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Abstract  

In this paper, we propose a closed-loop supply chain network configuration model and a 

solution methodology that aims to address several research gaps in the literature. The proposed 

solution methodology employs a novel metaheuristic algorithm, along with the popular 

gradient descent search method, to aid location-allocation and pricing-inventory decisions in a 

two-stage process. In the first stage, we use an improved version of the particle swarm 

optimisation (PSO) algorithm, which we call improved PSO (IPSO), to solve the location-

allocation problem. The IPSO algorithm is developed by introducing mutation to avoid 

premature convergence and embedding an evolutionary game-based procedure known as 

replicator dynamics to increase the rate of convergence. The results obtained through the 

application of IPSO are used as input in the second stage to solve the inventory-pricing 

problem. In this stage, we use the gradient descent search method to determine the selling price 

of new products and the buy-back price of returned products, as well as inventory cycle times 

for both product types. Numerical evaluations undertaken using problem instances of different 

scales confirm that the proposed IPSO algorithm performs better than the comparable 

traditional PSO, simulated annealing and genetic algorithm methods. 

Key Words: closed loop supply chain, particle swarm optimisation, optimisation, facility 

location, inventory management 

1. Introduction 

With the prominence accorded to environmental sustainability and social responsibility by 

multiple stakeholder groups, closed-loop supply chain management (CLSCM) has increasingly 

attracted the attention of researchers over the past two decades (Dutta et al., 2016; Govindan 

et al., 2015). People, in general, have become more conscious and cautious of the consequences 

of environmental degradation (Dowlatshahi, 2000) and have responded positively towards 

initiatives that focus on efficient use of resources (Shukla and Kiridena, 2016) and safe disposal 

of end-of-life products. Many countries have adopted stringent legislation aimed at 

strengthening measures of product stewardship, thereby forcing businesses to take back used 

products and reduce waste generated through their operations (Kumar and Putnam, 2008). End-

of-life products that would otherwise go to waste can, in effect, have some remaining value in 

terms of reducing the consumption of raw materials, and decreasing waste production and the 

costs of disposal (Meng et al., 2016; Faccio et al., 2014; Guide Jr. and Wassenhove, 2009). As 

such, businesses can derive benefits from initiatives that incorporate reverse logistics (RL) 

activities into supply chains. Such activities can reduce input costs through the re-use and 

recovery of products, and increase revenue through the enhancement of brand image (Dubey 

et al., 2015; Hong et al., 2015; Atasu et al., 2008). Given that the business value of CLSCM is 

now well-established, there are opportunities for operationalising the concept through focused 

research.    
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To this end, there is currently a substantial body of CLSCM literature to draw upon. Based on 

a comprehensive and systematic review of 382 papers, Govindan and colleagues (2015) 

provide a detailed account of future research directions. Other significant review articles we 

have been able to locate in the CLSCM literature include Govindan and Soleimani (2017); 

Souza (2013); Guide Jr. and Wassenhove (2009); Akcali and Uster (2008); and Jayaraman et 

al. (2003). In this paper, we draw on these review articles and other recent work to determine 

the scope of our study and to develop a suitable modelling approach and solution methodology.  

First, in setting the scope, we adopt the integrated forward-reverse network out of the three 

main alternative closed-loop supply chain (CLSC) network configurations used in extant 

literature. Our choice was made based on several considerations drawn from the literature, such 

as minimisation of overall logistics costs, maximisation of asset utilisation and leverage of 

established channel relationships (Kaya and Ureck, 2016; De Giovanni and Zaccour, 2014).               

Second, in response to calls for the integration of decision variables at multiple levels, we 

address a number of strategic, tactical and operational decisions collectively in this study (see 

Figure 1). We focus on key strategic-tactical decisions such as the location of facilities and the 

allocation of customer zones to those facilities, considering both market needs and 

transportation costs (Kaya and Ureck, 2016; Easwaran and Uster, 2010; Srivastava, 2008). We 

consider tactical-operational decisions such as the pricing policy (Esmaeili et al., 2016; Chen 

and Chang, 2013) and inventory cycle times (Asl-Najafi et al., 2015; Salema et al., 2010) while 

taking into account incentives offered for product returns.  

 

 

 

Fig. 1. The proposed problem structure 

Third, in addition to the key decision variables referred to above, we incorporate several 

important parameters into our model in the form of logically derived values. These parameters 

were drawn from the literature, such as the number of facilities to be set up, the costs associated 

with setting up or operating those facilities, and the capacity of such facilities (Ahmadzadeh 

and Vahdani, 2017; Kaya and Urek, 2016; Dai and Zheng, 2015; Amin and Zhang, 2013). In 

so doing, we aim to address the trade-off between the veracity of the model and computational 

challenges.     

In dealing with strategic-tactical decisions, we employed a modified form of the evolutionary 

algorithm-based particle swarm optimisation (PSO). This modified PSO, which we refer to as 

improved particle swarm optimisation (IPSO), is used to locate retailers to reduce the 
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transportation distance and/or travel time required for moving goods between network nodes. 

Once the retailers are located, we employ an allocation schema to determine which customer 

zone is to be served by which retailer. Based on the location-allocation results obtained, we 

derive some parameters concerning relevant CLSC network attributes, like the capacity level 

of retailers, cost of ordering from each retailer, and the establishment and operational costs of 

each retailer.  

In dealing with tactical-operational decisions, we determine the appropriate selling and rebate 

prices, along with the volume of products that should be taken back from customers so as to 

maximise the manufacturer’s profits. The volume of products returned depends on two factors: 

the incentives offered for product returns and the proximity of collection centres to customers. 

Furthermore, the level of incentive offered plays an important role in determining how to 

handle the trade-off between the revenue generated from a remanufactured product and the 

costs incurred in collecting it. Therefore, we aim to find the optimal sales price for products 

sold to consumers, while also considering the level of incentive offered. In determining the 

optimal inventory cycle time, we must consider that the retailer has to make re-orders in 

appropriate lot sizes at certain intervals to maintain stock levels that fully meet customer 

demands. Additionally, products collected from customers have to be returned to the 

manufacturer via retail outlets. As such, to minimise overall transport costs, the ordering cycle 

needs to be determined by considering the volumes of product moved in both directions. We 

use the values of selling price and rebate price derived in the previous step to calculate the 

retailer-specific optimal ordering frequency using the standard economic order quantity (EOQ) 

formula (Maddah & Jabber, 2008). 

A detailed evaluation of the results generated using the proposed model is undertaken to 

demonstrate the efficacy of IPSO in relation to other comparable algorithms. A number of 

scenarios are analysed by changing certain parameters, like the number of customer zones and 

retailers, to assess the scalability of our model. We discuss the outcomes generated using the 

proposed model so that relevant managerial insights can be drawn from our study.  

The paper is organised as follows. Section 2 reviews the most relevant research, then we 

articulate the problem and its mathematical representation in Section 3. Our proposed solution 

methodology (IPSO) is presented in Section 4. Section 5 involves a numerical evaluation 

carried out using the proposed model to test its veracity. A detailed performance comparison 

of the IPSO with comparable algorithms is also included in this section. Section 6 concludes 

the paper with a brief account of its contributions, and directions for future research. 

