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Abstract
We initiate the study of quantum races, games where two or more quantum computers compete to solve
a computational problem. While the problem of dueling algorithms has been studied for classical determ-
inistic algorithms [12], the quantum case presents additional sources of uncertainty for the players. The
foremost among these is that players do not know if they have solved the problem until they measure their
quantum state. This question of “when to measure?” presents a very interesting strategic problem. We
develop a game-theoretic model of a multiplayer quantum race, and find an approximate Nash equilibrium
where all players play the same strategy. In the two-party case, we further show that this strategy is nearly
optimal in terms of payoff among all symmetric Nash equilibria. A key role in our analysis of quantum
races is played by a more tractable version of the game where there is no payout on a tie; for such races
we completely characterize the Nash equilibria in the two-party case.

One application of our results is to the stability of the Bitcoin protocol when mining is done by
quantum computers. Bitcoin mining is a race to solve a computational search problem, with the winner
gaining the right to create a new block. Our results inform the strategies that eventual quantum miners
should use, and also indicate that the collision probability—the probability that two miners find a new
block at the same time—would not be too high in the case of quantum miners. Such collisions are
undesirable as they lead to forking of the Bitcoin blockchain.

2012 ACM Subject Classification Theory of computation→ Algorithmic game theory

Keywords and phrases Game theory, Bitcoin mining, Quantum computing, Convex optimization

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.49

1 Introduction

We study the scenario of two or more quantum computers competing to solve a computational task,
which we call a quantum race. This setting presents a different problem to finding the fastest algorithm
for a task, as the only goal is to solve the task before the competitors. For example, imagine a search
race where Alice and Bob, each armed with identical quantum computers, compete to find a marked
item in a database. The first person to find the marked item wins $1, with the payout being split in
the case of a tie. The first natural idea is for Alice to run Grover’s algorithm [11], which can find
a marked item in a database of size N with high probability in time O(

√
N). However, if Alice’s

strategy is to run Grover’s algorithm and measure after the specified number of steps to maximize
her success probability, Bob will have an advantage by measuring after running Grover’s algorithm
for a few less steps. Although this way Bob has a slightly lower success probability, he gains a huge
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49:2 Strategies for quantum races

advantage in always answering first. This simple example shows that the optimal algorithm to solve a
problem can be different from the optimal strategy to employ when the goal is to solve the problem
before an opponent.

The scenario of competing algorithms has been studied before in the classical deterministic setting
[12]. In a classical game, the uncertainty is provided by an unknown probability distribution over the
inputs: depending on what the input is, one algorithm may perform better than another. The quantum
setting inherently has additional sources of uncertainty, most interestingly that players do not know
if they have solved the problem until they measure their quantum state. Going back to the search
game, in the classical version the players know at every instant if they have found the marked item
or not. This is not the case in the quantum setting, where a player can only tell if she has found the
desired item by measuring her quantum state. Furthermore, if she measures her state and does not
find the marked item, then she must begin the search again from scratch. In the quantum case there is
a natural tension between waiting to measure, and thereby building up the probability of success upon
measuring, and measuring sooner, to answer before one’s competitors. We study this game theoretic
problem to develop strategies for players to use in quantum races.

One of our main motivations for studying quantum races is to model quantum computers mining
the decentralized currency Bitcoin [16]. Mining is the process by which new blocks of transactions
are added to the history of Bitcoin transactions, called the blockchain. The winner of a race to solve a
computational search problem gains the right to add a new block of transactions to the blockchain,
and participants in this race are called miners. Quantum miners could use Grover’s algorithm to solve
the search problem with quadratically fewer search queries than needed classically. But what should
the strategy of quantum miners be when competing against each other?

I Question 1. What is the optimal strategy for quantum miners?

Figuring out the optimal strategy for quantum miners is important to analyze the impact of quantum
mining on the stability of the Bitcoin protocol. When two miners solve the computational search
problem at (nearly) the same time, the blockchain can fork as it is unclear which new block is the
“correct” history of Bitcoin transactions. Forking is bad for the security of Bitcoin as it can decrease
the cost of attacks [10], increase the gain from deviating from the intended mining protocol [9], and
generally decreases chain growth and wastes resources. In the classical case, each search query has
the same probability of success. In the quantum case, however, because of Grover’s algorithm the
success probability grows roughly quadratically with the number of search queries. Does this lead to
many quantum miners finding blocks at the same time?

I Question 2. What is the probability that two or more quantum miners playing the optimal strategy
find a block at the same time?

In the next subsections, we describe our model and results in more detail and the impact it has on
these questions.

1.1 The model and results

In a symmetric game all players have the same payoff function. In his original paper defining a Nash
equilibrium, Nash showed that every symmetric multiparty finite game has a symmetric equilibrium,
i.e. one where all players play the same strategy [17]. When all players have identical quantum
computers, a quantum race is naturally a symmetric race, and we describe this scenario first.

We model a symmetric multiplayer quantum race in the following way. The pure strategies
available to a player are the possible times at which she can measure 1, 2, 3, . . . ,K. For each time
t, a player has an algorithm that she can run for t steps and for which the success probability is
pt. Without loss of generality, we assume that these probabilities form an increasing sequence
0 < p1 < p2 < · · · < pK ≤ 1. A general strategy is a probability distribution over the possible times
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to measure. The player who succeeds first receives a payoff of 1. In the case of a tie, the payoff
is split amongst all players who succeed first at the same time. Our model can be thought of as a
“one-shot” race, as if a player measures and does not succeed, she does not get a chance to restart and
try again. While a race where players are allowed to repeatedly restart until someone wins would be
more realistic, it becomes much more difficult to analyze due to the proliferation of possible stategies,
and we leave this for future work.

1.1.0.1 Two-player case

We begin explaining our model and results in more detail in the two-player case. In this case, a game
defined by the probabilities p1, . . . , pK can be represented by the payoff matrix for Alice, given by
the K-by-K matrix A, and the payoff matrix for Bob B. The (s, t) entry of A gives Alice’s payoff
when she runs an algorithm for time s and Bob plays time t. In the case of a quantum race, this is
defined as

A(s, t) =


ps if s < t

ps(1− ps) + 1
2p

2
s if s = t

ps(1− pt) if s > t .

(1)

As the game is symmetric, Bob’s payoff matrix is B = AT.
Our analysis of quantum races begins in Section 3 by analyzing a more tractable variant of the

game we call a stingy quantum race. In a stingy quantum race, there is no payout in the case of
a tie (the game organizer is stingy). A Nash equilibrium of a two-party stingy quantum race has
very strong constraints on its support structure (see Corollary 16). In particular, if (x, y) is a Nash
equilibrium in a two-party stingy quantum race, then the union of the supports of x and y must be an
interval {T, T + 1, . . . ,K} that contains the maximum running time K. There are 3 possible types of
Nash equilibria in a two-party stingy quantum race, and we characterize all of them (see Theorem 22,
and Appendix of [14].

One particularly nice type of equilibrium is what we call a coinciding equilibrium. In a coinciding
equilibrium, the support of all player’s strategies is the same, but the strategies do not have to be
identical. This is a more general notion than a symmetric equilibrium where all strategies are the
same. In a coinciding equilibrium for a stingy quantum race, the support of each player’s strategy is
an interval {T, T + 1, . . . ,K}. This leaves the problem of determining the starting point T of this
interval in a Nash equilibrium. We are able to show that there is always exactly one T such that there
is a Nash equilibrium with support {T, T + 1, . . . ,K}.

