solid black line in Figure 8, which connects the means of all the decision values for each category.

The next experiment on this dataset was to compare the classification results of OCSVM using
tensor-based features to the performance of OCSVM using WPE-based features. The same training
and testing sets as above were used to extract the WPE-based feature and build the OCSVM model,
and evaluate the performance of this alternative approach. The F-score accuracy of OCSVM was
recorded at 76% and Table 2 shows the resulting confusion matrix for this experiment. The OCSVM
model was only able to detect 61.1% of the damage cases. Further exploration of these results show
that the WPE-based model missed 88.5% of the damage samples related to damage case 1 and 60% of
the damage samples corresponding to damage case 2. Moreover, OCSVM decision values were not
able to clearly assess the progress of the damage severity in the structure as illustrated in Figure 9.
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Figure 8. Damage identification results using tensor features on the specimen dataset.
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Figure 9. Damage identification results using WPE features on the specimen dataset.

Table 2. Resultant confusion matrix of OCSVM using WPE-based features on the specimen dataset.

Damage Healthy

Damage 465 4
Healthy 295 44

5. Conclusions

This paper presented a novel method to analyse the data from a sensor-based SHM system in
order to detect and assess damage in an infrastructure such as a bridge. Our contribution is three-fold.

First, we proposed a new algorithm that detects damage by using multi-dimensional data collected
from distributed sensors on a structure. Our algorithm first applies tensor analysis to the acceleration
data from different sensors, and combine them into a single feature vector. This feature is used as the
input to build a OCSVM model. In the final step, our algorithm compares any new incoming data to
this OCSVM model. If that new data point is oustide the model’s boundaries, then our method raises
an anomaly event as the data most probably indicate the presence of a damage within the structure.
In contrast to other recent SHM damage detection methods, our contribution is completely data-driven.

Second, we deployed an extensive SHM system on a cable-stayed bridge in operation in Western
Sydney, and on a laboratory specimen, which replicates a substructure of the Sydney Harbour Bridge
(SHB). The sensors and nodes on this latter case are similar to the ones we used in a previous
deployment on the entire Sydney Harbour Bridge. We induced emulated and real damage in these
two case studies, and collected large data sets with and without these damages. These data sets will be
made available to the community.

Finally, we used these collected data to evaluate our approach and compare it against an
alternative method, which uses a feature from the wavelet energy spectrum of the data. The results
showed that our approach succeeded at detecting more damage events in both cases, with 100% vs.
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97%, and 92.5% vs. 61.1%, respectively. Thus, our method outperformed a domain expert guided
feature selection (e.g., wavelet energy spectrum) in both laboratory and real-world deployment cases.

We are exploring four different research directions as part of our future work. First, we would
like to fully investigate the performance of the method for locating damage. We have obtained some
initial success in this regard for some datasets; however, this work is still ongoing.

Second, we will deploy our novel method in our current SHM deployment on the SHB. This SHB
deployment is a multi-tiered sensor network, i.e., sensor nodes are grouped into 10, and groups
are connected to individual power unit devices, which are under two gateway devices linking to a
cloud server. Thus, one challenge is to find the optimal level to deploy the tensor building step, i.e.,
on a leader node within a group, or on a gateway, etc. Third, we will also investigate the application
of our method to other structures, such as building or road segments. We have ongoing collaboration
with other academic and industry entities, which will provide us with the building and road data
for this future work. We will finally explore the application of our algorithm to other types of sensor
collected data, such as strain gauge or acoustic vibration.
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