2. Literature Review 

Various aspects of the CLSC configuration problem have been studied in the literature from 

multiple perspectives using a variety of modelling approaches and solution methods. The 

aspects of the CLSC configuration problem that have been widely studied include determining: 

the location of facilities, the capacity of facilities, prices, incentive levels, transport modes, 

vehicle routes, delivery schedules and inventory cycles. In the literature, these aspects have 

been categorised into strategic (design), tactical (planning) or operational decisions. 



3 
 

Alternative perspectives from which these decisions have been studied include: minimisation 

of costs or maximisation of profits; optimisation of the flow of products across the network; 

mitigation of risk and uncertainty; and handling the scale and complexity of the network. The 

types of modelling approaches used in solving CLSCM problems have been classified as 

conceptual and mathematical, whereas the solution methods have been classified in terms of 

analytical and exact, approximation and heuristic, and meta-heuristic and other (Govindan et 

al., 2015).   

Although significant progress has been made in terms of advancing knowledge in each of the 

decision areas referred to above, studies that simultaneously consider multiple decisions or 

integrate decisions at all three levels are limited (Govindan et al., 2015). A number of recent 

studies (e.g. Ahmadzadeh and Vahdani, 2017; Kaya and Urek, 2016; Asl-Najafi et al., 2015; 

Govindan et al., 2015) have highlighted the importance of integrating multiple decisions and 

considering multiple decision variables at all three levels in order to develop more effective 

supply network structures, as well as to achieve optimal network-level performance. These 

studies have also noted that such decisions have traditionally been considered separately, 

resulting in sub-optimal supply network-level performance. In this regard, a significant number 

of studies have simultaneously considered two decision variables while also accounting for 

uncertainty or scale (e.g. Dai and Zheng, 2015; Soleimani and Kannan, 2015; Asl-Najafi et al., 

2015; Jindal and Sangwan, 2014; Nickel et al., 2012). However, studies that have considered 

more than two decision variables representing all three levels seem to be quite limited (Kaya 

and Ureck, 2016; Ahmadzadeh and Vahdani, 2017; Zhalechian et al., 2016). These studies will 

be further examined later in this section.  

In terms of alternative perspectives from which various decisions have been studied, virtually 

all literature on CLSCM focuses on economic benefits; i.e. cost minimisation or profit 

maximisation in some form at the level of the network, entities or specific operations. Since 

the early calls for incorporating uncertainty into CLSCM studies were made, significant 

progress has been made in this area. We observed a large proportion of the more recent 

literature to have incorporated uncertainty and risk using stochastic approaches, fuzzy logic or 

interval programming (Govindan et al., 2015). Some studies have used various modelling 

approaches and solution methods to optimise the forward and reverse flows of products and 

material through networks (e.g. Vahdani and Mohammadi, 2015; Jindal and Sangwan, 2014).  

In terms of the scale and complexity of CLSC networks, researchers have explored three forms 

of configuration. A number of studies have assumed a dedicated RL chain exclusively managed 

by the manufacturer to operate alongside the forward logistics chain (e.g. Amin and Zhang, 

2013; Aras et al., 2008; Min et al., 2006; Jayaraman et al., 2003). In other studies, various 

forms of outsourcing in relation to RL operations, including inspections and sorting, 

refurbishing and disposal, have been considered (Genc and De Giovanni, 2017; De Giovanni 

and Zaccour, 2014; Kumar and Putnam, 2008). However, we observe increasing attention 

being given to using existing forward chain channel relationships for RL as well; under the 

oversight of the OEM with or without third party involvement (De Giovanni and Zaccour, 

2014; Easwaran and Uster, 2010; Mutha and Pokharel, 2009; Fuente et al., 2008; Srivastava, 

2008; Savaskan et al., 2004). Although many authors have discussed the merits and limitations 
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of integrating forward and RL operations, some have more strenuously argued for integrated 

CLSCs (e.g. Kaya and Ureck, 2016). Additionally, a number of studies have also considered 

multi-product, multi-echelon or multi-period CLSC network configurations.   

In summary, the above review suggests that there is a significant opportunity to contribute to 

the CLSCM literature by exploring multiple decision variables that represent the strategic, 

tactical and operational levels, while also accounting for other aspects such as green SC and 

sustainability. The literature also acknowledges the potential benefits of integrated CLSC 

networks; hence, there is a need to incorporate that aspect into future research. Further 

opportunities exist for testing models of more complex multi-product, multi-echelon 

configurations. However, consideration of complex, integrated CLSC network configurations 

that involve multiple decisions at all three levels poses significant challenges pertaining to the 

choice of modelling approaches and solution methodologies, as well as dealing with 

computational demands. For example, the need for efficient meta-heuristic algorithms and/or 

exact methods to deal with more complex CLSCM problems has been emphasised in several 

recent studies (Zhalechian et al., 2016; Kaya and Ureck, 2016; Asl-Najafi et al., 2015). Other 

authors have identified a need to explore the benefits of alternative approaches such as 

simulation-optimisation and other forms of simulation (Govindan and Soleimani, 2017; 

Pourhejazy and Kwon, 2017; Govindan et al., 2015). With these recommendations in mind, we 

now turn to examining the modelling approaches and solution methods used in extant CLSCM 

literature. 

Several modelling approaches have been proposed in the literature to model the aspects of 

CLSCM referred to previously. However, linear and mixed integer linear programming (MILP) 

models have been predominantly used in this area (Govindan et al. 2015). Alumur and 

colleagues (2012) proposed an MILP formulation that incorporates reverse network structures 

and bills of materials for product returns, changes in the capacity of facilities, and multi-period, 

multi-commodity situations. Soleimani and Kannan (2015) proposed an MILP framework 

considering a multi-echelon, multi-product, multi-period scenario to address design and 

planning issues in a CLSC network. Soleimani and colleagues (2013) also introduced a model 

based on MILP to solve the location-allocation problem, which included parameters for non-

deterministic demand and the prices of new and returned products, with expected profits as the 

overall objective function. Salema and colleagues (2007) proposed an MILP to include a 

CLSCM case where capacity limits, multi-product, and uncertain product demands and returns 

were considered. However, as there are multiple aspects in a typical CLSCM problem, non-

linear objectives and/or constraints are unavoidable. In recognition of this situation, Aras and 

Aksen (2008) developed a mixed-integer, non-linear, facility location-allocation model to 

optimally locate collection centres and determine the incentive levels that maximise profit from 

product returns. Overall, our review indicates that studies employing non-linear methods to 

model CLSCM decisions are rather limited. 