I Theorem 3 (Informal, see Theorem 22). In a two-party stingy quantum race defined by
probabilities p1, . . . , pK , there is a unique coinciding Nash equilibrium. In this equilibrium all
players play the same strategy, and the support of the strategies is an interval {T ∗, T ∗ + 1, . . . ,K}.

We also explicitly find this Nash equilibrium.
This result begs the question: what is this value of T ∗? At what success probability does it become

worthwhile to start measuring? By putting an additional restriction on the probabilities p1, . . . , pK ,
we can give quite a precise answer to this question. We say p1, . . . , pK is an `-dense sequence (see
Definition 13) if p1 ≤ `

K , pK ≥ 1 − `
K , and pi+1 − pi ≤ `

K for i = 2, . . . ,K − 1. This is quite a
natural restriction that is satisfied for many races. In the quantum search race, where the pi are the
Grover success probabilities, and therefore also in the application to Bitcoin, the `-density condition
is satisfied with ` = π/2. In the `-dense case, we can give the following bound on T ∗.
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49:4 Strategies for quantum races

I Theorem 4 (Informal, see Corollary 25 and Corollary 28). Let p1, . . . , pK be an `-dense
sequence with K ≥ 6`. Then the starting point T ∗ of the unique coinciding Nash equilibrium in the
stingy quantum race defined by these probabilities is such that pT∗ =

√
2− 1 + Θ

(
`
K

)
.

Thus it is worthwhile to start measuring once the success probability becomes around
√

2− 1, and
this is largely independent of the actual values of p1, . . . , pK .

In Section 4, we apply our analysis of two-player stingy quantum races to the case of general
quantum races. As the only difference between a stingy quantum race and a quantum race is the
payout on ties, intuitively strategies in these two kinds of races should have similar payoffs when the
probability of ties is small. We follow this intuition and show that when p1, . . . , pK form an `-dense
sequence the probability of a tie is O( `K ) (see Theorem 27) when players use the unique coinciding
equilibrium from the stingy race, and this strategy is an O( `K )-approximate Nash equilibrium of the
corresponding quantum race.

Approximate Nash equilibria are naturally an imperfect lens into true Nash equilibria. The
approximate Nash equilibrium we give would not be a reasonable suggestion for the actual strategies
of quantum players if there were other equilibria with much higher payoff, for example. We show
that this is not the case, and the approximate Nash equilibrium we give is nearly optimal in terms of
payoff amongst all symmetric equilibria.

I Theorem 5 (Informal, see Theorem 31 and Theorem 33). Let p1, . . . , pk be an `-dense
sequence with K ≥ 6`. Then the unique coinciding equilibrium of the two-player stingy quantum
race defined by these probabilities is an O( `K )-approximate Nash equilibrium in the corresponding

quantum race. Moreover, the payoff achieved by this strategy is within O(
√

`
K ) of the largest payoff

achievable by any symmetric Nash equilibrium.

To show that the approximate Nash equilibrium we give is nearly optimal in terms of payoff
(Theorem 33), we use the bilinear programming formulation of Nash equilbria due to Mangasarian
and Stone [15]. We exploit the properties of the sum of Alice’s and Bob’s payoff matrices A+AT

(from Eq. (1)). More specifically, It turns out that over a probability simplex x, the quadratic form
xT(A+AT)x is a negative-definite plus linear function. When optimizing over symmetric strategies
this makes the Mangasarian and Stone bilinear program (which is a maximization problem) into a
convex quadratic program. We then use Dorn’s [8] equivalent dual formulation of a convex quadratic
program (see Eq. (17)), which is a minimization problem. We explicitly construct a feasible solution
to this dual minimization problem to upper bound the payoff of any symmetric Nash equilibrium. Our
construction of this dual solution again makes use of our analysis of stingy quantum races.

1.1.0.2 Multiplayer case

The case of many players is what we are interested in for the application to Bitcoin. Luckily, we are
able to recover analogs of many of the results from the two-player case in the multiplayer case as
well. We start in Section 5 by analyzing n-player stingy quantum races, and show the following.

I Theorem 6 (Informal, see Theorem 41). Let p1, . . . , pK define an n-player stingy quantum
race. This race has a unique coinciding Nash equilibrium, and in this equilibrium all players play the
same strategy. The support of each strategy is an interval {T ∗, T ∗ + 1, . . . ,K}.

To show that an n-player stingy quantum race has a unique coinciding Nash equilibrium, our proof
proceeds through a 2-player asymmetric stingy quantum race. In a 2-player asymmetric race, Alice
has probabilities p1, . . . , pK of succeeding after t steps and Bob has a (potentially different) sequence
of probabilities P1, . . . , PK . An asymmetric race models the case where Alice and Bob have quantum
computers of potentially different speeds. We relate the payoff for Alice in a n-player stingy quantum
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race to the payoff for Alice in a 2-player quantum race against a more powerful opponent (see
Lemma 40). We can then refer to Theorem 21 in Section 3 which completely characterizes coinciding
equilibria in asymmetric 2-player stingy quantum races. This gives Theorem 6.

When the sequence p1, . . . , pK is `-dense, we can also say something about the starting point T ∗

of the n-player coinciding equilibrium, though not as precisely as in the two-party case.

I Theorem 7 (Informal, see Theorem 44). Let p1, . . . , pK be an `-dense sequence defining a
stingy n-player quantum race with n ≥ 2. If K ≥ 4e`n then the starting point T ∗ of the unique
coinciding equilibrium is such that pT∗ = Θ( 1

n ).

This means that the more players there are in a game, the earlier one starts to measure in the unique
coinciding equilibrium.

In light of Question 2 we also want to see what the probability of more than one player succeeding
at the same time in this unique coinciding equilibrium. We show the following.

I Theorem 8. Let P1, ...., PK define an `-dense stingy n-player quantum race such that 4en` ≤ K.
When the players play the coinciding equilibrium of the stingy race, the probability that two or more
players succeed at the same time is at most 8en`

K .

Finally, as in the two-party case, we show that the unique coinciding equilibrium of a stingy race
is also an approximate Nash equilibrium in the corresponding quantum race, provided the sequence
of probabilities is `-dense.

I Theorem 9. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2, with
4en` ≤ K. If x = (x1, ..., xn) is the coinciding Nash equilibrium for this stingy race, then x is an
8e`
K - approximate Nash equilibrium of the corresponding quantum race.

1.2 Application to Bitcoin

One application of our study of quantum races is to the decentralized digital currency Bitcoin,
developed in 2008 by Satoshi Nakamoto [16]. Bitcoin transactions are packaged into blocks and
stored in a public ledger called the blockchain. A major obstacle in creating a decentralized currency
is to find a way for all parties to agree on the history of transactions. In Bitcoin, this is done through
Nakamoto consensus: the right to create a new block is decided through proof-of-work, a contest
to solve a computational problem. The winner of this contest has the right to make a new block of
transactions, is given a reward in bitcoin, and then the process repeats itself. The players competing
in this process are called miners. Nakamato consensus remains the primary means of achieving
consensus across all cryptocurrencies, although there are coins using other consensus mechanisms
such as proof-of-stake [13] or Byzantine agreement [6].