In the field of CLSCM, various computational tools have been developed to address challenges 

such as those referred to above. In case of MILP-based models, for example, researchers have 

predominantly used analytical or exact methods (e.g. CPLEX, LINGO, GAMS) to solve small-

scale problems. Chen (2011) proposed an analytical method to examine a situation involving a 
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single-period CLSC model with demand uncertainty and product returns. Kannan et al. (2012) 

used LINGO to solve an MILP model that minimised a CO2 footprint while incorporating RL 

activities to recover used products. Listes (2007) proposed a branch-and-cut procedure for 

solving a CLSC design problem. When dealing with a problem of large dimensions, exact 

approaches for solving MILP models tend to suffer from computational difficulties. Therefore, 

alternative techniques, such as Benders decomposition method (Salema et al 2010) and 

metaheuristics (Govindan et al 2015), to solve larger-scale CLSCM problems have been called 

for in the literature.  

Large-scale CLSCM problem instances have been solved using heuristic and metaheuristic 

methods such as genetic algorithms, simulated annealing and Tabu search. Kumar and Chan 

(2011) proposed a superiority search and optimisation metaheuristic for solving CLSCM 

problems, which included electronic tracking and environmental factors in multi-product, 

uncertain demand, and limited capacity settings.  Meng et al. (2016) proposed an improved co-

evolutionary metaheuristic for green manufacturing by integrating a recovery option with 

disassembly planning for end-of-life products. Zhu and Xiuquan (2013) proposed a hybrid 

genetic algorithm for solving a SC formulation where uncertain selling, repairing and 

remanufacturing were considered. Schweiger and Sahamie (2013) proposed a hybrid Tabu 

search approach for designing a recycling network for paper-based products. Aras and Aksen 

(2008) proposed a heuristic procedure involving multi-level Tabu search-based nested loops to 

find a predetermined number of collection centres and the optimal financial incentive levels 

for different return types. Tiwari et al. (2016) used a hybrid of a distribution algorithm and a 

territory-defined multi-objective algorithm to select the optimum number of facilities in a 

CLSC. Lu and Bostel (2007) proposed an algorithm based on Lagrangian heuristics for a 

facility location problem with reverse flows. Other approaches based on simulation modelling 

(Chatfield and Pritchard, 2013), multi-criteria decision making (Ramezani et al. 2013) and 

sample average approximation (Lee et al 2010) have also been proposed as suitable approaches 

for solving CLSCM problems. Compared to the number of research papers involving exact and 

analytical methods, studies that have developed metaheuristics for solving large-scale CLSCM 

problems are more limited, although they have been increasing over the last few years 

(Govindan et al 2015).    

Given that metaheuristics have been successfully applied to large-scale CLSM problems, we 

were interested in exploring the potential of using a PSO metaheuristic to solve a non-linear 

optimisation model that optimises location-allocation and pricing-inventory decisions. Since 

its introduction, PSO has undergone numerous refinements and improvements in terms of 

computational efficiency and efficacy in obtaining superior solutions (Lin et al., 2015; Cho et 

al., 2011; Tsai et al., 2012). In PSO, the search procedure often converges at local optima, 

thereby limiting its ability to find high-quality and globally optimal solutions (Bonyadi and 

Michalewicz, 2014). Another issue with PSO is its slow convergence speed, which results in 

long computational times when solving large-scale optimisation problems. In our study, we 

aim to address these issues appropriately.  

Based on the gaps identified in the literature review, in this paper we focus our efforts on the 

development of a computationally efficient CLSC network configuration model that 
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incorporates representative strategic, tactical and operational decisions. In so doing, we 

demonstrate the capacity of the proposed model to account for economic and product flow 

aspects while considering an integrated forward-reverse logistics network.       

3. Problem Definition and Model Development 

In this study, we consider a closed-loop supply chain involving a company that is launching a 

new product in a certain market (see Figure 2). The company has to make certain decisions 

related to the configuration of its supply chain network for the new product. These decisions 

include the location of retailers, assignment of customer zones to each retailer, determination 

of inventory cycles, and pricing decisions.  

 

Fig. 2. Generic closed-loop supply chain model considered in this study 

Following the approach adopted by Kaya and Uerk (2016), we consider that the company first 

identifies N different customer zones in its target market. Constrained by its financial capacity, 

the company decides to establish M number of retailers in the market to sell their product. Since 

we are considering an integrated CLSC, we assume that these retailers will also act as collection 

centres for returned products (Savaskan et al., 2004). The supply chain issues that we look to 

address in this exercise are all inter-related and, therefore, the goal is to obtain the optimal 

overall outcome, given the multiple aspects considered. Figure 2 illustrates the generic model 

of the closed-loop supply chain that we are considering in this study. We assume that there is 

a manufacturer and that the used products collected at retailers will be sent back to the 

manufacturer for remanufacturing. We assume that there are no existing compatible retailers 

and, hence, we have to optimally locate all the new retailers while considering transportation 

distances. We use overall distance as the objective function (𝑍1) when solving the location-

allocation problem (LAP) using IPSO. In the next part of the formulation, we consider overall 

profit as the objective function (𝑍2) when solving the pricing-inventory problem (PIP) using a 

gradient descent method. Mathematically, 𝑍1, used for locating the retailer facilities, is found 

by minimising: 
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𝑍1 = (𝑎1 × ∑ 𝑦𝑗 × 𝑑𝑖𝑠𝑡(𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦, 𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝑗)𝑀
𝑗=1  +  𝑎2 ×

∑ ∑ 𝑥𝑖𝑗 × 𝑑𝑖𝑠𝑡(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝑗, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑍𝑜𝑛𝑒𝑖)𝑀
𝑗=1

𝑁
𝑖=1 )  (1) 

Subject to: 

 ∑ 𝑥𝑖𝑗 = 1         ∀𝑖𝑗      (2) 

 𝑥𝑖𝑗 ≤ 𝑦𝑗              ∀𝑖, 𝑗     (3) 

 

Here, 𝑎1 and 𝑎2 are weights assigned according to the influence of the respective terms on the 

final profits of the company. The first term in Eqn. 1 represents the overall distance between 

the manufacturer and retailers. The second term in Eqn. 1 represents the overall distance 

between the retailer facilities and customer zones. In this formulation (Eqn. 1), 𝑥𝑖𝑗 and 𝑦𝑗 are 

the decision variables; 𝑥𝑖𝑗 indicates whether customer zone i is served by retailer j. 

𝑥𝑖𝑗 = {
1 if customers from zone  𝑖 are served by retailer 𝑗
0 otherwise

   (4) 

We also define another binary variable, 𝑦𝑗, which denotes whether retailer j is established or 

not, as given below: 

 

𝑦𝑗 = {
1 if retailer 𝑗 is established
0 otherwise

    (5) 

 

The company has to set a market price for selling the new product, which will be an important 

factor in determining the volumes sold. Apart from the unit production cost, the cost that the 

company incurs in RL—the rebate cost—also needs to be considered in developing an overall 

optimal pricing policy. Moreover, the inventory cycle times across the supply chain have to be 

considered in reaching an optimal pricing decision.   

In our model, ‘𝑐 ’ denotes the unit production cost of the new product, ‘𝑝 ’ denotes the selling 

price, ‘𝑟’ denotes the rebate price or the financial incentive (refund) offered for each returned 

product, and ‘𝑟𝑚’ denotes the remanufacturing cost per unit. To simplify our problem, we 

assume that there is the same level of salvage value for all returned products, although they 

may not be in the same condition. 

Variable ‘𝜏𝑖’ denotes the number of people in customer zone 𝑖 who are considered potential 

buyers of the new product. We assume that the customers go to the retailer locations by 

themselves to buy the product, and that the demand for the product is price and accessibility 

sensitive. That is, if the product has a lower price and the retailer is nearer to the customer zone, 

then the demand is more likely to be higher. We express the demand mathematically as 𝐷𝑖𝑗  =

 𝜏𝑖 𝑒
−𝑘𝑝 𝑥𝑖𝑗 𝛼𝑖𝑗, where ‘𝐷𝑖𝑗’ denotes the demand directed from customer zone i to retailer j, 

where k is the coefficient of the price sensitivity of demand, and 𝛼𝑖𝑗 is a parameter (between 0 

and 1 depending on the distance between zone 𝑖 and retailer 𝑗) that denotes the proportion of 

the potential customers who will actually buy the product. Similar to the way that the demand 
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variable was introduced, we define a variable that denotes the number of people willing to 

return the product and mathematically represent it as 𝑅𝑖𝑗 =  𝜏𝑖  (1 − 𝑒−𝑔𝑟)𝑥𝑖𝑗 𝛽𝑖𝑗. Here, g is 

the incentive sensitivity of the used quantities of products and 𝛽𝑖𝑗 is a parameter (between 0 

and 1 depending on the distance between customer zone i and retailer location j) that denotes 

the proportion of customers who are willing to return the used product.  

Customers can return used products at the retailer outlets. It is assumed that it will be 

economical for shipments of used/returned products to be sent back to the manufacturer 

following the arrival of a shipment of new products at the retail outlet. This means that the 

returned products can be sent back through the same distribution channels so that transportation 

costs are minimised. Thus, the inventory cycle time, or the inter-arrival time between two 

shipments, 𝑇𝑗, is affected by the retailer’s collection rate and fixed shipment cost. The complete 

set of notation used in the mathematical model that represents the inventory and pricing 

problem is provided in Table 1. 

 

Table 1: Notation used in the inventory and pricing problem model 

    Notations         Description 

Parameters 

 𝜏𝑖  Number of potential customers in zone i 

 𝐷𝑖𝑗  Demand of customers from zone i to retailer j 

 𝑅𝑖𝑗  Number of returned products from zone i to retailer j 

s  Selling price of a remanufactured unit 

 𝑐𝑟  Remanufacturing cost per unit 

c  Cost of producing a new product 

 𝐹𝑗    Total cost of establishing and operating retailer j 

k  Price sensitivity parameter 

𝑔  Incentive sensitive parameter 

 𝐴𝑗  Ordering cost at retailer j 

 ℎ𝑛𝑗  Unit holding cost of new product at retailer j 

 ℎ𝑟𝑗   Unit holding cost of used product at retailer j 

 𝑇𝑗  Inventory cycle time for retailer j 

             𝑥𝑖𝑗
∗    Optimum customer zone allocation 

             𝑦𝑗
∗    Optimum retail outlets 

             𝑛𝑗                        Number of customer zones allocated to retailer j 

Decision Variables 
p  Price value offered per product unit (PIP) 

r  Incentive value offered per used product unit (PIP) 
            𝑥𝑖𝑗   Boolean variable for allocating customer zone i to retailer j (LAP) 

            𝑦𝑗     Boolean variable to indicate whether retailer j is established (LAP) 

 

Then, we can express the profit function for the company, in terms of the key decision variables 

(p and r), as Z2 (Eqn. 4).  
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Maximise: 

Z2 =  (

∑ ∑ (𝑝 − 𝑐)𝜏𝑖𝑒
−𝑘𝑝𝑥𝑖𝑗

∗ 𝛼𝑖𝑗𝑗𝑖 + ∑ ∑ (𝑠 − 𝑐𝑟 − 𝑟)𝜏𝑖(1 −𝑗𝑖 𝑒−𝑔𝑟)𝑥𝑖𝑗
∗ 𝛽𝑖𝑗 − ∑ 𝐹𝑗𝑦𝑗

∗
𝑗 −

∑ [
𝐴𝑗

𝑇𝑗
+ (∑ [𝜏𝑖𝑒

−𝑘𝑝𝑥𝑖𝑗
∗ 𝛼𝑖𝑗𝑇𝑗

ℎ𝑛𝑗

2
+ 𝜏𝑖𝑖

(1 − 𝑒−𝑔𝑟)𝑥𝑖𝑗
∗ 𝛽𝑖𝑗𝑇𝑗

ℎ𝑟𝑗

2
]𝑖 )]𝑗 𝑦𝑗

∗ )                 

(4) 

 

where 𝑥𝑖𝑗
∗  and 𝑦𝑗

∗ represent optimal values obtained after solving Z1. The first term 

(∑ ∑ (𝑝 − 𝑐)𝜏𝑖𝑒
−𝑘𝑝𝑥𝑖𝑗𝛼𝑖𝑗𝑗𝑖 ) in Eqn. 4 represents revenue obtained by selling the product at unit 

price p when the unit production cost was c. The second term (∑ ∑ (𝑠 − 𝑐𝑟 −𝑗𝑖

𝑟)𝜏𝑖(1 − 𝑒−𝑔𝑟)𝑥𝑖𝑗𝛽𝑖𝑗) represents revenue obtained when a remanufactured product is sold at 

unit price s while the unit cost of remanufacturing was 𝑐𝑟 and the rebate offered was r (per 

unit). The third term represents the cost incurred in establishing retail outlets. The final term 

(∑ [
𝐴𝑗

𝑇𝑗
+ (∑ [𝜏𝑖𝑒

−𝑘𝑝𝑥𝑖𝑗𝛼𝑖𝑗𝑇𝑗
ℎ𝑛𝑗

2
+ 𝜏𝑖(1 − 𝑒−𝑔𝑟)𝑥𝑖𝑗𝛽𝑖𝑗𝑇𝑗

ℎ𝑟𝑗

2
]𝑖 )]𝑗 𝑦𝑗) represents the inventory 

holding (for new and remanufactured products) and ordering costs (
𝐴𝑗

𝑇𝑗
). In this formulation, 

decision variables p and r are optimised to maximise profit (Z2).   

 

4. Solution Methodology 

The proposed model represents two (sub) problems: a location-allocation problem (LAP, see 

Eqn. 1), and a pricing-inventory problem (PIP, see Eqn. 4). In the LAP, customer zones are 

allocated to each of the retailers based on their physical proximities. Once the allocations are 

made, the pricing (product price and incentive value) and inventory cycle time are optimised, 

which is referred to here as the PIP. The LAP formulation is similar to that of the basic facility 

location problem. Since the facility location problem is NP-hard, the proposed problem, 

including the sub-problems LAP and PIP, is also treated as NP-hard. To solve this problem, 

we have developed the sequential loop algorithm illustrated in Figure 3. We first solve the LAP 

part of the model and then, in next step, we resolve the PIP.  