The proof-of-work task used in Bitcoin (originally developed in a system called Hashcash [2]) is
essentially a search problem. The problem is to find a value x (called a nonce) such that h(H ‖ x) ≤ t,
where h is a hash function (doubly iterated SHA-256 in the case of Bitcoin), H is the header of the
block of transactions to be processed, and t is a hardness parameter that can be varied so that the
entire network takes 10 minutes to solve this task, on average.

Several works have studied the impact that quantum computers would have on the Bitcoin protocol
[5, 1, 18], both on the mining process we have described above and on the digital signatures used in
Bitcoin to authenticate ownership of coins. We will focus here on the impact of quantum computers
on Bitcoin mining.

As the Bitcoin proof-of-work is a search task, quantum miners could use Grover’s algorithm to
find a nonce x satisfying h(H ‖ x) ≤ t with quadratically fewer evaluations of the hash function

ITCS 2019
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h than is needed by a classical computer 1. The use of Grover’s algorithm creates new issues for
proof-of-work that do not exist in the classical case. Desirable properties of a proof-of-work task have
been studied from an axiomatic point of view by Biryukov and Khovratovich [3]. One property they
give is progress-freeness: the probability of a miner solving the proof-of work task in any moment is
independent of previous events. This is achieved for a classical miner in the Bitcoin proof of work,
as every call to the hash function is equally likely to find a good nonce x. Progress-freeness is not
achieved for a quantum miner running Grover’s algorithm, as the success probability grows roughly
quadratically with the amount of time the algorithm is run.

Sattath [18] points out that this gives a way for quantum miners to deviate from the prescribed
protocol in order to increase their chance of winning a block. To explain this deviation, imagine
a simplified case where the proof-of-work is to find a unique marked item in a database of size
N . Say that Alice, a quantum miner, receives a new block from the network which was found by
Bob. When Alice receives this block she will be in the middle of running Grover’s algorithm to find
the marked item herself. The prescribed protocol says that she should immediately halt this run of
Grover’s algorithm and begin working on a new search problem by mining on top of Bob’s new block.
However, if Alice has run Grover algorithm for c

√
N steps, for a constant c, she will have already

built up a constant probability of finding the marked item upon measuring. From the point of view of
maximizing her payoff, there is no harm in just measuring to see if she finds the marked item. If Alice
gets lucky and indeed finds the marked item, then she can broadcast her new block to the network.
Depending on her connectivity to the network, some other miners may receive Alice’s block before
Bob’s, and there is some probability that Alice’s new block eventually becomes the block accepted
by the network rather than Bob’s, meaning that Alice will receive the bitcoin reward. Note that this
does not happen in the classical case, where after Alice receives Bob’s block she would still just have
probability 1/N to find the marked item with each additional search query. In this case it makes sense
to immediately start mining on top of the new block.

Luckily, Sattath also provides an easy fix for the Bitcoin protocol to remedy this problem. Without
going into the technical details, this fix essentially forces miners to commit to how long they will
run Grover’s algorithm before they begin. Thus if Alice commits to running Grover’s algorithm for
time
√
N/100, yet receives Bob’s block after time

√
N/200, if she tries to immediately measure and

publish her own block, the network will reject it because of the timing discrepancy. This fix fits in
very well with our model of quantum races, as a strategy is exactly a probability distribution over
choices of times to measure.

The quantum race that captures the case of Bitcoin mining is what we call the Grover race
(see Definition 12). In this race, the success probability pt is given by the success probability of
t-iterations of Grover’s algorithm 2. This race is an `-dense race for ` = π/2. The size of the search
space, and thus the maximum number of iterations K to run Grover’s algorithm, is determined by
the difficulty setting of the Bitcoin protocol. Currently the difficulty (as of September 7, 2018) is
approximately 7 · 1012, which, by Bitcoin’s definition of difficulty, means that the network has to
do roughly 232 · 7 · 1012 many hashes to succeed, in expectation. This leads to a value of K of
approximately 1011. Thus for this application `

K is very small, and Theorem 9 implies that the
unique coinciding equilibrium for the stingy Grover race is an ε-approximate Nash equilibrium in the
Grover race for ε ≤ 3 · 10−10. This gives a reasonable answer to Question 1 for what a good strategy
would be for quantum miners, and moreover has the desirable property that all miners run the same

1 While this seems to give quantum computers a huge advantage for Bitcoin mining, specialized classical Bitcoin
mining hardware currently can perform14 trillion hashes per second [4] and would outperform a near-term quantum
computer with gate speeds of 100MHz [1]

2 It is known that t queries of Grover’s algorithm maximizes the probability of success in a search problem over all
t-query quantum algorithms [7].
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algorithm. By Theorem 8, when there are n miners running this strategy the probability of a tie is at
most 3n · 10−10. This gives an answer to Question 2, that quantum mining is not likely to produce a
high forking rate and thereby destabilize the Bitcoin protocol.

2 Preliminaries

We use e ≈ 2.71828 for Euler’s number. For a probability 0 ≤ p ≤ 1, we set p̄ = 1− p. For a natural
number n, we let [n] = {1, ..., n}. We let ∆n = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1} be the probability

simplex. For x ∈ ∆n we let sup(x) = {i ∈ [n] : xi > 0} be the support of x.

I Definition 10 (quantum race). A 2-player quantum race is specified by two sequences of
increasing probabilities 0 < p1 < p2 < · · · < pK ≤ 1, and 0 < P1 < P2 < · · · < PK ≤ 1 for some
integer K ≥ 2. The set of pure strategies of both players is [K]. The K ×K payoff matrix A of
Alice and B of Bob are defined as

A(i, j) =


pi if i < j,

piP̄j + 1
2piPi if i = j,

piP̄j otherwise.

B(i, j) =


Pj if j < i,

Pj p̄i + 1
2piPi if i = j,

Pj p̄i otherwise.

If pi = Pi for all i = 1, . . . ,K then we call the game a symmetric quantum race. Note that in this
case B = AT.

In our study of quantum races, a key role will be played by an auxiliary game that is easier to
analyze called a stingy quantum race. A stingy quantum race differs from a quantum race only in that
no payout is given in the case of a tie.

I Definition 11 (stingy quantum race). A 2-player stingy quantum race is specified by two
sequences of increasing probabilities 0 < p1 < p2 < · · · < pK ≤ 1, and 0 < P1 < P2 < · · · <
PK ≤ 1 for some integer K ≥ 2. The set of pure strategies of both players is [K]. The K×K payoff
matrix A0 of Alice is defined as

A0(i, j) =
{
pi if i < j,

piP̄j otherwise.

The payoff matrix of Bob B0 is defined as

B0(i, j) =
{
Pj if j < i,

Pj p̄i otherwise.

If pi = Pi for all i = 1, . . . ,K then we call the game a symmetric stingy quantum race. Note that in
this case B0 = AT

0 .

The main specific quantum race we will be interested in is the Grover race. This results from two
players competing to find a marked item in a database and playing by running Grover’s algorithm for
a certain amount of time and then measuring. Formally, the race is defined as follows.