To solve the LAP with a fixed number of customer zones and retail locations, we propose a 

new algorithm called improved particle swarm optimisation (IPSO). IPSO extends the 

traditional PSO algorithm to incorporate two new features: game theory-based competition 

among particles, and mutation-based evolution of solutions. These two features are employed 

to improve the performance of PSO and effectively and efficiently optimise the LAP. A 

detailed description of the proposed IPSO algorithm is discussed in the following subsections.  

4.1 Improved PSO (IPSO)  

4.1.1 Particle Swarm Optimisation (PSO) 

In PSO, a swarm of particles are engaged in a search for the best solution to a problem, where 

each particle represents a possible solution. In the search process, each particle accelerates in 

the direction of the best solution it has found so far, as well as in the direction of the global best 

position discovered so far by any of the particles in the swarm. Table 2 presents the notations 

that are used to describe the workings of PSO.  
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Fig. 3. The overall two-stage solution approach 

 

 

Table 2: Notations used in the PSO  

Notations         Description 

 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡)  ith particle’s position in iteration t 

 𝑉𝑖(𝑡)   ith particle’s velocity in iteration t 

 𝑝𝐵𝑒𝑠𝑡𝑖(𝑡)  Personal best position of particle i  

 𝑔𝐵𝑒𝑠𝑡(𝑡)  Global best position of all particles 

 𝑐1, 𝑐2   Acceleration coefficients 

 𝑤   Weight coefficient 

 

The parameters 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡) and 𝑉𝑖(𝑡) are updated in each iteration t using the following 

equations: 

 

𝑉𝑖(𝑡 + 1) = 𝑤 × 𝑉𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑(0,1) × [𝑝𝐵𝑒𝑠𝑡𝑖(𝑡) − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡)] + 

𝑐2 × 𝑟𝑎𝑛𝑑(0,1) × [𝑔𝐵𝑒𝑠𝑡(𝑡) − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡)]    (7) 

         𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡 + 1) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                         (8) 

 

where 𝑟𝑎𝑛𝑑(0,1) is a real random number from a uniform random number between (0, 1), and 

w is the weight coefficient, which varies between (0.1, 0.9). The parameter 𝑝𝐵𝑒𝑠𝑡𝑖 is updated 

according to Eq. (9): 

 

𝑝𝐵𝑒𝑠𝑡𝑖(𝑡 + 1) = {
𝑝𝐵𝑒𝑠𝑡𝑖(𝑡) if 𝑓 (𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡 +  1))  ≤  𝑓 (𝑝𝐵𝑒𝑠𝑡𝑖(𝑡))

𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡 +  1) if 𝑓 (𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑖(𝑡 +  1))  >  𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑡))
  (9) 

 

Then, 𝑔𝐵𝑒𝑠𝑡, which is the best position among all particles in the swarm during all previous 

steps, is updated using Eq. (10). 

LAP solved using IPSO

PIP solved using gradient Search

No. of customer zones and locations

Production facility location

Maximum number of retailer facilities

Retailer facilities locations

Operational retailer facilities (𝑦𝑗
∗)

Customer zone allocation (𝑥𝑖𝑗
∗ )

Compute:

Retailer capacity (nj); Ordering cost (Aj);

Fixed and operational cost (Fj); ij and ij

Optimal pricing policy (p and r)

Optimal inventory cycle time (𝑇𝑗
∗) 
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𝑔𝐵𝑒𝑠𝑡(𝑡 + 1) = 𝑎𝑟𝑔 (𝑚𝑎𝑥 (𝑓(𝑝𝐵𝑒𝑠𝑡𝑖(𝑡 + 1)))                  (10) 

 

The value of V can be limited to the range [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛] to ensure that the particles move 

within the search space. 

 

In this paper, variable w is the inertia weight, and its value is typically varied in each step as 

the particles converge towards the optimal solution. 

 

In PSO, particles often converge prematurely at local optima, which limits the search process 

in finding the optimal solution in the search space. This phenomenon is generally referred as 

premature convergence (Clerc and Kennedy, 2002). This is one of the limitations of PSO that 

we seek to address through an improved PSO algorithm. The following section details the 

proposed mechanism, which utilises mutations to avoid premature convergence.  

 

4.1.2 Adaptive PSO with Mutation 

 

Experiments demonstrate that in PSO, there is a lack of population diversity of particles at the 

premature and global convergences. That is, particles will accumulate at the local or global 

optima, respectively. More often than not, the lack of population diversity leads to premature 

convergence. To avoid this problem in PSO, we propose the concept of mutation to diversify 

the population after a certain condition is met. Table 3 presents the notation that is used to 

describe the workings of IPSO. 

 

Table 3: Notation used in IPSO  

Notations         Description 

 𝐷(𝑡)   Population diversity at the tth iteration 

 D   Population diversity triggering parameter for mutation 

 𝐿   Diagonal length of the search space 

 𝑆   Size of the swarm 

 𝐷𝑖𝑚   Dimension of the solution space 

 𝑃𝑖𝑑   Coordinate value of the dth dimension of the ith particle 

 𝑝𝑑   Average value of the dth dimension coordinate 

 𝑓𝑅𝑎𝑡𝑒(𝑡)  Relative rate of change of value of objective function Z1 

 𝑤′   Adaptive inertial weight 

 count   No. of consecutive generations with unchanged cost  

 C   Triggering parameter for count  

              𝑝𝑚                                      Probability of mutation 

             m                                    Number of particles considered for mutation 

 

We define a parameter, 𝐷(𝑡), called the population average distance amongst points, to 

describe the population diversity (Krink et al., 2002), which can be mathematically expressed 

as: 

𝐷(𝑡) =
1

𝑆𝐿
∑ √∑ (𝑃𝑖𝑑(𝑡) − 𝑝𝑑)2𝐷𝑖𝑚

𝑑=1
𝑆
𝑖=1     (11) 
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The swarm average particle distance describes the distribution of the particles. Smaller values 

of 𝐷(𝑡) indicate that the particles are concentrated closely in the search space. 

 

We define ‘𝑃𝑖𝑑’ to represent a 2-D array, where ‘i’ denotes the particle number (row number) 

and ‘d’ denotes the value of that dimension (column number). One single row (one particle) 

will have the coordinates of all the retailers. We define another variable, ‘count’, which denotes 

the number of consecutive generations in which the optimal cost value remains the same. We 

also define a variable, 𝑓𝑅𝑎𝑡𝑒, which represents the relative rate of change in the value of the 

objective function Z1 (Eq. 1; Lin and Hua, 2009). Mathematically,  

  

 𝑓𝑅𝑎𝑡𝑒(𝑡) =
|𝑍1(𝑡)−𝑍1(𝑡−𝑇)|

|𝑍1(𝑡−𝑇)|
                               (12) 

 

where 𝑍1(𝑡) is the best objective function value found among the swarm particles in generation 

t, and T is a fixed number of generations. Now, we try to determine the value of inertial weight 

w, which is adjusted according to the value of 𝑓𝑅𝑎𝑡𝑒. 