I Definition 12 (Grover race). We define the (stingy) Grover race on N items as the symmetric
(stingy) quantum race withK =

⌈
π
4
√
N − 3/2

⌉
and pt = sin2

(
2(t+ 1/2) arcsin

(
1√
N

))
, for 1 ≤

t ≤ K.
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Here pt is the success probability of Grover’s algorithm of finding a unique marked item in a database
of N items. It is known that pt is the highest success probability for finding a marked item for any
quantum algorithm making t many calls to the database [7].

The Grover race has many nice properties, and we will abstract out one of them here. This allows
us to show results for a general class of quantum races, rather than just the Grover race.

I Definition 13 (dense race). Let p1 < p2 < · · · < pK ≤ 1. We call the sequence (p1, . . . , pK)
`-dense if p1 ≤ `

K , pK ≥ 1− `
K , and pi+1− pi ≤ `

K for all i = 1, . . . ,K − 1. For a dense sequence
(p1, . . . , pK) will similarly call the symmetric (stingy) quantum race defined by this sequence a
symmetric (stingy) `-dense quantum race.

The (stingy) Grover race is an `-dense race with ` = π/2.

3 Two-player stingy quantum races

We will first analyze Nash equilibria in stingy quantum races. We can show several structural
properties about the support of Nash equilibria in stingy quantum races that make them easier to
analyze than quantum races. After our analysis in this section, we will bootstrap our knowledge of
Nash equilibria in stingy quantum races to find an approximate Nash equilibrium for quantum races.

Consider a stingy quantum race given by the probabilities 0 < p1 < p2 < · · · < pK ≤ 1
and 0 < P1 < P2 < · · · < PK , and let y be a mixed strategy of Bob. For t ≤ K, we let
sup≤t(y) = {j ∈ sup(y) : j ≤ t} be the set of times played by Bob that are at most t, and similarly,
we let sup>t(y) = {j ∈ sup(y) : j > t} be the set of times played by Bob that are greater than t.
Observe that when Alice plays the pure strategy t against y, her payoff is

eT
t Ay = pt

 ∑
j∈sup≤t(y)

yjP̄j +
∑

j∈sup>t(y)

yj

 .

I Claim 14. Let (x, y) be a Nash equilibrium of a 2-player stingy quantum race. If t1 ∈ sup(x)
then there does not exist t2 > t1 with sup≤t1(y) = sup≤t2(y).

Proof. Say that the game is defined by probabilities 0 < p1 < p2 < · · · < pK ≤ 1 and 0 < P1 <

P2 < · · · < Pk If sup≤t1(y) = sup≤t2(y) then

eT
t2Ay = pt2

pt1
eT
t1Ay.

As pt1 < pt2 , the payoff for playing t2 is strictly larger than that for playing t1. Therefore t1 is not a
best response for y, in contradiction with the definition of a Nash equilibrium.

J

This claim implies that the support structure of Nash equilibria in stingy quantum races is relatively
simple. We first make the following definition.

I Definition 15. A pair of strategies (x, y) is called coinciding if sup(x) = sup(y). A pair of
strategies (x, y) is called alternating if there exists 1 ≤ t1 < t2 ≤ K such that the support of one
player is {t1, t1 + 2, . . . , t2 − 1} and the support of the other is sup(y) = {t1 + 1, t1 + 3, . . . , t2}.
A pair of strategies (x, y) is called (t1, c, t2)-alternating-coinciding if there are natural numbers
1 ≤ t1 < t2 ≤ K and t1 + 2 ≤ c ≤ t2 such that the support of one player is {t1, t1 + 2, . . . , c −
2, c, c + 1, c + 2, . . . , t2} and the support of the other is sup(y) = {t1 + 1, t1 + 3, . . . , c − 3, c −
1, c, c+ 1, c+ 2, . . . , t2}.
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I Corollary 16. Let (x, y) be a Nash equilibrium of a stingy quantum race specified by probabilities
0 < p1 < p2 < · · · < pK ≤ 1 and 0 < P1 < P2 < · · · < Pk. Then there is some 1 ≤ T ≤ K such
that

sup(x) ∪ sup(y) = [T,K] ,
(x, y) is either coinciding, alternating, or alternating-coinciding.

Proof. From Claim 14 we can easily derive the following two statements:
sup(x) ∪ sup(y) is an interval containing the time with maximum success probability,
For every t1, t2 ∈ sup(x) there must be t ∈ sup(y) with t1 < t ≤ t2.

These statements immediately imply the claim. J

We now study the particularly simple coinciding equilibria. Due to space constraints we do
not discuss the other types of equilibria here. However, we give a full characterization of all Nash
equilibria in a symmetric stingy quantum race in the full version of the paper [14].

3.1 Unique coinciding equilibrium

We first look for Nash equilibria where the mixed strategies of Alice and Bob have the same
support. If the number of strategies is K, we know by Corollary 16 that this support must be a set
{T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K.

I Lemma 17. Consider a stingy quantum race defined by 0 < p1 < . . . < pK ≤ 1 and 0 <

P1 < P2 < · · · < Pk. Let x, y ∈ RK . Then (x, y) is a Nash equilibrium for this game with support
{T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K, if and only if x and y satisfy the following system of
equations and inequalities.

eT
t Ay = eT

TAy, for T < t ≤ K , (2)

eT
T−1Ay ≤ eT

TAy, (3)

yt = 0 for 0 < t < T , (4)

yt > 0 for T ≤ t ≤ K , (5)
K∑
t=T

yt = 1 (6)

xTBet = xTBeT , for T < t ≤ K , (7)

xTBeT−1 ≤ xTBeT , (8)

xt = 0 for 0 < t < T , (9)

xt > 0 for T ≤ t ≤ K , (10)
K∑
t=T

xt = 1 . (11)

Proof. Eq. (4)–(6) and (9)–(11) express that x and y are probability distributions with support
{T, T + 1, . . . ,K}. The other conditions for a Nash equilibrium are that all strategies in the support
of x are best responses against y and vice versa. That all strategies in the support of x are best
responses against y means

eT
t Ay = eT

TAy, for T < t ≤ K ,

eT
t−1Ay ≤ eT

t Ay, for 1 ≤ t < T.
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The first equation here is exactly Eq. (2). The inequality here is implied by Eq. (3). This is because
for t < T − 1, eT

t Ay = pt

pT −1
eT
T−1Ay, as sup≤T−1(y) = sup≤t(y). A similar argument show that

Eq. (7)–(8) show that all strategies in the support of y are best responses against x. J

When PK = 1, then Alice has zero payoff on playing time K. Thus as long as K ≥ 2, when
PK = 1 there is no coinciding Nash equilibrium (x, y) where sup(x) = sup(y) = {K}. A similar
argument applies when pK = 1. We will therefore exclude the case T = K and either pK = 1 or
PK = 1 for the next definition and Lemma 19.

I Definition 18. We define the values qAT , q
B
T , for T = 2, . . . ,K, and rAT , r

B
T , z

A
T , z

B
T , for T =

1, . . . ,K − 1. The values zAK , r
A
K are not defined when T = K, pK = 1 and zBK , r

B
K are not defined

when T = K,PK = 1.

qAi = 1
pi

(
1

Pi−1
− 1
Pi

)
, qBi = 1

Pi

(
1

pi−1
− 1
pi

)
,

rAT = 1
p̄T

(
1
PK
−

K∑
i=T+1

p̄iq
A
i

)
, rBT = 1

P̄T

(
1
pK
−

K∑
i=T+1

P̄iq
B
i

)
,

zAT = rAT +
K∑

i=T+1
qAi , zBT = rBT +

K∑
i=T+1

qBi .

I Lemma 19. For every 1 ≤ T ≤ K − 1, and the case T = K and PK 6= 1, the system of linear
equations composed of the Eq. (2), (4) and (6) of Lemma 17 has a unique solution given by

yt =


rBT /z

B
T if t = T,

qBt /z
B
T if T < t ≤ K,

0 otherwise .

Proof. For convenience, we drop the normalization condition
∑K
t=T yt = 1 and instead scale y such

that the expected payoff of a best response is 1. That is, we replace Eq. (6) by Eq. (12):

eT
TAy = 1. (12)

Clearly the solutions of Eq. (2),(4),(6) and the solutions of Eq. (2),(4),(12) differ only by a constant
multiplicative factor, and from a solution of the latter system a solution of the former one can be
obtained by dividing it coordinate-wise by

∑K
t=T yt.

We first want to find the solutions of Eq. (2) and (12). Together, they can be expressed in matrix
form as:


pT P̄T pT pT · · · pT
pT+1P̄T pT+1P̄T+1 pT+1 · · · pT+1
pT+2P̄T pT+2P̄T+1 pT+2P̄T+2 · · · pT+2

...
. . .

...
pK P̄T pK p̄T+1 pK P̄T+2 · · · pK P̄K




yT
yT+1
yT+2

...
yK

 =


1
1
1
...
1

 . (13)

We can simplify the above system of linear equations as follows:


0 PT+1 0 · · · 0
0 0 PT+2 · · · 0
0 0 0 · · · 0
...

. . .
...

P̄T P̄T+1 P̄T+2 · · · P̄K




yT
yT+1
yT+2

...
yK

 =


1/pT − 1/pT+1

1/pT+1 − 1/pT+2
1/pT+2 − 1/pT+3

...
1/pK

 .
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From this we can see that, for every 1 ≤ T ≤ K, Eq. (13) has a unique solution, given by yT = rBT ,
and yt = qBt , for T < t ≤ K. J

I Definition 20. Define T ∗A (respectively T ∗B) as the smallest integer 1 ≤ T ≤ K such that rAT > 0
(respectively rBT > 0). When T ∗A = T ∗B we denote their common value as T ∗.

This definition makes sense as in the case pK = 1 (when rAK is not defined) we see that rAK−1 > 0
and otherwise rAK = 1

p̄KPK
> 0. A similar argument applies for rBK .

I Lemma 21. Eq. (2)–(6) have a solution if and only if T = T ∗B . In the case T = T ∗B , the solution
is unique and is given by

yt =
{
rBT∗

B
/zBT∗

B
if t = T ∗B ,

qBt /z
B
T∗

B
if T ∗B < t ≤ K.

Proof. Refer [14]. J

The following theorem characterizes the coinciding Nash equilibria in a stingy quantum race.

I Theorem 22. A stingy quantum race defined by probabilities 0 < p1 < . . . < pK ≤ 1 and
0 < P1 < . . . < PK ≤ 1 has a coinciding Nash equilibrium if and only if T ∗A = T ∗B . In this case,
letting T ∗ = T ∗A = T ∗B there is a unique coinciding equilibrium given by

xt =
{
rAT∗/zAT∗ if t = T ∗,

qAt /z
A
T∗ if T ∗ < t ≤ K

, yt =
{
rBT∗/zBT∗ if t = T ∗,

qBt /z
B
T∗ if T ∗ < t ≤ K .

In particular, when pi = Pi for all 1 ≤ i ≤ K then (x, x) is the unique coinciding Nash equilibrium.

Proof. By Lemma 17 a coinciding Nash equilibrium (x, y) supported on {T, T + 1, . . . ,K} must
satisfy Eq. (2)–(11). By Theorem 21, Eq. (2)–(6) are satisfied if and only if T = T ∗B and y is given as
in the Lemma. We can also apply Theorem 21 to (the transpose of) Eq. (7)–(11) to see that they have
a solution if and only if T = T ∗A and x is given by

xt =


rAT∗

A
/zAT∗

A
if t = T ∗A,

qAt /z
A
T∗

A
if T ∗A < t ≤ K,

0 otherwise.

As x and y must have the same support in a coinciding Nash equilibrium, there can only exist a
coinciding Nash equilibrium if T ∗A = T ∗B .

When pi = Pi for all 1 ≤ i ≤ K then clearly rAT = rBT and qAi = qBi and it will always be the
case that T ∗A = T ∗B . Thus there will always exist a Nash equilibrium in this case, given by the unique
solution to Eq. (2)–(11). J

3.2 Payoff and collision probability

In this section we will explore the consequences of the coinciding Nash equilibrium we have found
for the payoff of the game and for the probability that the two players win at the same time, the
collision probability. For these results, we will only consider the symmetric case when there is always
a unique symmetric equilibrium whose support begins at T ∗ = T ∗A = T ∗B . Note that the payoff for
each player with this strategy is 1

zT ∗ . Since a player receives payoff 1 upon winning, 1
zT ∗ is also

exactly the each player’s winning probability.
To investigate the collision probability, we will also make the following definitions.
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I Definition 23 (Unnormalized collision probability). Define

σ(T ) = p2
T r

2
T +

K∑
i=T+1

p2
i q

2
i .

With this definition, 1
z2

T ∗
σ(T ∗) is the collision probability we are interested in. First we analyze the

payoff in a symmetric stingy quantum race.

I Theorem 24. Let p1 < p2 < · · · < pK define a stingy symmetric quantum race. Then
zT∗ = 1 +

√
1 + 1

p2
K

+ σ(T ∗). In particular, 1
zT ∗ ≤

√
2− 1.

Proof. Refer [14]. J

I Corollary 25. If T ∗ ≥ 2 then

pT∗−1 ≤
√

2− 1 .

Proof. As can be seen from Bob playing time T ∗−1, we have pT∗−1zT∗ ≤ 1, thus pT∗−1 ≤
√

2−1
by Theorem 24. J

Although Theorem 24 gives an exact expression for the payoff, we would like to get a general
lower bound on the payoff. This requires showing an upper bound on the collision probability.
Showing an upper bound on the collision probability is also important for the application to Bitcoin,
to estimate the forking probability amongst quantum miners.

The first step to upper bounding the collision probability is to get a rough lower bound on pT∗ .
This is our initial bootstrap, which will then let us upper bound the collision probability and then in
turn get a sharper lower bound on pT∗ in Corollary 28. For these results we restrict to `-dense stingy
quantum races.

I Lemma 26. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. If K ≥ 6` then
pT∗ > 5

21 . In particular, T ∗ ≥ 2.

Proof. Refer [14]. J

I Theorem 27. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. If K ≥ 6` then

σ(T ∗)
z2
T∗
≤ 6`
K

and σ(T ∗) ≤ 196`
K

.