 

  𝑤′ = {
𝛼1 +

𝑟𝑎𝑛𝑑(0,1)

2
,   𝑓𝑅𝑎𝑡𝑒 ≥ 0. 05

𝛼2 +
𝑟𝑎𝑛𝑑(0,1)

2
, 𝑓𝑅𝑎𝑡𝑒 < 0.05

     (13) 

where 𝑟𝑎𝑛𝑑(0,1) is any random number from the uniform distribution. When 𝑓𝑅𝑎𝑡𝑒 ≥ 0.05, 

it suggests that the relative rate of change of the objective function value is higher, which 

implies that the swarm is still in the exploration stage. Therefore, having a higher value of 

inertial weight w is of benefit to the algorithm search process. Similarly, when 𝑓𝑅𝑎𝑡𝑒 < 0.05, 

a smaller value of inertial weight w is used in the algorithm. Thus, 𝛼1 > 𝛼2. Experiments 

suggest that the values of 𝛼1 and 𝛼2 should be approximately 0.6 and 0.2, respectively (Lin 

and Hua, 2009). 

Until the Tth iteration, we allow the algorithm to follow the traditional PSO technique so that 

the population starts converging to one of the local optima. Then from the T + 1th iteration, the 

mutation rule is applied. When the value of 𝐷(𝑡) falls below a certain specified value ‘D’, or 

when there is no significant change in the value of fitness in successive generations (for many 

generations (count) ≥ 15), the mutation operation is triggered, which is designed to diversify 

the population so that it leaves the local optima and explores the remaining search space. We 

assume the mutation probability ‘𝑝𝑚’ to take values in the interval [0.1, 0.3] and that mutation 

only takes place in m number of particles. We generate random numbers 𝑟𝑎𝑛𝑑𝑖(0,1) (𝑖 =

1,2 … 𝑚) and produce a new mutated particle 𝑃𝑖𝑑(𝑡 + 1), if 𝑟𝑎𝑛𝑑𝑖(0,1) < 𝑝𝑚, given as 

𝑃𝑖𝑑(𝑡 + 1) = 𝑃𝑖𝑑(𝑡) × (1 + 0.5 × 𝑟𝑎𝑛𝑑𝑖(0,1))   (14) 

4.1.3 Replicator dynamics 
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Another challenge with the traditional PSO algorithm is its slow convergence to the global 

optimum solution. Thus, a new strategy based on replicator dynamics is incorporated into the 

proposed IPSO algorithm to address this challenge. We map an analogy between the 

evolutionary game and the PSO algorithm to operationalise the concept of replicator dynamics. 

The replicator dynamics equation allows the objective function value of the particles to 

incorporate the distribution of particle types (within the swarm). It is an important property as 

it enables the replicator equation to better imitate the selection process. The general form of 

the evolutionary game consists of three key components: players, strategy space and the payoff 

function. Players can choose a strategy out of the available set of strategies and receive an 

associated payoff value. Using the payoff values (objective function value) for different 

strategies, we can calculate the rate of proportion change of the opted strategies. When the 

game reaches equilibrium, it has reached an evolutionarily stable strategy which is the optimal 

strategy set for all the players of the game. In IPSO, particles represent players in a game, the 

search space is represented as a strategy space, velocity represents the rate of proportion 

change, the objective function represents the payoff function and gBest represents the 

evolutionarily stable strategy. This approach is illustrated in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Logical mapping of PSO on replicator dynamics  

 

As the proportion of particles in the swarm evolves in an iteration of the evolutionary game, 

we update the velocities of the particles to move them towards positions with higher payoff 

values. This is done after velocities are updated in PSO. We update the velocities using Eq. 

(14), which is known as the replicator equation. 

 
𝑑𝑃𝑖𝑑(𝑡+1)

𝑑𝑡
= 𝑉𝑖𝑑(𝑡 + 1) =  

𝑎

𝑏+𝑓(𝑡+1)−𝑓(𝑡)
× 𝑉𝑖𝑑(𝑡)   (15) 

 

𝑃𝑖𝑑(𝑡 + 1) = 𝑃𝑖𝑑(𝑡 + 1) + 𝑉𝑖𝑑(𝑡 + 1)                 (16) 

 

where ‘a’ and ‘b’ are constants given appropriate values based on experiments. We assume 

their values to be 0.001 and 1, respectively. This refines the search process even more and, 

hence, the convergence is met earlier. The particle positions are then updated according to Eq. 

(15). The steps of the proposed IPSO algorithm are illustrated in Figure 5.  

Particles in a swarm Players in a game 

Research space 

Velocity 

Cost function 

gBest 

Strategy space 

Rate of proportion change 

Payoff function 

Evolutionary stable strategy 
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Fig. 5. Flowchart of the IPSO algorithm 

 

The location-allocation problem (LAP) is resolved using the above-mentioned IPSO algorithm. 

We run a sufficient number of iterations or function evaluations until the algorithm reaches the 

point of saturation. Next, a gradient search procedure is employed to solve the PIP problem.    

 

4.2 Gradient descent for the pricing and inventory problem (PIP) 

 

The location and allocation result from IPSO is utilised in the optimisation of the inventory and 

pricing model. We first focus on the inventory decisions in the PIP model (Z2) and observe that 

the decision variable Tj can be expressed in terms of the decision variables p and r, which are 

obtained from the standard economic order quantity (EOQ) model in the inventory theory, as 

stated in the following proposition.  

 

Proposition 1: If a retailer is opened, i.e. if yj = 1, then the optimal cycle time between 

inventory replenishments at this retailer (𝑇𝑗
∗), as given by the standard EOQ model, is: 

 

If t > T

Update the inertial weight 

linearly, w(t)

Update the inertial 

weight adaptively, w(t)

Update the velocity and 

position of particles

Update velocity and 

position using Replicator 

Dynamics

Mutate m particles and 

update their positions

Calculating Diversity 

Index, D(t)

Update pBest for each 

particle

Calculate the change 

rate of cost, Z1(t)

If D(t) ≤ D or 

count ≥ C

Update gBest, gBest(t)

If (t > 

max_iter)

Initialization of PSO 

parameters and initial 

population generation

Stop

YesNo

Yes No

NoYes
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𝑇𝑗
∗ = √

2𝐴𝑗

∑  [𝑁𝑖𝑒−𝑘𝑝𝑥𝑖𝑗
∗ 𝛼𝑖𝑗ℎ𝑛𝑗+𝑁𝑖(1−𝑒−𝑔𝑟)𝑥𝑖𝑗

∗ 𝛽𝑖𝑗ℎ𝑟𝑗]𝑖
   (17) 

We omit the proof for the above proposition since it is a straightforward EOQ result. After 

substituting the value of 𝑇𝑗
∗ in Eq. (4), we get: 

Maximise: 