Proof. Refer [14]. J

Now that we have an upper bound on the collision probability, we obtain the following corollary
to Theorem 24.

I Corollary 28. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. Let τ = 50
√

2`
K .

If K ≥ 6` then

zT∗ ≤
√

2 + 1 + τ,
1
zT∗
≥
√

2− 1− τ(
√

2− 1)2, pT∗ ≥
√

2− 1− τ(
√

2− 1)2 .

Proof. Refer [14]. J
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4 Two-player quantum races

In this section, we bootstrap our results about symmetric stingy quantum races to analyze symmetric
quantum races. Our main results are two-fold.
1. The unique coinciding Nash equilibrium in an `-dense symmetric stingy quantum race is an

approximate Nash equilibrium in the corresponding quantum race.
2. The approximate Nash equilibrium from (1) achieves a payoff which is nearly optimal among all

symmetric Nash equilibria in a symmetric quantum race.

The intuition for item (1) is clear. The only difference between a stingy quantum race and a
quantum race is the payoff on ties. For the unique coinciding Nash equilibrium we have shown that
the collision probability is O(`/K), thus the change in payoff on ties will make only a small change
to the payoffs under this strategy.

For item (2), we use the quadratic programming characterization of Nash equilibria [15]. Consider
a game (A,B) where A,B are m-by-n matrices. The program

maximize
x∈∆m,y∈∆n,α,β∈R

xT (A+B)y − α− β

subject to Ay ≤ α1,
BTx ≤ β1,

(14)

has an optimal value of 0, and any (x, y) attaining the value 0 is a Nash equilibrium. In the case of
a symmetric quantum race (A,AT ), when we restrict to symmetric strategies (x, x) the objective
function in Eq. (14) becomes negative definite plus linear, making this a standard quadratic program.
We then use the tight dual formulation of a quadratic program [8] to give an upper bound on the
payoff of any symmetric Nash equilibrium, by explicitly constructing solutions to the dual problem.
This allows us to show that the payoff of the unique coinciding equilibrium in a stingy race achieves a
payoff which is within O(

√
`/K) of optimal amongst all symmetric equilibria in the corresponding

quantum race.
We now proceed to show these two results.

4.1 Approximate Nash equilibrium

I Definition 29. A two-player game described by payoff matrices (A,B) is said to have an
ε-approximate Nash equilibrium (p, q), for ε ≥ 0, if the following two conditions hold

pTAq ≥ vTAq − ε for all v ∈ ∆m (15)

pTBq ≥ pTBu− ε for all u ∈ ∆n . (16)

I Definition 30. A two-player game described by payoff matrices (A,B) is said to have an ε-well
supported Nash equilibrium (p, q), for ε ≥ 0 if

eT
i Aq ≥ eT

j Aq − ε for all i ∈ sup(p) and j ∈ [m]
pTBei ≥ pTBej − ε for all i ∈ sup(q) and j ∈ [n] .

Note that an ε-well supported Nash equilibrium is also an ε-approximate Nash equilibrium, but the
reverse does not hold.

I Theorem 31. Let p1, . . . , pK be an `-dense sequence defining the symmetric stingy quantum
race (A0, A

T
0 ) and the symmetric quantum race (A,AT ). Let (x, x) be the unique coinciding

Nash equilibrium for the stingy quantum race (A0, A
T
0 ) given by Theorem 22. Then (x, x) is a

7(
√

2−1)`
K -well supported Nash equilibrium in the quantum race (A,AT ).
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Proof. To show that (x, x) is an ε-well supported Nash equilibrium in the quantum race (A,AT ) it
suffices to show that eT

i Ax ≥ eT
j Ax− ε for all T ∗ ≤ i ≤ K and j ∈ [K]. We omit the details of the

proof here and refer the readers to [14]. J

4.2 Upper bound on payoff

Let (x, x) be the unique coinciding Nash equilibrium in an `-dense symmetric stingy quantum race
(A0, A

T
0 ). We have just shown that (x, x) is a 7(

√
2−1)`
K -well supported Nash equilibrium in the

corresponding quantum race (A,AT). By Corollary 28, (x, x) achieves payoff at least
√

2 − 1 −
50
√

2(
√

2−1)2 `
K in the game (A,AT). In this section, we show that this payoff is within O(

√
`/K)

of optimal among all symmetric strategies (y, y) for the game (A,AT).
Our starting point is to use the program in Eq. (14) to provide a means to upper bound the value

of any symmetric equilibrium.

I Lemma 32. Let (A,AT ) be a symmetric game and define for c ≥ 0

γA(c) = maximize
x

1
2x

T (A+AT )x

subject to Ax ≤ c1,
1Tx = 1, x ≥ 0.

For all c0, such that γA(c) < c for all c ≥ c0, the payoff of any symmetric Nash equilibrium in the
game (A,AT) is less than c0.

Proof. We show the contrapositive. Suppose there is a symmetric Nash equilibrium (x, x) with
payoff c ≥ c0. Then (x, x, c, c) is a feasible solution to the program in Eq. (14) with objective value
0. Thus Ax ≤ c and 1

2x
T(A+AT)x = c. J

This is the approach we take to upper bounding the payoff of symmetric Nash equilibria in a
quantum race.

I Theorem 33. Let p1, . . . , pK be an `-dense sequence with K ≥ 6`. Then any symmetric
Nash equilibrium (x, x) in the two-player quantum race defined by p1, . . . , pK has payoff at most
√

2− 1 + 5
√

`
K .

Proof. Let (A,AT) be the payoff matrices of a two-player quantum race defined by p1, . . . , pK . We

will show that γA(c) < c for all c >
√

2− 1 + 5
√

`
K . By Lemma 32 this proves the theorem.

In the case of a quantum race A+AT = p1T + 1pT − ppT. This means that over the probability
simplex, the quadratic form xT(A+AT)x = −xT(ppT)x+ 2pTx is a negative-definite plus linear
function. In this case, γA(c) is in the standard form of a quadratic program and has a dual program
with matching value [8].

γA(c) = minimize
v∈RK ,λ,d∈R

1
2λ

2 + c · 1Tv + d

subject to AT v ≥ (1− λ)p− d1 ,

v ≥ 0.

(17)

Our approach will be to construct a feasible solution to Eq. (17) to demonstrate that γA(c) < c

for all c >
√

2− 1 + 5
√

`
K .
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First note that for c > 1
2 there is a trivial solution where λ = 1, d = 0 and v is the all-zero vector

which shows that γ(c) < c. We now focus on the case c ≤ 1
2 . Let

√
2− 1 ≤ c ≤ 1

2 . We will develop
a lower bound on c which implies γA(c) < c.

Let S be the smallest index i such that pi ≥ c. Note that as A is an `-dense quantum race we have
pS ≤ c+ `

K . We let

d = (1− λ)
(

1 + pK −
pK
pS

)
and

v(i) =


0 if 1 ≤ i < S

(1− λ− d)pS

p̄S

1
pi

(
1
pi
− 1

pi+1

)
if S ≤ i < K

(1− λ− d) pS

p2
K
p̄S
− (1−λ)

pK
if i = K .