Z2= (∑ ∑ (𝑝 − 𝑐)𝜏𝑖𝑒
−𝑘𝑝𝑥𝑖𝑗

∗ 𝛼𝑖𝑗𝑗𝑖 + ∑ ∑ (𝑠 − 𝑐𝑟 − 𝑟)𝜏𝑖(1 −𝑗𝑖 𝑒−𝑔𝑟)𝑥𝑖𝑗
∗ 𝛽𝑖𝑗 − ∑ 𝐹𝑗𝑦𝑗

∗
𝑗 −

∑ √2𝐴𝑗(∑ [𝜏𝑖𝑒−𝑘𝑝𝑥𝑖𝑗
∗ 𝛼𝑖𝑗ℎ𝑛𝑗 + 𝜏𝑖(1 − 𝑒−𝑔𝑟)𝑥𝑖𝑗

∗ 𝛽𝑖𝑗ℎ𝑟𝑗]𝑖 ). 𝑦𝑗
∗

𝑗 )    (18) 

This model is solved using the gradient search method to obtain the optimal pricing for new 

and returned products and the inventory replenishment times. 

5. Numerical Evaluation 

In this section, we analyse the performance of this model using the numerical datasets adopted 

from Solomon (1987), with particular focus on the proposed algorithm in terms of solution 

quality and computation time. All of the runs throughout the computational experiments were 

performed on a workstation with an Intel® Core™ i7 processor running at 3.10 GHz and 16 

GB of RAM.  

5.1 Data generation 

We have considered a situation where the total number of customer zones (N) is 100 and the 

company has enough resources to establish 10 retailers (M) to cater to the target market. The 

coordinates of the customer zones were taken from the benchmark dataset RC201100 proposed 

in Solomon (1987). The customer zones and the manufacturer are located on a 100 × 100 2-D 

plane which is considered a scaled version of the real market. Although our aim was to use 

real-world data for the parameters in our model, it was not possible to determine the exact 

values for some of the parameters. Therefore, we made realistic assumptions about the values 

of some parameters, as detailed below. 

We consider a proportion of the total population in each customer zone and generate the 

potential customer population number 𝜏𝑖 for the ith customer zone, such that 1000 < 𝜏𝑖 < 5000. 

We consider 𝛼𝑖𝑗 to be a decreasing function of the distance between customer zone i and retailer 

j, represented as 𝑑𝑖𝑗, such that 𝛼𝑖𝑗  =  1/(1 + 𝑑𝑖𝑗). Similarly, for the return coefficient 𝛽𝑖𝑗, we 

assume that half of the sales are returned as used products, such that 𝛽𝑖𝑗 = 0.5 × 𝛼𝑖𝑗. The fixed 

ordering cost for different retailers is determined once the locations of retailers are established 

and customer zones have been allocated to those retailers. In effect, retailers which have a 

larger number of allocated customer zones can benefit from lower ordering costs due to 

economies of scale, and vice versa. The establishment and operating costs of the retailers are 

also determined after the allocation of customer zones is finalised, as the capacity of the retailer 

will depend on the potential demand on that retailer. The unit production cost c is assumed to 
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be 100 and the minimum selling price of any re-manufactured product that the company can 

offer, s, is assumed to be 60. The cost of remanufacturing is taken as 𝑐𝑟 = 20. We consider the 

holding costs ℎ𝑛𝑗  and ℎ𝑟𝑗  to take random values within 2% of c and s, respectively. The price-

sensitive parameter k is assumed to be 0.05 and the incentive-sensitive parameter is assumed 

to be 0.005. 

In addition to the base case considered above, we take different datasets with varying customer 

locations and numbers of customer zones from Solomon (1987) to analyse the model for small-

, medium- and large-sized problem instances. 

5.2 Results  

For the case with N = 100 and M = 10, we applied the IPSO algorithm for LAP. The retail 

location identified by IPSO is illustrated in Fig. 6. It is evident from the data presented in Fig. 

6 that the algorithm can effectively place retailers in the customer zones with clustered and 

uniformly distributed locations.    

 

Fig. 6. Plot showing the optimal retailer locations for a given set of customer zones, retailers 

and manufacturer (RC201100 dataset) 

 

In the case of LAP, our objective function was to minimise the transportation costs, which are 

directly proportional to the distances between the customer zones, retailers and the 

manufacturer. As such, we have defined our objective function as a measure of the distance 

between: (i) manufacturer and retailers, and (ii) retailers and customer zones. In IPSO, our 

objective is to minimise the total distance between the nodes concerned. Figure 7 illustrates the 
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convergence of this objective function with respect to the number of iterations. It can be seen 

that the IPSO algorithm converges to an optimal solution at around 200 iterations. 

 

Fig. 7. Performance of IPSO 

From the results obtained in IPSO after solving LAP, we know the schema for allocating 

customer zones to retailers; hence, we know the population count that the retailer is going to 

be serving.  Once we have developed a basic understanding of the scale of the operations based 

on these results, we can also estimate the capacity of the retailer, their establishment and 

operational costs, and the fixed ordering cost from the retailer. Equations (19) and (20) give an 

estimate of the ordering cost (Aj) and operational cost (Fj). 

𝐴𝑗 = 𝑏1 + 𝑏2 × 𝑛𝑗       (19) 

𝐹𝑗 = 𝑐1 × 𝑛𝑗 + 𝑐2 ×[∑ (𝐷𝑖𝑗 + 𝑅𝑖𝑗)]𝑁
𝑖=1     (20) 

 

where 𝑛𝑗  (= ∑ 𝑥𝑖𝑗
𝑁
𝑖=1 ) is the number of customer zones allocated to or serviced by retailer j. 

Table 4 represents the allocation schema for the retailers, and the ordering cost and total 

operational cost of the retailers, which we use in the numerical example. For the values 

calculated in Table 4, we have assumed that 𝑏1 = 1000,  𝑏2 = 100, 𝑐1 = 100 and 𝑐2 = 2. 

 

We then proceed to solve the pricing and inventory problem and apply the gradient search 

method to obtain the optimal pricing policy. In the PIP model, we applied the gradient descent 

algorithm using the values of 𝐴𝑗  and 𝐹𝑗 to obtain an optimal pricing policy, including the 

optimal selling price ‘𝑝 ’ of a new unit and the incentive ‘𝑟 ’ that the company will pay to the 

customer for each returned product. For the numerical example considered, the optimal values 

for the prices are 𝑝 = 126.26 and 𝑟 = 19.22. So, the optimal profit that the company should 

settle on is 26.26 per new unit and 25.78 for a re-manufactured unit (i.e. 𝑠 –  𝑟 – 𝑐𝑟, where 𝑐𝑟 

is realistically assumed to be 15). The optimised values of 𝑝 and 𝑟 after solving PIP are the 

same for all the retail facilities.  
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Table 4: Number of allocations, ordering prices and operational costs of retailers  

Retailer number 

(j) 

Number of customer 

zones allocated (𝑛𝑗) 

Ordering price 

(𝐴𝑗) 

Operational cost 

(𝐹𝑗) 

1 11 2100 5726.89 

2 12 2200 5257.30 

3 8 1800 4337.21 

4 12 2200 6664.63 

5 8 1800 4590.43 

6 11 2100 6414.34 

7 10 2000 3991.11 

8 9 1900 6358.45 

9 10 2000 6295.79 

10 9 1900 5089.11 

 

After determining the optimal selling and return prices, we then calculate the optimal inventory 

cycle time of the facilities (Tj). Table 5 presents the optimal inventory cycle times for each 

retailer.  

Table 5. Optimal inventory cycle time 

Retailer number (j) Inventory cycle time 

(𝑇𝑗
∗, days) 

1 2.52 

2 2.74 

3 2.99 

4 3.80 

5 12.37 

6 4.02 

7 4.87 

8 5.18 

9 3.61 

10 2.51 

 

 

5.3 Performance comparison of IPSO on small, medium and large problem instances  

The performance of IPSO is compared against standard metaheuristics such as PSO, GA and 

SA. The datasets from Solomon (1987) were adapted to generate CLSCM problem instances 

with 25, 50 and 100 customer zones. The stopping criterion for the metaheuristics was set to 

100,000 objective function evaluations for all instances. It was assumed that a maximum of 10 
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retailers can be opened for all problem instances. The best solution obtained by applying IPSO 

and the above-mentioned metaheuristics is detailed in Table 6. It can be seen that there is an 

improvement of 17.56% (on average) in the objective function value for LAP when IPSO is 

used on all the problem instances. In all the instances, IPSO obtained better solutions than SA, 

GA and PSO.  

 

Table 6. Performance comparison for IPSO, PSO, GA and SA on test instances (where Clust: 

clustered, Rand: random) 
Dataset Type Customer 

zones 
SA GA PSO IPSO Improvement 

(%) 

C10125 Clust 25 258.92 223.75 217.36 201.53 22.17% 

C10150 Clust 50 563.33 501.15 481.31 447.30 20.60% 

C101100 Clust 100 1494.85 1307.91 1304.60 1190.40 20.37% 

C20125 Clust 25 301.74 260.34 259.20 229.10 24.07% 

C20150 Clust 50 671.00 560.63 573.49 543.77 18.96% 

C201100 Clust 100 1499.60 1340.03 1322.10 1270.80 15.26% 

R10125 Rand 25 327.36 281.05 283.86 270.37 17.41% 

R10150 Rand 50 753.63 635.86 619.01 611.16 18.90% 

R101100 Rand 100 1396.62 1183.90 1190.12 1165.80 16.53% 

R20125 Rand 25 325.89 300.55 288.57 269.90 17.18% 

R20150 Rand 50 698.44 632.91 622.57 617.34 11.61% 

R201100 Rand 100 1382.83 1200.31 1190.10 1172.00 15.25% 

RC10125 Rand + Clust 25 378.39 344.44 333.64 320.62 15.27% 

RC10150 Rand + Clust 50 877.22 759.04 747.92 722.88 17.59% 

RC101100 Rand + Clust 100 1590.88 1449.90 1451.15 1415.80 11.01% 

RC20125 Rand + Clust 25 394.52 340.65 332.33 314.32 20.33% 

RC20150 Rand + Clust 50 857.85 737.02 739.02 715.18 16.63% 

RC201100 Rand + Clust 100 1698.34 1485.16 1482.10 1410.60 16.94% 
 

 

The algorithmic parameters used for running GA were: population of 50 chromosomes, 

crossover probability of 0.8, mutation probability of 0.2 and selection using the tournament 

method. In the case of SA, the initial temperature was set to 4000 and the cooling rate was set 

to 0.02. In the case of PSO, 𝑐1 = 2, 𝑐2 = 2, 𝑤 = 1 and 𝑉𝑚𝑎𝑥 = 10. The parameter settings for 

IPSO are shown in Table 7.  

 

 

 

 

Table 7. Parameter settings for the IPSO algorithm 

Parameter Value 
𝐷 

𝐿 

105 

100√2 
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𝑆 

𝐶 

𝛼1 

𝛼2 

𝑚 

𝑝𝑚 

200 

5 

0.6 

0.2 

20 

0.3 

 

 

6. Conclusions 

Building on the most recent work undertaken in the area of CLSCM, this paper developed a 

CLSC network configuration model aimed at addressing several research gaps identified in the 

extant literature. The proposed model can be used to aid location-allocation decisions and 

pricing-inventory decisions in a two-step process. In the first step, travel distances between 

customer zones, retailers and a manufacturer are minimised to set up a cost-effective 

distribution network for shipping new products and taking back returned products. Considering 

the challenges associated with this decision situation, we developed an improved particle 

swarm optimisation algorithm which effectively and efficiently searches for the best solution 

to the location-allocation problem. In the second step, using the results generated in the first 

step, the optimal selling price, returned product buyback price and stock replenishment cycle 

times are obtained using the gradient search method.      

 

The development of our modelling approach and solution methodology involved careful 

evaluation of methods proposed in the most relevant literature, then refining and combining 

selected approaches to enhance solution quality and computational speed. We selected the few 

most critical aspects (e.g. facility location, pricing and inventory cycle time) of the SCLM 

problem for incorporation into the model in the form of decision variables, as well as other 

aspects (e.g. number of locations, capacity, retailers’ fixed and operational costs) to be 

considered as model parameters. This differentiation allowed us to deal with a larger number 

of decision variables without adding to the computational difficulty faced in the 

implementation stage. Second, we built additional measures to address the two inherent 

challenges associated with the PSO algorithm used in the solution methodology; i.e. 

convergence on local optima and slow convergence rates. These improvements allowed us to 

handle larger-scale problem instances without compromising the computational efficiency of 

the proposed algorithm. Third, we tested our model using benchmark studies consisting of both 

uniformly distributed and clustered customer zones. Tests conducted on problem instances of 

different scales (by varying the number of customer zones and retailers) confirmed that the 

proposed IPSO algorithm performs better than traditional PSO, simulated annealing and 

genetic algorithm approaches. As such, we have made a useful theoretical contribution to 

solving CLSCM problems through the development of the proposed model.  

 

In terms of contribution to practice, our solution approach can deal with multiple supply 

network configuration decisions in a rather seamless and/or holistic manner, leading to globally 

optimal economic outcomes while ensuring a swifter flow of goods across an integrated 
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forward and reverse logistics network. Therefore, we believe that the proposed model could 

serve as a useful tool for solving CSLM problems more comprehensively.     

 

However, there are significant opportunities for extending our model; for example, by 

incorporating multi-product, multi-period situations and accounting for uncertainty in product 

returns. Further refinements to the model may also be achieved through incorporation of more 

appropriate algorithms that account for the realities and challenges associated with solving PIP, 

as we have not exclusively evaluated the performance of the PIP component of the proposed 

model in this paper. However, we believe that these extensions and refinements could be 

incorporated into the proposed model with minimal modifications to its overall structure.            
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