The choice of v comes from solving the system of linear equations (AT
0 v)i = (1 − λ)pi − d for

S ≤ i ≤ K. The parameter λ will be chosen later.
Let us see that v satisfies the constraints of Eq. (17). Note that 1− λ− d = (1− λ)pK p̄S

pS
. Thus

v(K) = 0 and v ≥ 0 so long as λ ≤ 1.
As mentioned, by construction v satisfies (AT0 v)i = (1 − λ)pi − d for S ≤ i ≤ K. Thus as

A = A0 + 1
2diag(p)2 and v ≥ 0 we also have (AT v)i ≥ (1− λ)pi − d for S ≤ i ≤ K.

For i < S we have that

(AT v)i ≥ (AT0 v)i = p̄ip
T v ≥ p̄SpT v = (1− λ)pS − d ≥ (1− λ)pi − d .

Thus the constraint AT0 v ≥ (1− λ)p− d1 is satisfied. We have shown that v is a feasible solution for
any choice of λ ≤ 1. We now choose λ to minimize the objective value. Substituting our choices of
v, d into the objective value we have

γA(c) ≤ 1
2λ

2 + (1− λ)
(

1 + pK −
pK
pS

)
+ c(1− λ)pK

K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

)

= 1
2λ

2 + (1− λ)
(

1 + pK

(
− p̄S
pS

+ c ·
K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

)))

Define

β(c) = 1 + pK

(
− p̄S
pS

+ c ·
K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

))
.

The objective value 1
2λ

2 + (1 − λ)β(c) is minimized over λ by taking λ = β(c). This makes the
objective value β(c)−β(c)2/2. We have now reduced the problem to showing β(c)−β(c)2/2−c < 0.
The roots of the corresponding quadratic equation are 1±

√
1− 2c. Note that c ≤ 1/2, thus the square

root term will be real. Thus we will simultaneously have β(c) ≤ 1 and β(c)− β(c)2/2 < c when

β(c) < 1−
√

1− 2c. In Lemma 34, we show that β(c) < 1−
√

1− 2cwhen
√

2−1+5
√

`
K ≤ c ≤

1
2 .

This will conclude the proof. J

I Lemma 34. β(c) < 1−
√

1− 2c for any
√

2− 1 + 5
√

`
K ≤ c ≤

1
2 .

Proof. Refer [14]. J
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5 Multiplayer quantum races

5.1 Basic properties

For an integer n ≥ 2, an n-player game is specified by a set of pure strategies Si, and payoff
functions ui : S → R, for each player i ∈ [n], where by definition S = S1 × · · · × Sn is the
set of pure strategy profiles. For s ∈ S, the value ui(s) is the payoff of player i for pure strategy
profile s. Let S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn be the set of all pure strategy profiles of
players other than i. For s ∈ S and i ∈ [n], we set the partial pure strategy profile s−i ∈ S−i to
be (s1, . . . si−1, si+1, . . . , sn). For s′ in S−i, and si ∈ Si, we denote by (s′, si) the combined pure
strategy profile (s′1, . . . , s′i−1, si, s

′
i+1, . . . , s

′
n) ∈ S. We will suppose that each player has m pure

strategies and that Si = {e1, . . . , em}, the canonical basis of the vector space Rm, for all i ∈ [n], and
therefore S = {e1, . . . , em}n. For simplicity, instead of ej we often say strategy j.

A mixed strategy for player i is a probability distribution over Si that we identify with a vector
xi = (x1

i , . . . x
m
i ) such that xji ≥ 0, for all j ∈ [m], and

∑
j∈[m] x

j
i = 1. We denote by ∆i the set of

mixed strategies for i, and we call ∆ = ∆1 × · · · ×∆r the set of mixed strategy profiles. For a mixed
strategy profile x = (x1, . . . , xn) and pure strategy profile s ∈ S, the product xs = xs1

1 x
s2
2 · · ·xsn

n is
the probability of s in x. We will consider the multilinear extension of the payoff functions from S to
∆ defined by ui(x) =

∑
s∈S x

sui(s). The set ∆−i, the partial mixed strategy profile x−i, for x ∈ ∆
and i ∈ [n], and the combined mixed strategy profile (x′, xi) for x′ ∈ ∆−i and xi ∈ ∆i are defined
analogously to the pure case.

The pure strategy si is a best response for player i against the partial mixed strategy profile
x′ ∈ ∆−i if it maximizes ui(x′, ·). For x ∈ ∆ and i ∈ [n], we will denote by br(x−i) the set of best
responses of player i against x−i. A Nash equilibrium is a mixed strategy profile x = (x1, . . . , xn)
such that sup(xi) ⊆ br(x−i), for all i ∈ [n].

I Definition 35 (n-party stingy quantum race). Let n ≥ 2 be a positive integer. An n-party stingy
quantum race is defined by a sequence of increasing probabilities 0 < P1 < P2 < . . . < PK ≤ 1,
for some positive integer K. The set of pure strategies of all players is [K]. For every i, the utility
function of the ith player is defined as

ui(s1, . . . , sn) = Psi

∏
k 6=i,sk≤si

P̄sk
.

Consider an n-party stingy quantum race given by the probabilities 0 < P1 < . . . < PK ≤ 1, and
let x−i ∈ ∆−i for some i ∈ [n]. If player i plays the pure strategy s against x−i, her payoff is

ui(x−i, s) = Ps
∏
k 6=i

 ∑
sk∈sup≤s(xk)

xsk

k P̄sk
+

∑
sk∈sup>s(xk)

xsk

k

 . (18)

The following is the multiparty analog of Claim 14.

I Claim 36. Let x = (x1, . . . xn) be a Nash equilibrium of an n-party stingy quantum race defined
by probabilities P1 < . . . < PK . If s1 ∈ sup(xi), for some i ∈ [n], then for all s2 > s1 there exists
k 6= i such that sup≤s1(xk) 6= sup≤s2(xk).

Proof. If sup≤s1(xk) = sup≤s2(xk), for all k 6= i then

ui(x−i, s2) = Ps2

Ps1

ui(x−i, s1).

As ps1 < ps2 , the payoff for playing s2 is strictly larger than that for playing s1. Therefore s1 is not a
best response for x−i, in contradiction with the definition of a Nash equilibrium. J
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This claim implies the following properties for the supports of Nash equilibria in a multiplayer
stingy quantum race.

I Corollary 37. Let x be a Nash equilibrium of an n-party stingy quantum race defined by
probabilities 0 < P1 < P2 < . . . < PK ≤ 1. Then we have:⋃n

i=1 sup(xi) is an interval containing K,
for every i ∈ [n], for every s1, s2 ∈ sup(xi) there exists s ∈

⋃
k 6=i sup(xk) with s1 < s ≤ s2.

Let x be a Nash equilibrium of an n-party stingy quantum race. We say that x is coinciding if
sup(xi) = sup(xk), for all i, k ∈ [n]. We call this common support in a coinciding Nash equilibrium
the support of the equilibrium. In the multiparty case we will only study coinciding Nash equilibria.

5.2 Coinciding Nash equilibria of stingy multiplayer races

By Corollary 37 we know that in a coinciding Nash equilibrium of an n-party stingy quantum race
the support of the equilibrium is of the form {T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K. We would
like to characterize these coinciding equilibria.

I Lemma 38. Let x = (x1, . . . , xn), where xi is a K-dimensional real vector for every i ∈ [n],
and let 1 ≤ T ≤ K. Then x is a Nash equilibrium of support {T, T + 1, . . . ,K} in an n-party stingy
quantum race defined by 0 < P1 < . . . < PK ≤ 1 if and only x satisfies the following system, for all
i ∈ [n]:

ui(x−i, t) = ui(x−i, T ) for T < t ≤ K , (19)

ui(x−i, T − 1) ≤ ui(x−i, T ) , (20)

xti = 0 for 0 < t < T , (21)

xti > 0 for T ≤ t ≤ K , (22)
K∑
t=T

xti = 1 . (23)

Proof. For every i ∈ [n], Eq. (21)–(23) express that xi is a probability distribution of support
{T, T + 1, . . . ,K}. For T ≥ 2, when playing a strategy t < T against the partial mixed strategy
profile x−i, the ith player’s payoff is maximized if she plays T − 1. Therefore Eq. (19) and (20)
express that the strategies in her support are all best responses against x−i. J

I Definition 39. For an n-party stingy quantum race defined by 0 < P1 < . . . < PK ≤ 1 we define
its reduced game as the 2-party stingy quantum race defined by the two sequences of probabilities
p1 < . . . < pK , and P1 < . . . < PK where pj = P

1/(n−1)
j , for 1 ≤ j ≤ K.

We denote by A the payoff matrix of the first player in the reduced game

I Lemma 40. Let an n-party stingy quantum race be defined by 0 < P1 < . . . < PK ≤ 1, let
x = (x1, . . . , xn), where xi is a K-dimensional vector, and let 1 ≤ T ≤ K. Then Eq. (19)–(23) are
satisfied by x, for every i ∈ [n] if and only if Eq. (2)–(6) for the reduced game are satisfied by xi, for
every i ∈ [n].

Proof. Refer [14]. J

The following theorem characterizes the coinciding Nash equilibria in an n-party stingy quantum
race.
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I Theorem 41. An n-party stingy quantum race always has a unique coinciding Nash equilibrium
x = (x1, . . . , xn), where x1 = · · · = xn. If the game is defined by the probabilities 0 < P1 < P2 <

· · · < PK then the coinciding equilibrium has support {T ∗, T ∗ + 1, . . . ,K}, where T ∗ = T ∗B of the
reduced game, and for all i ∈ [n], the distribution xi is defined on its support as

xti =
{
rBT∗/zBT∗ if t = T ∗,

qBt /z
B
T∗ if T ∗ < t ≤ K.

Proof. Combining Lemma 38 and Lemma 40, we get that x is a coinciding Nash equilibrium of
support {T, T + 1, . . . ,K} if and only if xi satisfies Eq. (2)–(6) for the reduced game, for all i ∈ [n].
By Theorem 21 this happens if and only if T = T ∗B of the reduced game, and the unique solution for
xi, for i ∈ [n], is the one stated by the Theorem. J

5.3 Collision probability of the stingy coinciding equilibrium

Our main objective in this section is to upper bound the collision probability—the probability that
two or more players succeed at the same time—in the coinciding equilibrium found in the last section
for an `-dense stingy n-player quantum race. To help with this, we make the following definition.

I Definition 42. For a joint probability distribution y = (y1, . . . , yn) ∈ ∆, let cpmi (y) denote the
probability that player i succeeds first and that exactly m players (including i) succeed at the same
time under the joint strategy y. Let cpi(y) =

∑n
m=2 cpmi (y) denote the probability that player i

succeeds first and at least one other player succeeds at the same time.

Let us also set up notation to describe the coinciding equilibrium in a stingy multiplayer race.
Define the following quantities

qi = 1
Pi

(
1

P
1/(n−1)
i−1

− 1
P

1/(n−1)
i

)
, rT = 1

P̄T

(
1

P
1/(n−1)
K

−
K∑

i=T+1
P̄iqi

)
, zT = rT +

K∑
i=T+1

qi .

Let T ∗ be the starting point of the support of the coinciding equilibrium. Then by Theorem 41, the
strategy of player i in the coinciding equilibrium is given by

xti =


rT∗/zT∗ if t = T ∗,

qt/zT∗ if T ∗ < t ≤ K,
0 if t < T ∗ .

(24)

To obtain concrete bounds on the collision probability, we will need bounds on zT∗ and PT∗−1.

I Lemma 43. In any stingy multiplayer quantum race with n players (1/zT∗)n−1 < 1/n.

Proof. Refer [14]. J

I Theorem 44. Let P1, . . . , PK define a stingy n-player quantum race with n ≥ 2. Then PT∗−1 <
1
n . If in addition P1, ...., PK form an `-dense sequence and 4e`n ≤ K then PT∗−1 ≥ 1

2en , where e is
Euler’s number.

Proof. Refer [14]. J

The next lemma bounds the collision probability for player i when all players but player i play
according to the coinciding equilibrium, and player i plays an arbitrary strategy v. We will use
this lemma to bound the total collision probability and also in Section 5.4 to show that the stingy
coinciding equilibrium is an approximate equilibrium in a multiparty race.
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I Lemma 45. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2, with
4en` ≤ K, and let x be the unique coinciding equilibrium given by Eq. (24). Then cpi(x−i, v) ≤ 8e`

K

for any i ∈ [n] and v ∈ ∆i.

Proof. Refer [14]. J

I Theorem 8. Let P1, ...., PK define an `-dense stingy n-player quantum race such that 4en` ≤ K.
When the players play the coinciding equilibrium of the stingy race, the probability that two or more
players succeed at the same time is at most 8en`

K .

Proof. By Lemma 45, the probability that two or more players succeed at the same time is at most

n∑
i=1

cpi(x) ≤ 8en`
K

.

J

5.4 Multiplayer quantum races

In this section we use our results about the stingy multiplayer quantum race to analyse the multiplayer
quantum race. Namely, we show that the coinciding equilibrium in a stingy multiplayer quantum race
is an approximate equilibrium in a multiplayer race. The difference between a stingy multiplayer race
and a multiplayer race is that in a multiplayer race, the payoff is equally divided amongst all players
who succeed first at the same time.

I Definition 46 (Multiplayer quantum race). Let ui be the payoff function for player i ∈ [n] in
the n-player stingy race defined by P1 < · · · < Pk, as given by Eq. (18). The payoff function u′i in
the n-player quantum race defined by P1, . . . , Pk is

u′i(x) = ui(x) +
n∑

m=2

cpmi (x)
m

.

While the tie-splitting payoff in Definition 46 is quite natural, one could imagine other definitions
in-between stingy multiplayer races and the definition of multiplayer races we have given. Our results
in this section depend very weakly on the exact definition of how ties are split in a multiplayer race. In
fact, the only property we use is u′i(x) ≤ ui(x) + cpi(x). This property holds under any reasonable
definition of tie-splitting.

Now we show Theorem 9 from the introduction that the coinciding Nash equilibrium in a
multiplayer stingy quantum race is an approximate Nash equilibrium in a multiplayer quantum race.

I Theorem 9. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2, with
4en` ≤ K. If x = (x1, ..., xn) is the coinciding Nash equilibrium for this stingy race, then x is an
8e`
K - approximate Nash equilibrium of the corresponding quantum race.

Proof. Refer [14]. J
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